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On γN → γρN ′ at large γρ invariant mass
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Abstract. Photoproduction of a pair of particles with large invariant mass is a natural
extension of collinear QCD factorization theorems which have been much studied for deeply
virtual Compton scattering and deeply virtual meson production. We consider the case
where the wide angle Compton scattering subprocess γ(qq̄) → γρ factorizes from generalized
parton distribution. At dominant twist, separating the transverse (respectively longitudinal)
polarization of the ρ meson allows one to get access to chiral-odd (respectively chiral-even)
GPDs. This opens a new way to the extraction of these elusive transversity GPDs.

1. Introduction

The last two decades have witnessed great progresses on the QCD description of hard
exclusive processes, in terms of generalized parton distributions (GPDs) [1] describing the 3-
dimensional content of hadrons [2]. Much hope exists on a meaningful extraction of dominant
(i.e. chiral-even) GPDs from JLab12 near future experiments. To increase our confidence in
this extraction, one however needs to probe various processes, thus verifying the universality
of the GPDs. On the other hand, access to the chiral-odd transversity GPDs [3], noted HT ,
ET , H̃T , ẼT , which decouple from deeply virtual Compton scattering and deeply virtual
meson production at leading order, has turned out to be even more challenging [4] than the
usual transversity distributions: one photon or one meson electroproduction leading twist
amplitudes are insensitive to transversity GPDs. Quark mass effects [5] or production of a
meson described by a twist 3 distribution amplitude [6] are two ways to evade this difficulty.
The alternate strategy followed in Ref. [7, 8], was to study the leading twist contribution to
processes where more mesons (denoted A and B) are present in the final state. The hard scale
which allows to probe the short distance structure of the nucleon is the invariant squared
mass of the meson pair s = M2

A,B ∼ |t′| in the fixed angle regime. A similar strategy has

also been advocated in Ref. [9] for chiral-even GPDs.
We study the process:

γ(∗)(q) +N(p1) → γ(k) + ρ(pρ, ǫρ) +N ′(p2) , (1)
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where ǫρ is the polarization vector of the ρ meson. This process is sensitive to both chiral-
even and chiral-odd GPDs due to the chiral-even (resp. chiral-odd) character of the leading
twist distribution amplitude (DA) of ρL (resp. ρT ). To study this process, we closely follow
the method described in Ref. [8].
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Figure 1. The wide angle Compton scattering process (left) and its generalization to the
photoproduction of a γρ pair (right).

To factorize the amplitude of this process we use the now classical proof of the factorization
of exclusive scattering at fixed angle and large energy [10]. The amplitude for the wide angle
Compton scattering process γ + π → γ + ρ is written [11] as the convolution of mesonic DAs
and a hard scattering subprocess amplitude γ + (q + q̄) → γ + (q + q̄) with the final meson
states replaced by a collinear quark-antiquark pair. We then extract from the factorization
procedure of the deeply virtual Compton scattering amplitude near the forward region the
right to replace one entering meson DA by a N → N ′ GPD, and thus get Fig. 1 (right panel).
The needed skewness parameter ξ is written in terms of the final photon - meson squared
invariant mass M2

γρ as

ξ =
τ

2− τ
, τ =

M2
γρ − t

SγN −M2
. (2)

Indeed the same collinear factorization property bases the validity of the leading twist
approximation which either replaces the meson wave function by its DA or the N → N ′

transition by nucleon GPDs. A slight difference is that light cone fractions (z, 1− z) leaving
the DA are positive, while the corresponding fractions (x + ξ, ξ − x) may be positive or
negative in the case of the GPD. Our Born order calculation shows that this difference does
not ruin the factorization property.

In order for the leading twist factorization of a partonic amplitude to be valid, one should
avoid the dangerous kinematical regions where a small momentum transfer is exchanged in
the upper blob, namely small t′ = (k− q)2 or small u′ = (pρ − q)2, and the resonance regions
for each of the invariant squared masses (pρ + pN ′)2, (k + pρ)

2 .
Let us finally stress that our discussion applies as well to the case of electroproduction

where a moderate virtuality of the initial photon may help to access the perturbative domain
with a lower value of the hard scale Mγρ.



2. Kinematics

Our conventions are the following. We decompose all momenta on a Sudakov basis as vµ =

anµ + b pµ + vµ⊥, with p and n the light-cone vectors pµ =
√
s
2 (1, 0, 0, 1), nµ =

√
s
2 (1, 0, 0,−1),

vµ⊥ = (0, vx, vy, 0) and v2⊥ = −~v2t . The particle momenta read

pµ1 = (1 + ξ) pµ +
M2

s(1 + ξ)
nµ , pµ2 = (1− ξ) pµ +

M2 + ~∆2
t

s(1− ξ)
nµ +∆µ

⊥ , qµ = nµ , (3)

kµ = αnµ +
(~pt − ~∆t/2)

2

αs
pµ + pµ⊥ −

∆µ
⊥
2

, pµρ = αρ n
µ +

(~pt + ~∆t/2)
2 +m2

ρ

αρs
pµ − pµ⊥ −

∆µ
⊥
2

,

with ᾱ = 1 − α and M , mρ are the masses of the nucleon and the ρ meson. The total
center-of-mass energy squared of the γ-N system is

SγN = (q + p1)
2 = (1 + ξ)s +M2 . (4)

From these kinematical relations it follows that :

2 ξ =
(~pt −

1
2
~∆t)

2

s α
+

(~pt +
1
2
~∆t)

2 +m2
ρ

s αρ
, (5)

and

1− α− αρ =
2 ξ M2

s (1− ξ2)
+

~∆2
t

s (1− ξ)
. (6)

On the nucleon side, the transferred squared momentum is

t = (p2 − p1)
2 = −

1 + ξ

1− ξ
~∆2

t −
4ξ2M2

1− ξ2
. (7)

The other various Mandelstam invariants read

s′ = (pγ + pρ)
2 = M2

γρ = 2ξ s

(

1−
2 ξ M2

s(1− ξ2)

)

− ~∆2
t

1 + ξ

1− ξ
, (8)

−t′ = −(pγ − q)2 =
(~pt − ~∆t/2)

2

α
, (9)

−u′ = −(pρ − q)2 =
(~pt + ~∆t/2)

2 + (1− αρ)m
2
ρ

αρ
. (10)

Let us remind the reader that we are interested in the kinematical domain where s′,−t′,−u′

are large (as compared to Λ2
QCD) and that 0 < α,αρ < 1.

3. The scattering amplitude

The scattering amplitude of the process (1) is written in the factorized form:

A(t,M2
γρ, u

′) =
∑

q,i

∫ 1

−1
dx

∫ 1

0
dz T q

i (x, v, z)H
q
i (x, ξ, t)ΦρL,T

(z) , (11)

where T q
i is the hard part of the amplitude and Hq

i the corresponding (chiral-even and chiral-
odd) GPDs of a parton q in the nucleon target, and ΦρL,T

(z) the leading twist chiral-even
(resp. chiral-odd) distribution amplitude of the ρL (resp. ρT ) meson.



Figure 2. The Feynman diagrams describing the subprocess at leading order; in Feynman
gauge only the 4 diagrams on the right contribute to the ρT case

The scattering sub-process is described by 20 Feynman diagrams, but an interesting
(quark-antiquark interchange) symmetry allows to deduce the contribution of half of the
diagrams from the 10 diagrams shown on Fig. 2 through a (x ↔ −x ; z ↔ 1− z) interchange.
Moreover, in Feynman gauge, only the 4 diagrams on the right of Fig. 2 contribute to the
chiral-odd case.

The scattering amplitudes get both real and imaginary parts. Focusing on the chiral-odd
amplitude (since accessing transversity GPDs was the first motivation of our study), we get
the following results. The z and x dependence of this amplitude can be factorized as

T q
i = e2q αem αsN (z, x) T i (12)

with (in the gauge p.ǫk = 0):

T i = (1− α) [(ǫq⊥.p⊥) (ǫk⊥.ǫρ⊥)− (ǫk⊥.p⊥) (ǫq⊥.ǫρ⊥)] p
i
⊥

− (1 + α) (ǫρ⊥.p⊥) (ǫk⊥.ǫq⊥) p
i
⊥ + α

(

α2 − 1
)

ξs (ǫq⊥.ǫk⊥) ǫ
i
ρ (13)

− α
(

α2 − 1
)

ξs
[

(ǫq⊥.ǫρ⊥) ǫ
i
k⊥ − (ǫk⊥.ǫρ⊥) ǫ

i
q⊥

]

.

Using as a first estimate the asymptotic form of the ρ−meson distribution amplitude, we
perform analytically the integration over z. Inserting a model for the transversity GPDs [8],
we use numerical methods for the integration over x.

Starting with the expression of the scattering amplitude (11), the differential cross-section
as a function of t, M2

γρ, −u′ reads

dσ

dt du′ dM2
γρ

∣

∣

∣

∣

t=tmin

=
|M|2

32S2
γNM2

γρ(2π)
3
. (14)

We show in Fig. 3 this cross section (14) as a function of −u′ at SγN = 20 GeV2 for M2
γρ =

6 GeV2 i.e. ξ = 0.186, with cuts in −u′ corresponding to the constraints −t′ > 1 GeV2 and
−u′ > 1 GeV2. The cross section grows with (−u′) but its normalization is rather small. We
expect a larger cross-section for the longitudinal ρ case where chiral-even GPDs contribute;
this will not help disentangling the transverse ρ cross section, although a complete analysis of
the angular distribution of the emerging π+π− pair allows in principle to access the chiral-odd
sensitive contribution at the amplitude level.

The quest for an easy extraction of chiral-odd GPDs is obviously not solved by our proposal
for γρT photoproduction.
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Figure 3. The differential cross section (14) for the production of γρT involving chiral-odd
GPDs, as a function of −u′ at SγN = 20 GeV2 for M2

γρ = 6 GeV2, i.e. ξ = 0.186.
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