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Abstract

The result of a search for flavor changing neutral currents (FCNC) through single top
quark production in association with a photon is presented. The study is based on
proton-proton collisions at a center-of-mass energy of 8 TeV using data collected with
the CMS detector at the LHC, corresponding to an integrated luminosity of 19.8 fb−1.
The search for tγ events where t→Wb and W→ µν is conducted in final states with
a muon, a photon, at least one hadronic jet with at most one being consistent with
originating from a bottom quark, and missing transverse momentum. No evidence
of single top quark production in association with a photon through a FCNC is ob-
served. Upper limits at the 95% confidence level are set on the tuγ and tcγ anomalous
couplings and translated into upper limits on the branching fraction of the FCNC top
quark decays: B(t → uγ) < 1.3× 10−4 and B(t → cγ) < 1.7× 10−3. Upper limits
are also set on the cross section of associated tγ production in a restricted phase-space
region. These are the most stringent limits currently available.

Published in the Journal of High Energy Physics as doi:10.1007/JHEP04(2016)035.

c© 2016 CERN for the benefit of the CMS Collaboration. CC-BY-3.0 license

∗See Appendix A for the list of collaboration members

ar
X

iv
:1

51
1.

03
95

1v
2 

 [
he

p-
ex

] 
 1

3 
A

pr
 2

01
6

http://dx.doi.org/10.1007/JHEP04(2016)035
http://creativecommons.org/licenses/by/3.0




1

1 Introduction
Evidence of physics beyond the standard model (SM) can be sought in measurements of the
rates of flavor changing neutral currents (FCNC) in the top quark sector. Within the SM, top
quark FCNC transitions are extremely suppressed by the GIM mechanism [1]. The predicted
branching fraction (B) for t→ uγ and t→ cγ decays are approximately 10−14 [2]. However, an
enhancement of several orders of magnitude is predicted in some extensions of the SM, result-
ing in branching fractions observable at the LHC in some cases [3, 4]. Therefore, observation of
these rare top quark decay modes would be indicative of physics beyond the SM.

Searches for FCNC tuγ and tcγ interactions have been carried out by several experiments, with
as yet no indication of a signal. The measured upper limits at the 95% confidence level (CL) on
the branching fraction of t→ qγ, with q representing an up or charm quark, through single top
quark production are 4.1% (L3) [5], 0.29% (ZEUS) [6], and 0.64% (H1) [7] . The 95% CL limit set
by the CDF experiment through top quark pair production is B(t→ qγ) < 3.2% [8].

The most general effective Lagrangian up to dimension-six operators, Leff, used to describe the
FCNC tqγ vertex has the following form [9]:

Leff = −eQt ∑
q=u,c

q
iσµνqν

Λ
(κL

tqγPL + κR
tqγPR)tAµ + h.c., (1)

where e and Qt are the electric charges of the electron and top quark, respectively, qν is the
four-momentum of the photon, Λ is an effective cutoff, which conventionally is taken as the
top quark mass, σµν = 1

2 [γ
µ, γν], and PL and PR reflect, respectively, the left- and right-handed

projection operators. The strengths of the anomalous couplings are denoted by κL,R
tqγ . No spe-

cific chirality is assumed for the FCNC interaction of tqγ, i.e., κL
tqγ = κR

tqγ = κtqγ. In the SM,
the values of κtuγ and κtcγ vanish at the lowest tree level. A fully gauge-invariant effective-
Lagrangian approach for parametrizing the top quark FCNC interactions has been studied in
Ref. [10]. The FCNC effective Lagrangian can be used to calculate both the branching fractions
of the t → qγ decays and the cross sections for the production of a top quark in association
with a photon.

The top quark FCNC processes can be probed through either top quark production or decay. In
this paper, we examine the associated production of a single top quark and a photon, which is
sensitive to the anomalous tqγ FCNC coupling. The difference between quarks and antiquarks
in the parton distribution functions (PDF) of the proton in the presence of a finite tuγ coupling
leads to an asymmetry between top and anti-top quark production rates. No asymmetry is
expected for tcγ, because of the similar charm and anti-charm quark contents in the proton.
This would allow a distinction between the tuγ and tcγ signal scenarios if these processes were
observed [11]. Better sensitivity to the tuγ coupling is expected because the up quark PDF in
the proton is larger than that of the charm quark.

Within the SM, top quarks can also be produced in association with a photon. This proceeds
through the radiation of a photon from the initial- or final-state particles in t-channel, s-channel,
and W-associated production of single top quarks. These processes are treated as backgrounds
in this analysis.

We search for FCNC interactions at the tuγ and tcγ vertices by looking for events with a single
top quark and a photon in the final state, where the top quark decays into a W boson and a
bottom quark, followed by the decay of the W boson to a muon and a neutrino. The final state
includes W± → τ±ντ events in which the τ lepton decays to µν. We focus on this particular
leptonic decay because it has a very clean signature. Figure 1 illustrates the lowest-order dia-
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gram for this tγ process including the muonic decay of the W boson from the top quark decay.
The FCNC vertex is identified by a filled circle.

One of the distinctive signatures of the signal is the presence of a high transverse momentum
(pT) photon in the final state. The photon is expected to have large transverse momentum, ow-
ing to its recoil from the heavy top quark. The analysis is performed using events with a muon,
a photon, at least one hadronic jet, with at most one being consistent with originating from
a bottom quark, and missing transverse momentum. The results are compared with leading-
order (LO) and next-to-leading-order (NLO) calculations of the FCNC signal production cross
section based on perturbative quantum chromodynamics (QCD) [12].

g

u/c

u/c

γ

t

b
+W

+µ
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Figure 1: Lowest-order Feynman diagram for single top quark production in association with
a photon via a FCNC, including the muonic decay of the W boson from the top quark decay.
The FCNC vertex is marked as a filled circle.

2 The CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diame-
ter, providing a magnetic field of 3.8 T. A silicon pixel and strip tracker, a lead tungstate crystal
electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL),
each composed of a barrel and two endcap sections are contained within the superconducting
solenoid volume. Extensive forward calorimetry complements the coverage provided by the
barrel and endcap detectors. Muons are measured in gas-ionization detectors embedded in the
steel flux-return yoke outside the solenoid.

The first level of the trigger system, composed of custom hardware processors, is designed to
select the most interesting events in less than 4 µs, using information from the calorimeters and
muon detectors. The high-level trigger processor farm further decreases the event rate from
about 100 kHz to less than 1 kHz, before data storage.

A more detailed description of the CMS detector, together with a definition of the coordinate
system and kinematic variables used in this analysis, can be found in Ref. [13].
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3 Data and simulation samples
The analysis is based on a data sample of proton-proton collisions at a center-of-mass energy of
8 TeV, corresponding to an integrated luminosity of 19.8 fb−1, collected with the CMS detector
at the CERN LHC.

Monte Carlo (MC) simulated signal samples of pp → tγ → W±bγ → `±ν`bγ, with ` repre-
senting e, µ, or τ leptons, are generated with the PROTOS 2.0 generator [14], with a minimum
pT requirement of 30 GeV for the associated photon. PROTOS is a LO generator for single top
quark and tt production that includes anomalous top quark couplings.

To study the response of the analysis to the signal and to processes with potentially similar
final-state signatures, simulated event samples of t + γ, tt, tt + γ, Wγ+jets, Zγ+jets, Drell–
Yan, W+jets, and WWγ + jets events are generated using the LO MADGRAPH 5 generator [15].
Diboson samples (WW, WZ, and ZZ) are generated using PYTHIA 6 [16]. Single top quark
events from tq-, tb-, and tW-channel are generated with the NLO POWHEG 1.0 [17–20] event
generator. The NLO predictions for the main irreducible Wγ + jets background and the Zγ +
jets process are calculated using the BAUR generator [21].

For all simulated samples, showering and hadronization are implemented with PYTHIA 6, and
τ lepton decays with the TAUOLA 2.7 program [22]. The CTEQ6L [23] PDFs are used to model
the proton PDFs for the LO generators, while CT10 [24] is used for the NLO generators. The
top quark mass is set to 172.5 GeV.

The response of the CMS detector is simulated with GEANT4 [25], and all simulated events
are reconstructed and analyzed using the standard CMS software. The MC simulated events
are weighted to reproduce the trigger and reconstruction efficiencies measured in data. The
PYTHIA 6 generator is used to simulate the presence of additional proton-proton interactions in
the same or nearby proton bunch crossings (pileup). The distribution of the number of pileup
events in the simulation is weighted to match that in data.

4 Event selection and reconstruction of signal
The signal events are generally characterized by the presence of an isolated energetic photon,
a muon, significant missing transverse momentum, and one b quark jet (b jet). The presence of
an isolated muon and an isolated photon provides a clean signature for the signal. Events are
initially selected with a single-muon trigger, requiring a muon with a minimum pT of 24 GeV
within the pseudorapidity range |η| < 2.1. Events are also required to have at least one well
reconstructed pp interaction vertex candidate [26]. When more than one interaction vertex is
found in an event, the one with the highest ∑ p2

T of its associated charged-particle tracks is
called the primary vertex and selected for further analysis. The track associated with the muon
candidate is required to be consistent with a particle coming from the primary vertex.

A particle-flow algorithm (PF) is used to reconstruct single-particle candidates, combining in-
formation from all subdetectors [27, 28]. The muon candidates are reconstructed by matching
the information for tracks in the silicon tracker and the muon system. The muon candidates are
required to have pT > 26 GeV and |η| < 2.1. An accepted muon is required to have a relative
isolation Irel < 0.12, where Irel is defined as the sum of the scalar pT of all charged (except the
muon candidate) and neutral PF candidates inside a cone of size ∆R =

√
(∆η)2 + (∆φ)2 < 0.4

around the muon direction, divided by the muon pT, where ∆η and ∆φ are the differences in
the pseudorapidity and azimuthal angle between the directions of the PF candidate and the
muon. To remove the contribution from pileup, the charged particles included in the calcula-
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tion of Irel are required to originate from the same vertex as the muon. Based on the average
deposited energy density of neutral particles from pileup, a correction is applied to the neutral
component in the isolation cone. One muon candidate is required in each event, and events
with additional muon candidates with pT > 10 GeV, |η| < 2.5, and Irel < 0.2 are discarded.

Photon candidates with significant energy deposition in the ECAL are required to have a pT >
50 GeV, with |η| < 2.5, but be outside of the transition region between the ECAL barrel and
endcaps, 1.44 < |η| < 1.56.

The isolation of photon candidates is defined using the following criteria: the ratio of the
hadronic energy H to the total electromagnetic energy E (H/E) inside a cone of size ∆R < 0.15
around the crystal containing the largest energy is required to be less than 0.05; the second mo-
ment of the electromagnetic shower in η (σηη) [29] is required to be less than 0.011 (0.031) in the
barrel (endcaps). Separate charged- and neutral-hadron isolation criteria, defined as the scalar
sum of the pT of all charged- or neutral-hadron PF candidates inside a cone of size ∆R < 0.3
around the photon candidate, are applied. For the barrel, charged- and neutral-hadron isola-
tion values are required to be less than 0.7 GeV and 0.4+ 0.04 pγ

T, while for the endcaps they are
required to be less than 0.5 GeV and 1.5 + 0.04 pγ

T GeV, respectively, where pγ
T is the transverse

momentum of the photon candidate. The isolation criteria are corrected for additional inter-
actions in the same bunch crossing [30]. A pixel detector track veto is employed to minimize
the misidentification of an electron as a photon. Events with exactly one photon candidate are
selected for further analysis.

Events with one or more electron candidates that pass loose selection requirements of pT >
20 GeV, |η| < 2.5, and Irel < 0.15 are rejected. The electron Irel is defined in a manner similar to
that for muons, using an isolation cone size of ∆R < 0.3.

Jets are clustered from the reconstructed PF candidates, using the infrared- and collinear-safe
anti-kT algorithm with a distance parameter of 0.5 [31]. The charged hadrons originating from
pileup interactions are excluded from the clustered PF candidates, and the remaining contri-
butions from neutral particles are taken into account using a jet-area-based correction [30]. The
momentum of a jet is defined as the vector sum of the momenta of all particles in the jet, and
corrections to the jet energy are applied as a function of the jet pT and η [32]. Only jets with
pT > 30 GeV and |η| < 2.5 are considered in the analysis.

The combined secondary vertex (CSV) algorithm [33, 34] is used to identify jets originating
from the hadronization of b quarks. The algorithm combines the information from the sec-
ondary vertex and track impact parameters into a likelihood discriminant, whose output dis-
tinguishes between b jets and light-flavor jets. The chosen cutoff on the value of the discrimi-
nant corresponds to a b tagging efficiency of about 70%, while the misidentification probability
is ≈18% for c jets, and ≈1.5% for other jets [33, 34].

To reduce the background from tt and tt + γ processes, events with more than one identified
b jet are rejected. In events with no b-tagged jet, the jet with the largest value of the b tag
discriminant is chosen as the b jet candidate. The missing transverse momentum vector, ~pmiss

T ,
is defined as the negative vectorial sum of the momentum in the transverse plane of all PF
objects. Its magnitude, pmiss

T , is required to be greater than 30 GeV. The direction of the photon
candidate is required to be separated from the directions of the muon and b jet candidates by
∆R(µ, γ) > 0.7 and ∆R(b jet, γ) > 0.7.

The top quark kinematic properties are reconstructed using the muon and b jet four-momenta
and ~pmiss

T . The pT of the undetected neutrino is assumed to be equal to the magnitude of ~pmiss
T ,

while its longitudinal component is obtained by constraining the invariant mass of the neutrino
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and muon to the world-average value of the W boson mass [35]. When the resulting quadratic
equation has two real solutions, the one with the smaller absolute value of the longitudinal
component of the neutrino momentum is taken [36]. When the solution is complex, the real
part is considered as the longitudinal z component of the neutrino momentum. The top quark
candidate is reconstructed by combining the reconstructed W boson and the b jet candidate.
Events with a reconstructed top quark invariant mass mµνb within 130 to 220 GeV are selected
for further analysis. After all the selection criteria, signal efficiencies of 1.8% and 2.4% are
achieved from simulation for tuγ and tcγ signal events, respectively.

5 Background estimation
The main background contributions arise from Wγ+jets and W + jets events, where the W +
jets background can mimic the signal when a jet is misidentified as a photon. The Wγ+jets
and W + jets backgrounds are estimated from data, while estimates for the backgrounds from
single top quark (tq-, tb-, and tW-channel), t + γ, tt, tt +γ, Z+γ+jets, Drell–Yan, WWγ + jets,
and diboson backgrounds are calculated from the numbers of simulated events passing the
event selection, scaled to their theoretical cross sections.

The contributions from the W + jets and Wγ + jets backgrounds are estimated from data using
a neural network (NN) discriminant formed from a combination of several variables: the pT of
the photon and jet candidates, the cosine of the angle between the momenta of the W boson
and photon candidate, the azimuthal angle between the momentum of the photon candidate
and the missing transverse momentum, and H/E. The NN is trained to distinguish these two
sources of background and its output is parametrized as:

F(xNN) = cWjSWj(xNN) + cWγjSWγj(xNN) + bB(xNN), (2)

where xNN is the neural network output, SWj(xNN), SWγj(xNN), and B(xNN) are, respectively,
the normalized distributions for W + jets, Wγ + jets, and the sum of all other backgrounds,
and cWj, cWγj, and b are the corresponding fractions of each distribution. From previous limits,
it is known that any signal contribution will be small and is not included in Eq. 2. The effect
of its possible presence is accounted for as a systematic uncertainty. The parametrization in
Eq. 2 is fit to the data, leaving the W + jets and Wγ + jets normalizations as free parameters.
Both the normalization and the distribution in the sum of all other backgrounds, i.e., the b
and B(xNN) terms, are obtained from simulation. The distribution for W + jets, SWj(xNN), is
obtained from data in a control region defined by requiring photons with wide electromagnetic
showers (σηη > 0.011 for the barrel and σηη > 0.031 for the endcap), and no b-tagged jets,
while keeping all other selection criteria the same as in the signal region. The requirement of
no b-tagged jets ensures a high content of W + jets, suppressing thereby the tt and single top
quark contribution. The distribution for Wγ + jets, SWγj(xNN), is obtained from simulation.
The numbers of W + jets and Wγ + jets events are determined from the fit to the NN output
distribution.

The fit results are taken as central values for the analysis, and are assigned uncertainties that
reflect the differences obtained when varying the control region definition. Additionally, an
uncertainty is assigned accounting for the limited knowledge of the contaminations from other
SM backgrounds in the control sample, estimated through a comparison with the results after
subtracting their expectations from simulation. To take into account the uncertainties coming
from the theoretical predictions of the cross sections for the simulated backgrounds, the indi-
vidual cross sections are each varied by ±30% [37–39] and the differences in the fitted results
with respect to the nominal fit are added in quadrature.
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A total of 1794 events are selected in data and, assuming no contribution from FCNC, 1805± 80
events are expected, where the uncertainty is statistical. The expected amount of SM back-
ground is dominated by the Wγ + jets process, amounting to 57% of the total. The contribu-
tions of W + jets, tt, and Zγ + jets events are 16%, 8%, and 7% of the total background events,
respectively. The remaining background events originate from t+γ, tt +γ, single top quark
(tq+tb+tW), WWγ + jets, and diboson production.

6 Signal extraction
Several discriminant variables are used to distinguish the signal from the SM backgrounds. To
achieve the best discriminating power, a multivariate classification, based on boosted decision
trees (BDT) [40, 41], is used. One BDT is used for the tuγ channel and another for the tcγ
channel to take advantage of the slight differences in their production. For the tuγ signal, the
asymmetry between the top and anti-top quark rates translates into a lepton charge asymmetry.
The lepton charge is therefore used as an input in training the BDT for the tuγ signal. Eight
variables are chosen to construct the two BDTs. The BDT input variables are: (i) pT of the
photon candidate, (ii) b tagging discriminant, (iii) pT of the b jet, (iv) pT of the muon (only
for tcγ), (v) cos(~pt,~pγ), the cosine of the angle between the direction of the reconstructed top
quark and photon, (vi) ∆R(b jet, γ), (vii) ∆R(µ, γ), (viii) lepton charge (only for tuγ), and (ix)
jet multiplicity.

The pT of the photon candidate is the most important variable for separating signal from back-
ground. The pT of the muon does not contribute significantly to the discrimination of the tuγ
signal, and is therefore not used in this case. Each BDT is trained using simulated signal (either
tuγ or tcγ) and Wγ + jets, tt, and diboson background events. The distributions used as in-
put to the BDT are obtained from data for Wγ + jets and W + jets and from simulation for the
remaining background contributions. The W + jets distributions are obtained from the same
control region as used for the NN inputs. Events with a reconstructed top quark mass in the
sideband region defined as mµνb > 220 GeV or mµνb < 130 GeV are used to obtain the Wγ+ jets
distributions. The sideband region is enriched in Wγ + jets, with about 35% contamination
from other background sources. This contamination is subtracted using an estimate from data
for the W + jets contribution and MC predictions for the remaining background sources.

Figure 2 shows the distributions of some of the BDT input variables for the tuγ signal and SM
background. Figure 3 shows the BDT output distributions for data, the estimated background,
and the tuγ and tcγ signals. As described above, the Wγ + jets and W + jets distributions and
their normalizations are estimated from data, while the remaining background contributions
are obtained from simulation. The signal shapes are normalized to a cross section of 1 pb for
showing the expected signal distributions in the figures. The vertical bars indicate the statis-
tical uncertainty. The hatched band shows the contribution of the statistical and systematic
uncertainties added in quadrature, with the dominant source being the statistical uncertainty
in the estimation of the number of W + jets and Wγ + jets events in data.

7 Systematic uncertainties
The effect on the signal and SM background expectations from different systematic sources is
discussed below.

Instrumental uncertainties: The uncertainties in the trigger efficiency [42], photon [43] and
lepton [44] selection efficiencies, jet energy scale and resolution, missing transverse mo-
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Figure 2: Distributions of some of the input variables to the BDT: (a) pT of the photon, (b)
∆R(γ, b), (c) cos(t, γ), and (d) muon charge after the final event selection for data (points), the
expected tuγ signal (solid line), and background (histograms). The tuγ signal distributions
are normalized to a cross section of 1 pb. The vertical bars on the points show the statistical
uncertainties in the data. The hatched band shows the sum of the statistical and systematic
uncertainties in the estimated background combined in quadrature.

mentum [32], and the modeling of pileup are propagated to the uncertainties in the sig-
nal and SM background expectations. The uncertainty in modeling the pileup is esti-
mated by changing the total inelastic proton-proton cross section by ±5% [45]. The un-
certainty coming from the photon energy scale is estimated by changing the photon en-
ergy in simulation by ±1% in the ECAL barrel and ±3% in the endcaps [43]. The pT-
and η-dependent uncertainties in the b jet identification efficiencies and misidentifica-
tion (mistag) rates are implemented as in Ref. [33]. The systematic uncertainty in the
measured integrated luminosity is estimated to be 2.6% [46]. Among the instrumental
uncertainties, the luminosity uncertainty only affects the normalization, while the uncer-
tainties from the trigger, lepton and photon selection efficiencies, b tagging, jet energy
scale and resolution, and pileup also affect the BDT discriminant output distributions for
signal and background.

Theoretical uncertainties: The uncertainty from the choice of PDF is determined according to
the PDF4LHC prescription [47, 48] using the MSTW2008 [49] and NNPDF [50] PDFs. The
uncertainty from the factorization and renormalization scales is evaluated by comparing
simulated samples, produced using factorization and renormalization scales multiplied
and divided by a factor of two relative to their standard values (top quark mass). A con-
servative estimate of the uncertainty owing to the top quark mass used in the simulation
is obtained by producing simulated samples with the top quark mass shifted by ±2 GeV.
The uncertainties in the PDF, renormalization and factorization scales, and top quark
mass affect both the predicted BDT distributions and the normalizations. An uncertainty
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Figure 3: The BDT output distributions for the data (points), the backgrounds (histograms),
and the expected tuγ (a) and tcγ (b) signals (solid lines). The tuγ and tcγ signal distributions
are normalized to a cross section of 1 pb. The vertical bars on the points give the statistical
uncertainties. The hatched band shows the sum of the statistical and systematic uncertainties
in the predicted background distributions combined in quadrature. The lower plots show the
ratio of the data to the SM prediction.

of 5% in the signal rate is estimated from the NLO QCD corrections [12]. This uncertainty
is assumed not to affect the signal distributions.

Normalization of the background: The uncertainties described in Section 5 for the estimated
Wγ + jets and W + jets backgrounds are found to be 17% and 23%, respectively. The
uncertainties in the normalization of all other backgrounds are found to be 30% [37–39].

8 Upper limits on anomalous couplings
No evidence is observed for anomalous single top quark production in association with a pho-
ton in the BDT output distributions shown in Fig. 3. These results are used to set an upper
limit on this process, as well as on the anomalous couplings κtuγ and κtcγ. The limits are cal-
culated using the modified frequentist approach [51, 52] that is implemented in the THETA

package [53]. In this approach, a binned maximum-likelihood method is used for the BDT out-
put distribution, which includes all systematic uncertainties described in the previous section
as nuisance parameters. The NLO QCD corrections to the production of a single top quark plus
a photon through FCNC processes are sizable and depend on the photon pT requirement [12].
Upper limits on the cross sections are presented both with and without NLO QCD corrections.
We use a k factor k = σNLO/σLO = 1.375 to go from LO to NLO, corresponding to a minimum
photon pT of 50 GeV [12].

The 95% CL upper limits on the number of events observed are 9.1 and 16.0 for the tuγ and tcγ
signals, respectively. The 95% CL upper limits on the product of the LO signal cross sections
and the leptonic branching fraction of the W boson are σtuγ B(t → Wb → b`ν`) < 25 fb and
σtcγ B(t → Wb → b`ν`) < 34 fb. The corresponding upper limits for the NLO calculations are
σtuγ B(t → Wb → b`ν`) < 26 fb and σtcγ B(t → Wb → b`ν`) < 37 fb. The expected limits
and the one and two standard deviation limits on σtuγ B(t → Wb → b`ν`) and σtcγ B(t →
Wb → b`ν`) at LO and NLO are presented in Table 1. These results can be translated into
upper limits on the anomalous couplings κtuγ and κtcγ and on the branching fractions B(t →
u + γ) and B(t → c + γ) using the theoretical expectations [54]. The 95% CL upper bounds
on the anomalous couplings and branching fractions with and without including the NLO
QCD corrections to the signal cross section are presented in Table 1, along with the expected
limits. The one and two standard deviation ranges of the LO and NLO expected limits on the
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Table 1: The expected and observed 95% CL upper limits on the FCNC tuγ and tcγ cross
sections times branching fraction B(t → Wb → b`ν`), the anomalous couplings κtuγ and κtcγ,
and the corresponding branching fractions B(t → uγ) and B(t → cγ) at LO and NLO are
given. The one and two standard deviation (σ) ranges on the LO and NLO expected limits are
also presented.

Exp. limit (LO) ±1σ (exp. limit) ±2σ (exp. limit) Obs. limit (LO)
σtuγ B (fb) 40 30–56 23–78 25
σtcγ B (fb) 39 30–55 24–76 34

κtuγ 0.036 0.032–0.043 0.028–0.051 0.029
κtcγ 0.111 0.098–0.132 0.087–0.16 0.10

B(t→ uγ) 2.7× 10−4 (2.0− 3.8)× 10−4 (1.6− 5.4)× 10−4 1.7× 10−4

B(t→ cγ) 2.5× 10−3 (1.9− 3.6)× 10−3 (1.5− 4.9)× 10−3 2.2× 10−3

Exp. limit (NLO) ±1σ (exp. limit) ±2σ (exp. limit) Obs. limit (NLO)
σtuγ B (fb) 39 30–58 25–84 26
σtcγ B (fb) 42 29–59 22–86 37

κtuγ 0.031 0.026–0.037 0.024–0.086 0.025
κtcγ 0.098 0.082–0.12 0.071–0.140 0.091

B(t→ uγ) 1.9× 10−4 (1.4− 2.9)× 10−4 (1.2− 4.2)× 10−4 1.3× 10−4

B(t→ cγ) 2.0× 10−3 (1.3− 2.7)× 10−3 (1.0− 4.0)× 10−3 1.7× 10−3

anomalous couplings and branching fractions are also shown in Table 1. The measured 95%
CL upper limits on B(t → qZ) versus B(t → qγ) from the L3 [5], ZEUS [6], H1 [7], D0 [55],
CDF [56], ATLAS [57], and CMS [58] experiments, as well as the results of this analysis, are
presented in Fig. 4.
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Figure 4: The measured 95% CL upper limits on B(t→ qZ) versus B(t→ qγ) from the L3 [5],
ZEUS [6], H1 [7], D0 [55], CDF [8, 56], ATLAS [57], and CMS experiments [58]. The two vertical
dashed lines show the results of this analysis.

Table 2 summarizes the sources of the systematic uncertainties in the expected upper limits
on the signal cross sections. These are calculated as the ratio of the difference of the shifted
expected limit coming from the related systematic source and the nominal expected limit.
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Table 2: The sources and values of systematic uncertainties used to determine the observed and
expected upper limits on the tuγ and tcγ cross sections. The values are given as a percentage
of the expected upper limits. The sources are broken up into those that only affect the overall
rate of signal events and those that affect both the rate and the shape of the BDT distributions.

Type Source tuγ (%) tcγ (%)

Rate

Integrated luminosity
Background normalization (W + jets)
Background normalization (Wγ + jets)
Other background normalizations

1.8
5.6
2.5
<1

4
3

1.1
1

Rate+Shape

Trigger efficiency
Pileup effects
Lepton identification and isolation
Photon identification and isolation
Photon energy scale
b tagging and mistag efficiency
Jet energy scale
Jet energy resolution
PDF
Scale
Top quark mass

2.2
7
<1
1.9
<1
1.1
2.9
2.1
3.1
1

2.5

0.4
2.3
4.4
4.5
3.1
4

2.2
3.4
<1
2.4
1

9 Upper limits on the FCNC cross sections for a restricted phase
space

Upper limits on the signal cross sections are also determined for a restricted phase-space re-
gion in which the detector is fully efficient. This removes the need to extrapolate to phase-
space regions where the analysis has little or no sensitivity. The results are especially useful
for comparing with theoretical models that predict enhancements in a particular phase-space
region [10].

The measurement uses a simpler event-counting procedure instead of a fit to the BDT distri-
bution. We define the fiducial cross section, σfid, in a volume defined for stable particles at the
generator level before any interaction with the detector. This can be related to the total cross
section, σ, through σfid = σ A, where A is the acceptance in the fiducial volume. Stable particles
are characterized as particles with mean lifetimes exceeding 30 ps. The upper limit on σfid is
obtained from the limit on σ A ε, where ε accounts for detector resolution, trigger efficiencies,
and identification and isolation requirements applied in the analysis.

The leptons at the particle level are the electrons or muons originating from the decay of W
bosons. The charged leptons from hadron decays are discarded, while electrons or muons
from direct decays of τ leptons are included.

Stable particles, except muons, electrons, photons and neutrinos, are used to reconstruct particle-
level jets in the simulation. Jet reconstruction at the particle level is based on the anti-kT algo-
rithm [31] with a distance parameter of 0.5. When a reconstructed jet contains a B hadron, the
jet is tagged as a b jet. In events without a matched b jet, the jet with the largest pT is used to
reconstruct the decayed top quark. The pT of the neutrinos is calculated as the magnitude of
the vector sum of the pT of each neutrino in the event, except those originating from hadron
decays. From these objects, the top quark mass is calculated in order to make kinematical cuts
used in the definition of the fiducial region. The fiducial region is introduced at particle level,
similar to the event selection requirements, and is summarized in Table 3.
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Table 3: Definition of the fiducial region.

Object Requirement
Single muon pT > 26 GeV, |η| < 2.1

Veto for additional muons pT > 10 GeV, |η| < 2.5
Electron veto pT > 20 GeV, |η| < 2.5
Single photon pT > 50 GeV, |η| < 2.5 (1.44 < |η| < 1.56 excluded)

At least one jet (Nb jet < 2) pT > 30 GeV, |η| < 2.5
Missing pT pmiss

T > 30 GeV
Muon, jets, and photons ∆R(µ, γ) and ∆R(jet, γ) > 0.7

Reconstructed top quark mass 130 < mµνb < 220 GeV

The efficiency ε is found to be 16% and 19% from simulation for the respective tuγ and tcγ
events in the fiducial region. An additional fiducial region is defined by also requiring exactly
one b-tagged jet in the event. The values of ε are thereby reduced to 11% and 14% for the two
signals, respectively.

Table 4 shows the 95% CL upper limits on the signal cross sections in the two fiducial regions
for the tuγ and tcγ processes. These are calculated from the total number of selected events
in data (Nobs), the SM expectation (NSM), both at detector level, and the efficiency for a sig-
nal event in the fiducial region to be reconstructed at detector level. The uncertainties in the
SM expectation include statistical and systematic uncertainties. The total number of observed
events is decreased by a factor of approximately 6.5 after requiring exactly one identified b jet
in an event, while the expected number of SM events decreases by a factor of 7. The combined
relative uncertainty in the number of expected SM events increases from 12% to 19% when this
b jet requirement is included.

The upper limits are calculated including a total systematic uncertainty in the signal selection
efficiencies of 10%, estimated using a method similar to that described in Section 7. These are
the first limits set on the anomalous tγ production within a restricted phase-space region.

Table 4: The total number of observed selected events at detector level in the data (Nobs), the
SM expectations (NSM), the efficiencies (ε), and the upper limits on the cross sections σfid at the
95% CL in the fiducial region for the two signal channels, without and with a requirement on
the presence of a single accompanying b jet.

Fiducial region Channel Nobs NSM ε σ95%
fid (fb)

Basic selection (Table 3)
tuγ

1794 1805± 215
0.16 122

tcγ 0.19 103

Basic selection and Nb jet = 1 tuγ
275 258± 49

0.11 47
tcγ 0.14 39

10 Summary
The result of a search for flavor changing neutral currents (FCNC) through single top quark
production in association with a photon has been presented. The search is performed using
proton-proton collisions at a center-of-mass energy of 8 TeV, corresponding to an integrated
luminosity of 19.8 fb−1, collected by the CMS detector at the LHC. The number of observed
events is consistent with the SM prediction. Upper limits are set at 95% CL on the anoma-
lous FCNC couplings of κtuγ < 0.025 and κtcγ < 0.091 using NLO QCD calculations. The
corresponding upper limits on the branching fractions are B(t → uγ) < 1.3 × 10−4 and
B(t → cγ) < 1.7 × 10−3, which are the most restrictive bounds to date. Observed upper
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limits on the cross section in a restricted phase space are found to be 47 fb and 39 fb at 95% CL
for tuγ and tcγ production, respectively, when exactly one identified b jet is required in the
data. These are the first results on anomalous tγ production within a restricted phase-space
region.
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P. Miné, I.N. Naranjo, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard,
R. Salerno, J.B. Sauvan, Y. Sirois, T. Strebler, Y. Yilmaz, A. Zabi

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute
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M. Bartók23, A. Makovec, P. Raics, Z.L. Trocsanyi, B. Ujvari

National Institute of Science Education and Research, Bhubaneswar, India
P. Mal, K. Mandal, D.K. Sahoo, N. Sahoo, S.K. Swain

Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, R. Gupta, U.Bhawandeep, A.K. Kalsi, A. Kaur,
M. Kaur, R. Kumar, A. Mehta, M. Mittal, J.B. Singh, G. Walia

University of Delhi, Delhi, India
Ashok Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, A. Kumar, S. Malhotra,
M. Naimuddin, N. Nishu, K. Ranjan, R. Sharma, V. Sharma



21

Saha Institute of Nuclear Physics, Kolkata, India
S. Bhattacharya, K. Chatterjee, S. Dey, S. Dutta, Sa. Jain, N. Majumdar, A. Modak, K. Mondal,
S. Mukherjee, S. Mukhopadhyay, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan

Bhabha Atomic Research Centre, Mumbai, India
A. Abdulsalam, R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty2, L.M. Pant,
P. Shukla, A. Topkar

Tata Institute of Fundamental Research, Mumbai, India
T. Aziz, S. Banerjee, S. Bhowmik24, R.M. Chatterjee, R.K. Dewanjee, S. Dugad, S. Ganguly,
S. Ghosh, M. Guchait, A. Gurtu25, G. Kole, S. Kumar, B. Mahakud, M. Maity24, G. Majumder,
K. Mazumdar, S. Mitra, G.B. Mohanty, B. Parida, T. Sarkar24, N. Sur, B. Sutar, N. Wickramage26

Indian Institute of Science Education and Research (IISER), Pune, India
S. Chauhan, S. Dube, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
H. Bakhshiansohi, H. Behnamian, S.M. Etesami27, A. Fahim28, R. Goldouzian, M. Khakzad,
M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, F. Rezaei Hosseinabadi,
B. Safarzadeh29, M. Zeinali

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald
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G. Abbiendia, C. Battilana2, A.C. Benvenutia, D. Bonacorsia,b, S. Braibant-Giacomellia ,b,
L. Brigliadoria,b, R. Campaninia,b, P. Capiluppia ,b, A. Castroa,b, F.R. Cavalloa, S.S. Chhibraa ,b,
G. Codispotia,b, M. Cuffiania,b, G.M. Dallavallea, F. Fabbria, A. Fanfania,b, D. Fasanellaa ,b,
P. Giacomellia, C. Grandia, L. Guiduccia ,b, S. Marcellinia, G. Masettia, A. Montanaria,
F.L. Navarriaa,b, A. Perrottaa, A.M. Rossia ,b, T. Rovellia,b, G.P. Sirolia ,b, N. Tosia ,b,
R. Travaglinia,b

INFN Sezione di Catania a, Università di Catania b, Catania, Italy
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A. Quintario Olmeda, I. Redondo, L. Romero, J. Santaolalla, M.S. Soares

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, M. Missiroli, D. Moran

Universidad de Oviedo, Oviedo, Spain
J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, E. Palencia Cortezon,
J.M. Vizan Garcia



25

Instituto de Fı́sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
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