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SOME REMARKS ON PHANTOM CATEGORIES AND

MOTIVES

PAWEL SOSNA

Abstract. A phantom category is an admissible subcategory with
vanishing Grothendieck group of the bounded derived category of
coherent sheaves on a smooth projective variety. The goal of this
paper is to study the abstract situation when such a category ap-
pears and establish some results which provide evidence for the
idea that these categories are invisible on the level of Chow mo-
tives.

1. Introduction

The bounded derived category Db(X) of a smooth projective variety
X has for quite some time been recognized as an interesting invariant
encoding a lot of geometric information. For example, there are results,
and conjectures, linking semi-orthogonal decompositions of Db(X) to
the birational geometry or to the structure of the Chow and/or the
noncommutative motive of X , see, for example, [2], [19] or [24].
Recently, very special examples of semi-orthogonal decompositions

were constructed. Namely, it was shown for several complex surfaces
X that Db(X) admits a semi-orthogonal decomposition consisting of
an exceptional collection of line bundles whose orthogonal complement
is a category with trivial Hochschild homology and finite or trivial
Grothendieck group; see, for example, [1], [3], [4], [8], [11], [12] or [22].
In the first case we call such a category a quasi-phantom and in the
second case a phantom. There is also the notion of a universal phantom
category, see Subsection 2.1.
Instead of adding to the list of examples of (quasi-)phantom cat-

egories, in this paper the abstract situation when such a category
appears is studied. In all known examples where this happens, the
Grothendieck group of the variety is of finite rank, and in Proposition
3.1 we show that this already implies that the structure sheaf is an ex-
ceptional object. In Propositions 4.3 and 4.11 we explore, under certain
assumptions on the semi-orthogonal decomposition, some implications
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2 PAWEL SOSNA

for the structure of the Chow motive of a variety admitting a (univer-
sal) phantom category. We also investigate when a phantom category
is automatically a universal phantom category, see Proposition 4.6.
The paper is organized as follows. The relevant notions and results

concerning semi-orthogonal decompositions, Chow and K-motives are
collected in Section 2. In Section 3 we prove Proposition 3.1. In the
following section we establish the results alluded to above. In the final
section we make some comments on the Hochschild cohomology when
products of (quasi-)phantom categories are taken and point out some
possible future directions of research.

Conventions. Unless stated otherwise we work in the category of
smooth projective varieties over some field k. All functors are assumed
to be derived.

Acknowledgements. I thank Daniel Huybrechts and Andreas Krug
for useful comments and suggestions on a preliminary version of the
paper and Sergey Galkin and Charles Vial for their comments after
the paper was put on the arXiv. I was partially financially supported
by the RTG 1670 of the DFG (German Research Foundation).

2. Preliminaries

2.1. Derived categories. An object E ∈ Db(X) is called exceptional
if Hom0(E,E) = k and Homi(E,E) = 0 for all i 6= 0. An ordered
sequence of exceptional objects (E1, . . . , Er) is called an exceptional
collection if Homl(Ej, Ei) = 0 for all j > i and for all l. An excep-
tional collection is called full if the smallest triangulated subcategory
of Db(X) containing all the Ei is equivalent to Db(X).
The above notions fit into the more general framework of semi-

orthogonal decompositions which were introduced in [5]. Namely, a
semi-orthogonal decomposition (s.d.) of Db(X) is a sequence of strictly
full triangulated subcategories A1, . . . ,Am such that (a) if Ai ∈ Ai

and Aj ∈ Aj, then Hom(Ai, Aj[l]) = 0 for i > j and all l, and (b)
the Ai generate Db(X), that is, the smallest triangulated subcate-
gory of Db(X)t containing all the Ai is already Db(X). We write
Db(X) = 〈A1, . . . ,Am〉. If m = 2, these conditions boil down to the
existence of a functorial exact triangle A2

//D //A1
//A2[1] for any

object D ∈ Db(X).
A full subcategory of Db(X) is called admissible if the embedding

functor has a left and a right adjoint. Since S = − ⊗ ωX [dim(X)] is
a Serre functor on Db(X), that is, there are bifunctorial isomorphisms
Hom(D,D′) ≃ Hom(D′, S(D))∨, any admissible subcategory of Db(X)
also has a Serre functor.
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It can be checked that in the situation of a semi-orthogonal decom-
position of Db(X) the subcategories involved are admissible. Con-
versely, if C is admissible in Db(X), then Db(X) = 〈C⊥, C〉, where
C⊥ = {D ∈ Db(X) | Hom(C,D) = 0 ∀C ∈ C} is the (right) orthogonal
complement to C.
One can see rather easily that if E ∈ Db(X) is an exceptional object,

then the category generated by E, which is equivalent to Db(Speck),
is admissible, see [14, Lem. 1.58]. Abusing notation one denotes this
category again by E.
Given two semi-orthogonal decompositions Db(X) = 〈A1, . . . ,Am〉

and Db(Y ) = 〈B1, . . . ,Bn〉, there is an induced semi-orthogonal decom-
position of the product given by

Db(X × Y ) = 〈(Ai ⊠ Bj)i,j〉,

where Ai⊠Bj denotes the smallest triangulated subcategory of Db(X×
Y ) containing all objects of the form p∗A⊗ q∗B (where p : X×Y //X
and q : X × Y // Y are the respective projections) for A ∈ Ai and
B ∈ Bj , and closed under direct summands; see [12, Prop. 1.6] or [20,
Thm. 5.8].
If Db(X) = 〈A1, . . . ,Am〉, then the adjoints to the embeddings give

an isomorphism K0(X) = K0(D
b(X)) ≃ ⊕m

i=1K0(Ai), where K0(−)
denotes the Grothendieck group.
An admissible subcategory A of Db(X) is called a phantom category

if K0(A) = 0 and a universal phantom category if K0(A⊠Db(Y )) = 0
for any Y . If Db(X) = 〈A, E1, . . . , Er〉 is an s.d. where the Ei are
all exceptional and A is a (universal) phantom category, we call the
collection (E1, . . . , Er) almost full.

2.2. Motives. One possible reference for the following two subsections
is [23].
The category of Chow motives CM(k) has as objects triples (X, π, n),

where X is smooth projective, π ∈ CHdimX(X × X) is a cycle with
π ◦ π = π and n ∈ Z (as usual, we write CHn(X) for codimension n
cycles). Here, π ◦ π is the usual convolution product. The morphisms
in CM(k) are given by

HomCM(k)((X, π, n), (Y, ψ,m)) = ψ ◦ CHdimX+m−n(X × Y ) ◦ π.

There is a contravariant functor from varieties to CM(k) which sends
X to M(X) = (X,∆X , 0). The unit motive is M(Spec k) = 1 =
(Spec k,∆, 0) and the Lefschetz motive is L = (Spec k,∆,−1).
It is easy to check that M(P1) = 1 ⊕ L. Note that CM(k) is a

symmetric monoidal category with the tensor product induced by the
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fibre product of varieties. The unit with respect to this tensor structure
is precisely 1.
In fact, all of this can be done over any extension ring R of Z, that is,

one replaces integral Chow groups by Chow groups with R-coefficients.
Probably the simplest motives are those of Lefschetz type, that is,

those which are isomorphic to a direct sum of finitely many motives
L⊗p for some integers p.

2.3. K-motives. The category of K-motives KM(k) is defined simi-
larly as the category of Chow motives but with Grothendieck groups
replacing cycles. For instance, objects of KM(k) are pairs (X, π) where
π ∈ K0(X×X) is a projector. Yet again, we have a contravariant func-
tor KM from varieties toK-motives. The category KM(k) is symmetric
monoidal and the unit object is 1 = KM(Spec k) = (Spec k, [∆]). A
K-motive is called of trivial type if it is isomorphic to a finite direct
sum ⊕m

i=11. Of course, in this setting we can also consider extension
rings of Z.
In fact, K-motives fit into the more general framework of noncom-

mutative motives defined using the language of differential graded cat-
egories; see [24]. In particular, the category KM(k) embeds into the
category of noncommutative motives. Furthermore, we can associate
a K-motive to any admissible subcategory of Db(X). The following is
an easy consequence of the construction.

Lemma 2.1. Assume there are semi-orthogonal decompositions Db(X) =
〈A1, . . . ,Am〉 and Db(Y ) = 〈B1, . . . ,Bn〉 and consider the induced s.d.

Db(X × Y ) = 〈(Ai ⊠ Bj)i,j〉.

Then HomKM(k)(KM(Ai),KM(Bj)) = K0(Bj ⊠Ai).

Proof. We only briefly outline the proof, refering to [12, Sect. 4] for
details.
Denote the inclusion Ai

//Db(X) by jAi
. Since Ai is admissible, it

has a right adjoint jRAi
. The functor Φ = jAi

◦ jRAi
is a Fourier-Mukai

functor by [20, Thm. 7.1], that is, there exists an objectK ∈ Db(X×X)
such that Φ = FMK , where FMK = p2∗(K ⊗ p∗1(−)).
By definition, KM(Ai) = (X, [K]). The claim follows from this. �

Another consequence of the construction is the isomorphism

KM(Ai ⊠ Bj) ≃ KM(Ai)⊗KM(Bj).

Concerning the interplay between Chow motives and K-motives, we
know by [12, Prop. 4.2] that if the Chow motive of a smooth projective
varietyX of dimension n over a field of characteristic zero is of Lefschetz
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type over a ring R ⊇ Z, then the K-motive is of trivial type over R.
The converse was known to hold over Q by [24] and was recently shown
to already hold over R[1/(2n)!], albeit under some assumptions on R;
see [2, Thm. 1.4].

3. Phantom-free results

So far, phantoms have been constructed either as orthogonal comple-
ments to almost full exceptional collections on some complex surfaces
or on products of such surfaces. In particular, in all examples the
Grothendieck group is of finite rank. This has the following curious
consequence.

Proposition 3.1. Let X be a smooth complex projective variety of
dimension n whose Grothendieck group is of finite rank. Then OX is
an exceptional object.

Proof. Recall that CH•(X)⊗Q ≃ K0(X)⊗Q, hence the Chow ring is
of finite rank. In particular, CHn(X) = CH0(X) is a finitely generated
abelian group. Therefore, the kernel CHn(X)hom = CH0(X)hom of the
cycle map cl : CHn(X) //H2n(X,Z) ≃ Z is a finitely generated abelian
group. In particular, by a theorem of Roitman, the Albanese map gives
an isomorphism CH0(X)hom ≃ Alb(X), see [30, Thm. 10.2].
On the other hand, the dimension of the Albanese variety of X has

to be zero by our assumption, hence Alb(X) = 0, so CH0(X)hom is
trivial. Then, by [30, Cor. 10.18], H0(X,Ωk

X) = 0 for all k > 0. By
Hodge symmetry, we conclude that h0,k = 0 for all k > 0, that is, OX

is exceptional. �

Remark 3.2. The case of curves is trivial in this context. In the case
of a complex surface S, the converse holds if we assume the Bloch
conjecture. We can reformulate this more categorically by saying that
F 2K0(S) ≃ Z, where F 2K0(S) is the subgroup generated by sheaves
supported in points.
It is not clear to the author what assumption one has to add in

general to prove the converse. For example, the structure sheaf of a
cubic fourfold X is exceptional, but the Grothendieck group is far from
being of finite rank. Indeed, Db(X) = 〈A,O,O(1),O(2)〉, where A is
a K3 category, that is, its Serre functor is shift by 2 and its Hochschild
(co)homology coincides with that of a K3 surface. If X is known to
be rational, then A is equivalent to Db(S) for a K3 surface S. By a
theorem of Mumford, see [30, Thm. 10.1], the Grothendieck group of
S is far from being of finite rank, so the same holds for X .
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Remark 3.3. In some sense, exceptional objects are the simplest ones
in Db(X). Other reasonably simple objects, at least in terms of their
endomorphism algebras, are the following.

(1) If Hom•(E,E) = C⊕ C[−d], we call E a d-spherelike object.
(2) If E is d-spherelike and S(E) ≃ E[d], we call E a d-spherical

object. These are interesting since any such object induces an
autoequivalence of Db(X); see [26].

(3) If S(E) ≃ E[2n] and Hom•(E,E) ≃ H∗(Pn,C), we call E a
Pn-object. These objects also induce autoequivalences; see [15].

Now, if X is d-dimensional, then OX is d-spherical if and only if X is
strict Calabi-Yau, that is, ωX ≃ OX andH i(OX) = C for i = 0, dim(X)
and 0 otherwise. Andreas Krug observed that OX is a Pn-object if and
only if X is an irreducible holomorphic symplectic variety of dimension
2n. It seems that there is no good characterisation when OX is d-
spherelike. In fact, the structure sheaf of a K3 surface is 2-spherical,
hence in particular also 2-spherelike. But there also exist surfaces of
general type whose structure sheaf is 2-spherelike. Blowing up a Calabi-
Yau variety in points gives examples where OX is d-spherelike and not
d-spherical. See [13] for the proofs of the last statements.
It is somewhat peculiar that it is probably quite difficult to categor-

ically characterise the situation where OX is exceptional.

Remark 3.4. Note that if K0(X) is torsion free, then CH1(X) is tor-
sion free by [10, Lem. 2.2]. IfK0(X) is torsion free and of finite rank and
X is defined over an algebraically closed field, then OX is exceptional,
hence by a theorem of Roitman, see [30, Thm. 10.14], CHdimX(X) is
torsion free.
In particular, if X has a full exceptional collection (and is defined

over k = k), then CH0(X), CH1(X) and CHdim(X)(X) are torsion free.
A similar statement holds if the collection is only almost full.

4. On phantoms and motives

We begin our investigation of phantom categories with the following
easy result which just says that universal phantoms behave well with
respect to base change and embeddings.

Proposition 4.1. Let X be a smooth projective variety over a field k
with a semi-orthogonal decomposition Db(X) = 〈A,B〉, where A is a
universal phantom category.

(1) Assume there exists a fully faithful functor Db(X) //Db(Y ).
Then A ⊂ Db(Y ) is a universal phantom category. In particu-
lar, this holds for blow-ups, that is, if Y = BlZX or Y = BlXW .
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(2) Given any smooth projective Y , A⊠ Db(Y ) ⊂ Db(X × Y ) is a
universal phantom category.

Proof. First note that by Orlov’s formula, see [25], which describes
the derived category of a blow-up as a semi-orthogonal decomposition
of the derived category of the base and several copies of the derived
category of the center of the blow-up (the number of copies depends on
the codimension of the center), the statement about blow-ups indeed
follows from item (1).
Both items follow immediately from [12, Prop. 4.4], which in par-

ticular establishes that A is a universal phantom category if and only
if KM(A) = 0, and the fact that KM(k) is a symmetric monoidal
category. Note that the same argument shows that if C ⊂ Db(Y ) is
admissible, then A⊠ C ⊂ Db(X × Y ) is a universal phantom.
A down-to-earth proof of (2) can be given as follows. First note

that K0(A ⊠ Db(Y )) = 0 by the universality of A, so A ⊠ Db(Y ) is a
phantom. To see that it is universal, we only need to check that

K0((A⊠ Db(Y ))⊠Db(Z)) = 0 for any Z.

Recall that (A⊠ Db(Y ))⊠ Db(Z) is the smallest triangulated subcat-
egory of Db(X × Y × Z) containing all objects of the form π∗

XY (A) ⊗
π∗
Z(F ), where A ∈ A⊠Db(Y ) and F ∈ Db(Z), and closed under direct

summands. Now, Db(Y × Z) is split generated (that is, we get every-
thing after taking direct summands) by elements of the form p∗F⊗q∗G
(where F ∈ Db(X), G ∈ Db(Y )), and A arises as a direct summand of
an object of the form p∗(A′)⊗ q∗G (A′ ∈ A, G ∈ Db(Y )), hence

(A⊠Db(Y ))⊠Db(Z) ≃ A⊠ Db(Y × Z).

Therefore, the Grothendieck group of this category vanishes by the
universality of A. �

One particular example of varieties satisfying the assumption of
Proposition 3.1 are varieties with almost full exceptional sequences.
One easy property these have is given by

Proposition 4.2. Let X be a smooth complex projective variety such
that Db(X) = 〈A, E1, . . . , Er〉, where A is a phantom category and Ei

are exceptional. Then hp,q = 0 if p 6= q.

Proof. This follows from the Hochschild-Kostant-Rosenberg isomor-
phism

HHk(X) =
⊕

q−p=k

Hp,q(X),
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the fact that HH•(Ei) = HH0(Ei) = C and additivity of Hochschild
homology on semi-orthogonal decompositions; see [18] for the latter
statement, where it is also explained how to define Hochschild homol-
ogy of an admissible subcategory of Db(X). �

The next result strengthens [24, Thm. 1.3], at least in the context of
complex varieties. Recall that an admissible subcategory A of Db(X)
is a quasi-phantom category if K0(A) is finite and HH•(A) = 0. Note
that Proposition 4.2 holds for quasi-phantom categories as well.

Proposition 4.3. Let X be a smooth complex projective variety such
that Db(X) = 〈A, E1, . . . , Er〉, where A is a (quasi-)phantom category.
Then the rational Chow motive of X is of Lefschetz type.

Proof. By [28, Thm. 5], all the rational Chow groups of a smooth pro-
jective complex n-dimensional variety are finite-dimensional Q-vector
spaces if and only if the Chow motive of X is of the form M(X) =
⊕n

i=0(L
i)⊕b2i , where b2i is the 2i-th Betti number. Since K0(X)⊗Q ≃

Qr ≃ CH•(X)⊗Q, the claim follows. �

Remark 4.4. Note that under the assumptions of the proposition the
rational Chow motive of X × X is again of Lefschetz type and [12,
Prop. 4.1(ii)] implies that K0(X ×X)Q ≃ K0(X)Q ⊗K0(X)Q.

Next we want to investigate when a phantom category is also a uni-
versal phantom. For this we will need the following

Lemma 4.5. Let X be a smooth projective variety over a field k such
that Db(X) = 〈A, E1, . . . , Er〉, where A is a phantom category and Ei

are exceptional. Then K0(A⊠Ei) = 0 for all 1 ≤ i ≤ r.

Proof. We will begin by checking that A is a full subcategory of A⊠E
for any exceptional object E. Define Φ: A //A⊠ E by A ✤

// p∗1(A)⊗
p∗2E on objects and by sending a morphism f to p∗1(f)⊗ id. Then:

Hom(Φ(A),Φ(B)) ≃ Homi+j=0Hom(A,B[i])⊗Hom(E,E[j])

≃ Hom(A,B).

by the Künneth formula.
By Proposition 3.1, OX is an exceptional object. In particular, by

the above argument, A ⊠ OX ≃ A. Now, A ⊠ OX and A ⊠ Ei are
abstractly isomorphic as triangulated categories and, therefore, have
the same Grothendieck group.
A more conceptual proof goes as follows. We know that

KM(A⊠ Ei) ≃ KM(A)⊗KM(Ei) ≃ KM(A)⊗ 1 ≃ KM(A).
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In particular, the Grothendieck groups of A⊠Ei and A coincide, which
is precisely the claim. �

Proposition 4.6. Let X be a smooth projective variety over a field
k such that Db(X) = 〈A, E1, . . . , Er〉, where A is a phantom category
and Ei are exceptional. The following statements are equivalent.

(1) K0(X ×X) ≃ K0(X)⊗K0(X).
(2) K0(A⊠A) = 0.
(3) A is a universal phantom category.

Proof. Recall that there is a semi-orthogonal decomposition

Db(X ×X) = 〈A⊠ Db(X), E1 ⊠Db(X), . . . , Er ⊠Db(X)〉.

Note that

KM(Ei ⊠Db(X)) = KM(Ei)⊗KM(Db(X)) = KM(Db(X)).

In particular,
K0(Ei ⊠Db(X)) = K0(D

b(X)).

IfK0(X) ≃ Zr andK0(X×X) ≃ K0(X)⊗K0(X), thenK0(X×X) ≃

Zr2 . Hence, K0(A⊠ Db(X)) = 0. In particular, K0(A⊠A) = 0.
Conversely, if K0(A⊠A) = 0, then K0(A⊠Db(X)) = 0 by Lemma

4.5. Since K0(Ei⊠Db(X)) ≃ Zr, we get K0(X×X) ≃ K0(X)⊗K0(X).
Hence, (1) and (2) are equivalent.
For the implication “(2)⇒(3)” we use [12, Prop. 4.4], which, in par-

ticular, states that A ⊂ Db(X) is universal if K0(A ⊠ Db(X)) = 0.
Since K0(A ⊠ Ei) = 0, it is now clear that (2) implies (3). Con-
versely, if (3) holds, then KM(A⊠A) = KM(A)⊗KM(A) = 0, hence
K0(A⊠A) = 0. �

It seems plausible that the assumption on the Grothendieck groups
in the proposition is, at least over C, automatic, since by Remark 4.4
the Grothendieck group of A ⊠ A is at most torsion. Surprisingly, it
is rather difficult to check that the Grothendieck group of the latter
category is indeed trivial. One idea one might have is to use results on
Chow groups, but the transfer seems to be subtle.

Remark 4.7. Let X be as in the proposition. If A is a universal
phantom category, then K0(X × Y ) = K0(X)⊗K0(Y ) for all smooth
projective Y .

The next result deals with phantom categories on surfaces.

Corollary 4.8. Let S be a complex surface with pg = q = 0 which
satisfies the Bloch conjecture and admits a phantom category A. Then
A is a universal phantom category.
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Proof. By [12, Rem. 3.2], K0(S × S) ≃ K0(S)⊗K0(S). It remains to
apply Proposition 4.6. �

Corollary 4.9. Let S be a generic complex determinantal Barlow sur-
face which by [4] admits a semi-orthogonal decomposition of the form
Db(S) = 〈A,L1, . . . ,L11〉, where the Li are line bundles and A is a
phantom category. Then A is a universal phantom category. Simi-
larly, if X9(2, 3) is the Dolgachev surface considered in [8], then the
phantom it admits is universal. Furthermore, the derived categories of
the Hilbert schemes S [n] and (X9(2, 3))

[n] of n points on these surfaces
admit a universal phantom.

Proof. The first claim is immediate from the previous corollary.
As for the second claim: The Fourier-Mukai transform

FMI : D
b(S) //Db(S [n])

whose kernel is the ideal sheaf I of the universal family, is fully faithful
by [17, Thm. 1.2]. The same reasoning holds for

FMI : D
b(X9(2, 3)) //Db((X9(2, 3))

[n]).

It remains to apply Proposition 4.1. �

Remark 4.10. Recall that the structure sheaf of an Enriques surface
Z is an exceptional object. Therefore, considering P2×S, Z×X9(2, 3),
X9(2, 3) × X9(2, 3), X9(2, 3) × S and S × S, using that κ(X × Y ) =
κ(X) + κ(Y ) and Lemma 4.5, one can produce fourfolds of Kodaira
dimension −∞, 1, 2, 3, 4 having a phantom category.
Note that taking the product of P1 with any surface containing a

phantom gives a threefold of Kodaira dimension −∞ containing a phan-
tom.

The following is a partial strengthening of [29, Thm. 2.7]. The as-
sumption on the field is needed to ensure that Spec(K) is smooth pro-
jective over k for any field extension K/k.

Proposition 4.11. Let S be a smooth projective surface over a perfect
field k. Assume that Db(S) = 〈A, E1, . . . , Er〉, where A is a universal
phantom category and all the Ei are exceptional. Then the integral
Chow motive of S is of Lefschetz type, that is, of the form 1⊕L⊕r⊕L⊗2.

Proof. The statement in [29] concerns full exceptional collections. A
close inspection of the proof shows that the fullness is only used to
ensure that the base change K0(S) //K0(SK) is surjective for any field
extension K/k. But since by our assumption A is a universal phantom
category, K0(A⊠Db(SpecK)) = 0, hence K0(S) ≃ K0(SK). �
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Corollary 4.12. The Chow motive of a complex generic determinantal
Barlow surface or of the Dolgachev surface X9(2, 3) is of Lefschetz type
over Z. �

Remark 4.13. The Chow motive of any Barlow surface S can be
shown to be of Lefschetz type over Z. For instance, since the Chow
group of zero-cycles on S is universally trivial by [32, Cor. 2.2], the
statement follows by [27, Thm. 4.1].
A different proof can be given as follows. If S is a smooth projective

complex surface with pg = q = 0 which satisfies the Bloch conjecture,
then, by [12, Prop. 2.2], its Chow motive is of the form

M(S) = 1⊕ L⊕ρ(S) ⊕ L⊗2 ⊕ T,

where the first Chow group of T is isomorphic to the torsion in Pic(S)
and all its other Chow groups vanish. In particular, if we invert any
number N such that the order of N ·Pic(S)tors = 0, then over Z1/N the
Chow motive of S is of Lefschetz type; see [12, Prop. 2.3]. It remains
to note that the Bloch conjecture holds for a Barlow surface by [31]
and set N = 1.

Remark 4.14. Let S be a generic determinantal Barlow surface and S ′

be any surface of general type with pg = q = 0 having a quasi-phantom
categoryA′. Then A⊠A′ ⊂ Db(S×S ′) is a universal phantom category.
This follows immediately from [12, Thm. 1.14]. Note that if we consider
S × S, then Db(S × S) contains

〈A⊠A,A⊠ E1, . . . ,A⊠E11, E1 ⊠A, . . . , E11 ⊠A〉

as an admissible subcategory and this category is a phantom. But the
components are as well, hence a phantom category can have admis-
sible subcategories. This fact should be related to the Noetherianity
conjecture for admissible subcategories, namely the statement that any
descending chain of admissible subcategories A1 ⊃ A2 ⊃ . . . of Db(X)
terminates.

The following result should be compared to Proposition 4.11.

Proposition 4.15. Let X be a smooth projective complex variety of
dimension n such that there exists a semi-orthogonal decomposition

Db(X) = 〈A, E1, . . . , Er〉,

where Ei are exceptional objects and A is a universal phantom category.
Then the Chow motive of X is of Lefschetz type over Z[1/(2n!)].

Proof. By [12, Prop. 4.4], theK-motive of A is trivial. SinceK-motives
are additive with respect to semi-orthogonal decompositions, it follows



12 PAWEL SOSNA

that the K-motive of X is of trivial type. This then remains true over
Z[1/2n!]. By [2, Thm. 1.4], this implies that the Chow motive of X is
of Lefschetz type over Z[1/2n!]. �

Remark 4.16. It is an interesting question whether in the above sit-
uation the Chow motive of X is of Lefschetz type over Z. Note that in
general even if the K-motive of a variety X is of trivial type over Z,
as is the case in the proposition, the Chow motive of X need not be of
Lefschetz type over Z, see [2, Prop. 1.7]. However, the example given
there does not work over an algebraically closed field.

5. Possible further directions

Recall that if C is an admissible subcategory of Db(X), the composi-
tion Φ = i◦ iR of the inclusion and its right adjoint, is a Fourier-Mukai
functor by [20, Thm. 7.1]. Call the kernel K and iR the projection to
C. Hochschild cohomology of C is defined by HH

∗(C) = Ext∗(K,K). If
A ⊂ Db(X) and A′ ⊂ Db(X ′) are admissible, then the kernel of the
projection functor to A ⊠ A′ is the convolution of the kernels of the
projection functors to A and A′, hence, by the Künneth formula,

HH
∗(A⊠A′) = HH

∗(A)⊗ HH
∗(A′).

In particular, if the restriction maps

HH
k(X) //HH

k(A) and HH
l(X ′) //HH

l(A′)

are isomorphisms for k ≤ α and l ≤ β, respectively, then

HH
k(X ×X ′) ≃ ⊕i+j=kHH

i(A)⊗ HH
j(A′)

and for k ≤ min(α, β) the Hochschild cohomology of A and A′ deter-
mines that of X ×X ′.
If A and A′ are (quasi-)phantoms appearing as complements to ex-

ceptional collections on surfaces, we can sometimes get better results.
For this we need to recall some notions.
Let (E1, . . . , En) be an exceptional collection on a variety X . Its

anticanonical pseudoheight is defined as

phac(E1, . . . , En) = min
1≤a0<a1<...<ap≤n

(

e(Ea0 , Ea1) + . . .

+ e(Eap−1
, Eap) + e(Eap , Ea0 ⊗ ω−1

X )− p
)

,

where e(F,G) = min{p ∈ Z | Homp(F,G) 6= 0}. Let us call the
numbers over which the minimum is taken the length-sum of a p-chain.
The pseudoheight of the collection is

ph(E1, . . . , En) = phac(E1, . . . , En) + dim(X).
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The (anti-)canonically extended collection is defined by

(E1, . . . , En, En+1, . . . , E2n) := (E1, . . . , En, E1 ⊗ ω−1
X , . . . , En ⊗ ω−1

X ).

The extended collection is called Hom-free if Homp(Ei, Ej) = 0 for
all p ≤ 0 and for all 1 ≤ i < j ≤ i+ n.

Lemma 5.1. Let (E1, . . . , En) and (F1, . . . , Fm) be exceptional collec-
tions on X and Y , respectively. If both extended collections are Hom-
free, then the collection (E1 ⊠ F1, . . . , En ⊠ Fm) on X × Y is also
Hom-free. The pseudoheight of the collection on the product is at least
1 + dim(X) + dim(Y ).

Proof. The first statement follows from the Künneth formula

Homp(A⊠ B,C ⊠D) =
⊕

s+t=p

Homs(A,C[s])× Homt(B,D[t]),

where A,C ∈ Db(X) and B,D ∈ Db(Y ), and, of course, we use that
ωX ⊠ ωY = ωX×Y . The second statement follows from [21, Lem. 4.10].

�

The interest in the above notions stems from [21, Cor. 4.6] which
says that if A is the orthogonal complement of a given exceptional
collection, then the restriction morphism on Hochschild cohomology
HH

k(X) //HH
k(A) is an isomorphism for k ≤ ph(E1, . . . , En)− 2 and

an injection for k ≤ ph(E1, . . . , En) − 1. In particular, we can apply
this to the examples of quasi-phantom categories appearing in the lit-
erature. The following is a(n incomplete) list of examples, where the
pseudoheight of the respective exceptional collection was computed (for
(1)-(3) in [21]):

(1) S is the classical Godeaux surface, K0(A) = Z/5Z (see [3]), the
length of the exceptional sequence is 11 and the pseudoheight
is 3;

(2) S is a Beauville surface, K0(A) = (Z/5Z)3 (see [11]), the maxi-
mal length of an exceptional sequence is 4, and the pseudoheight
is 4 or 3, depending on the collection;

(3) S is a Burniat surface, K0(A) = (Z/2Z)6 (see [1]), the length
of the exceptional sequence is 6 and the pseudoheight is 4;

(4) S is a surface isogeneous to a product, K0(A) = (Z/3Z)5, the
length of the exceptional sequence is 4 and the pseudoheight is
4 (see [22]).

Interestingly, given exceptional collections on X and Y , it is not
quite straightforward to compute the pseudoheight of the box product
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collection out of the pseudoheights of the original collections. First of
all, note that

e(E ⊠ F,G⊠H) = e(E,G) + e(G,H).

Given a p-chain of length-sum α on X and a q-chain of length-sum β
on Y , one easily sees that length-sum of the corresponding chain on
X × Y is

(p+ 1)(β + q) + (q + 1)(α+ p)− pq − p− q = pβ + qα + β + α+ pq.

So, it is not obvious what the pseudoheight of the collection on the
product is.
But at least in cases (2)-(4) the collections are Hom-free, hence we

get

Proposition 5.2. Let S, S ′ be two surfaces from items (2)-(4) on the
above list. Consider the semi-orthogonal decomposition

Db(S×S ′) = 〈AS⊠AS′ ,AS⊠F1, . . . , E1⊠AS′, . . . , E1⊠F1, . . . , Ek⊠Fl〉.

Then

HH
k(AS⊠AS′,AS⊠F1, . . . ,AS⊠Fl, E1⊠AS′ , . . . , Ek⊠AS′) ≃ HH

k(S×S ′)

for k ≤ 3. �

Note that the subcategories AS ⊠ Fi and Ej ⊠ AS′ are completely
orthogonal for all i, j. Also note that K0(AS ⊠ Fi) = K0(AS) and
K0(Ej ⊠AS′) = K0(AS′), compare Lemma 4.5. It would be interesting
to see whether there is “more” information, for example about defor-
mations of S × S ′ which are described by HH

2(S × S ′), contained in
these quasi-phantoms or in the phantom category AS ⊠AS′.

Let us conclude with a list of questions one could also consider in
this context. In the following we tacitly assume that the base field is
C.

(1) Question 1: If the Hochschild homology of an admissible sub-
category of Db(X) is zero, is its Grothendieck group automati-
cally finite or at least torsion?

(2) Question 2: Can a (quasi-)phantom category have a bounded
t-structure?

(3) Question 3: In dimension 2 (quasi-)phantom categories pre-
sumably do not appear if the Kodaira dimension is 0. Does this
hold in higher dimensions?

(4) Question 4: Can one describe the group of autoequivalences
of a (quasi-)phantom category?

(5) Question 5: Is there a phantom category which is not a uni-
versal phantom category?
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(6) Question 6: Does there exist a full exceptional collection on a
Barlow or a Dolgachev surface?

Note that it was proved in [12, Thm. 5.5] that the vanishing of K0

over Q automatically implies the vanishing of Hochschild homology
(and the higher K-groups) of an admissible subcategory A. Hence, (1)
asks for a converse.

Recall that a stability condition, see [7], consists of a heart C of a
bounded t-structure on Db(X) and a group homomorphism Z : K0(C) =
K0(X) //C which is assumed to satisfy some axioms. Among them is
the following: Z(T ) 6= 0 for any 0 6= T ∈ C. Hence, there cannot be a
stability condition on a quasi-phantom category. Note that the same
argument shows that there cannot be a stability condition on a variety
whose Grothendieck group has torsion.

With regards to Question 3: most examples so far were constructed
in Kodaira dimension 2. In the recent preprint [8] the authors construct
a phantom on a Dolgachev surface which has Kodaira dimension 1.
Since K3 and abelian surfaces are Calabi-Yau, they do not admit any
semi-orthogonal decompositions (this statement uses [14, Prop. 3.10],
which is due to Bridgeland) and the same holds for bielliptic surfaces
by [16, Thm. 1.7]. It is not quite clear that an Enriques surface does
not admit a (quasi-)phantom category, but at least it does not admit
an almost full exceptional collection by [29, Thm. 3.13].

Most examples of (quasi-)phantoms so far were constructed on sur-
faces S with ample canonical bundle, so the group Aut(Db(S)) of au-
toequivalences of S is a (semi-direct) product of automorphisms, line
bundle twists and powers of the shift functor by [6]. It would be in-
teresting to understand whether the group of autoequivalences of a
(quasi-)phantom category reflects some geometric aspects of the un-
derlying variety.

Finally, the last question is connected to the folklore conjecture that
the existence of a full exceptional collection implies rationality of a
surface.
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