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A CHARACTERIZATION OF REFLEXIVE SPACES OF

OPERATORS

JANKO BRAČIČ AND LINA OLIVEIRA

Abstract. We show that for a linear space of operators M ⊆ B(H1,H2) the
following assertions are equivalent. (i) M is reflexive in the sense of Loginov–

Shulman. (ii) There exists an order-preserving map Ψ = (ψ1, ψ2) on a bilattice
Bil(M) of subspaces determined by M, with P ≤ ψ1(P,Q) and Q ≤ ψ2(P,Q),
for any pair (P,Q) ∈ Bil(M), and such that an operator T ∈ B(H1,H2) lies
in M if and only if ψ2(P,Q)Tψ1(P,Q) = 0 for all (P,Q) ∈ Bil(M). This
extends to reflexive spaces the Erdos–Power type characterization of weakly
closed bimodules over a nest algebra.

1. Introduction and preliminaries

In [2], Erdos and Power characterized the weakly closed bimodules of a nest
algebra in terms of order homomorphisms on the lattice of invariant subspaces
of the algebra. Deguang showed in [1] that, given any reflexive subalgebra σ-
weakly generated by its rank one operators, the σ-weakly closed bimodules over the
algebra could analogously be characterized in terms of order homomorphisms on
the lattice of invariant subspaces of the algebra. Li and Li [6, Proposition 2.6] have
extended the mentioned results to the realm of Banach spaces. It is worth noticing
that the bimodules considered in the Erdos–Power theorems are implicitly reflexive
subspaces in the sense of Loginov–Shulman (cf. [7]). The aim of the present paper
is to extend this type of characterization to all such reflexive subspaces. The main
result Theorem 3.5 shows that, for every reflexive space M of operators between
two complex Hilbert spaces, there exists an order homomorphism on a bilattice of
subspaces determined by M which describes this subspace in the sense of Erdos–
Power [2, Theorem 1.5].

The proof of Theorem 3.5 requires some auxiliary results appearing in Section 2.
In the rest of the present section, apart from the notation, we shall also establish
the facts about bilattices needed in the sequel.

LetH be a complex Hilbert space, let B(H) be the Banach algebra of all bounded
linear operators on H , and let P(H) be the set of all orthogonal projections on H .
It is well known that P(H) is a lattice when endowed with the partial order relation
defined, for all P1, P2 ∈ H , by P1 ≤ P2 ⇐⇒ P1H ⊆ P2H . The join P1 ∨ P2 is
the orthogonal projection onto P1H + P2H and the meet P1 ∧P2 is the orthogonal
projection onto P1H ∩ P2H . In fact, P(H) is a complete lattice whose top and
bottom elements are, respectively, the identity operator I and the zero operator 0.
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Recall that the lattice Lat(U) of invariant subspaces of a subset U of B(H) is
given by

Lat(U) = {P ∈ P(H); P⊥TP = 0, for all T ∈ U},

where P⊥ = I−P . It is clear that Lat(U) is a sublattice of P(H) which is strongly
closed and therefore complete, i.e., for every subset F ⊆ Lat(U), the supremum
∨F and the infimum ∧F lie in Lat(U) (see [5]).

If U ⊆ B(H) is a non-empty subset, then let U∗ = {T ∗; T ∈ U}. We say that U
is selfadjoint if U∗ = U . It is obvious that P ∈ Lat(U) if and only if P⊥ ∈ Lat(U∗),
i.e., Lat(U∗) = Lat(U)⊥.

Let H1, H2 be complex Hilbert spaces. We endow the Cartesian product P(H1)
×P(H2) with the partial order � which is defined, for all (P1, Q1), (P2, Q2) ∈
P(H1)× P(H2), by

(1.1) (P1, Q1) � (P2, Q2) if and only if P1 ≤ P2 and Q1 ≥ Q2.

Hence the operations of join and meet are given, respectively, by

(P1, Q1) ∨ (P2, Q2) = (P1 ∨ P2, Q1 ∧Q2) and

(P1, Q1) ∧ (P2, Q2) = (P1 ∧ P2, Q1 ∨Q2).
(1.2)

It follows that P(H1) × P(H2) together with � is a lattice as it contains all the
binary joins and meets. From now on we write P(H1) ×� P(H2) whenever we
consider the Cartesian product to be endowed with the partial order (1.1), i.e.,
with the lattice structure (1.2). The corresponding notation will also be used for
Cartesian products of subsets of P(H1) × P(H2). Unless otherwise stated, it is
assumed that the partial order under consideration will always be �.

Following [8], we call a subset L of P(H1) ×� P(H2) a bilattice if it is closed
under the lattice operations (1.2) and contains the pairs (0, 0), (0, I), and (I, 0).
Examples of bilattices are P(H1)×� P(H2), of course, and

(1.3) BIL(U) = {(P,Q) ∈ P(H1)×� P(H2); QTP = 0, for any T ∈ U},

where U ⊆ B(H1, H2) is an arbitrary non-empty set.
Recall that, for a non-empty family F ⊆ P(H),

Alg(F) = {T ∈ B(H); P⊥TP = 0, for all P ∈ F}

is a weakly closed subalgebra of B(H) that contains the identity operator. A sub-
algebra A of B(H) is said to be reflexive if AlgLat(A) = A. The notion of reflexive
algebras has been generalized in several different directions; see [3] for a general
view of reflexivity and [4] for a recently introduced generalization. The concept of
reflexivity is naturally extended to spaces of operators as follows.

For a non-empty family F ⊆ P(H1)×� P(H2), let

Op(F) = {T ∈ B(H1, H2); QTP = 0, for all (P,Q) ∈ F}.

It is easily seen that Op(F) is a weakly closed linear subspace of B(H1, H2). A
subspaceM ⊆ B(H1, H2) is said to be reflexive if OpBIL(M) = M. This definition
is equivalent to that of Loginov and Shulman in [7], where a subspace M is said to
be reflexive if M coincides with its reflexive cover

Ref(M) = {S ∈ B(H1, H2); Sx ∈ Mx, for all x ∈ H1}.

In fact, OpBIL(M) = Ref(M) (cf. [8, p. 298]).
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Remark 1.1. Notice that, if A ⊆ B(H) is an algebra containing the identity
operator, then Ref(A) = AlgLat(A).

2. Subspaces and modules

For a linear subspace M ⊆ B(H1, H2), let

(2.1) AM = {A ∈ B(H1); TA ∈ M, for all T ∈ M}

and

(2.2) BM = {B ∈ B(H2); BT ∈ M, for all T ∈ M}.

It is easily seen that AM and BM are algebras containing the identity operator and
that M is BM-AM-bimodule. It is clear that these are the largest subalgebras of
B(H1), respectively B(H2), such that M is a bimodule over them. If M is closed
(respectively, weakly closed), then BM and AM are closed (respectively, weakly
closed). Next we show that AM and BM are reflexive whenever M is a reflexive
space.

Proposition 2.1. If M ⊆ B(H1, H2) is a reflexive space, then AM and BM are

reflexive algebras.

Proof. It will only be shown that AM is reflexive since the reflexivity of BM can be
similarly proved. In view of Remark 1.1, it suffices to show that Ref(AM) = AM.
In other words, fixing S ∈ Ref(AM), we need to show that, for all T ∈ M, the
operator TS lies in M. Since this is trivially satisfied by T = 0, henceforth we shall
assume that T 6= 0.

Let x ∈ H1 and ε > 0 be arbitrary. Since S ∈ Ref(AM), there exists Ax,ε ∈ AM

such that ‖Sx−Ax,εx‖ < ε/‖T ‖. Hence ‖TSx−TAx,εx‖ ≤ ‖T ‖‖Sx−Ax,εx‖ < ε.
The operator TAx,ε lies inM and, therefore, we can conclude that TS ∈ Ref(M) =
M, as required. �

Corollary 2.2. Let M be a linear subspace of B(H1, H2). Then Ref
(

AM

)

⊆

ARef(M) and Ref
(

BM

)

⊆ BRef(M).

Proof. Let A ∈ AM. If T ∈ Ref(M), then, for any x ∈ H1 and any ε > 0, there
exists Sx,ε ∈ M such that ‖TAx − Sx,εAx‖ < ε. Since Sx,εA ∈ M, we conclude
that TA ∈ Ref(M). By Proposition 2.1, the algebra ARef(M) is reflexive, from

which follows that Ref
(

AM

)

⊆ Ref
(

ARef(M)

)

= ARef(M).
The proof of the second inclusion is similar. �

Let tr(·) be the trace functional and let C1(H) ⊆ B(H) be the ideal of trace-class
operators. The dual of C1(H) can be identified with B(H) by means of the pairing
〈C,A〉 = tr(CA∗), with C ∈ C1(H), A ∈ B(H). The preannihilator of a subset
U ⊆ B(H) is U⊥ = {C ∈ C1(H); tr(CA∗) = 0, for all A ∈ U} and the annihilator
of V ⊆ C1(H) is V⊥ = {A ∈ B(H); tr(CA∗) = 0, for all C ∈ V}. It is obvious that
U⊥ and V⊥ are linear spaces and that a linear subspace M ⊆ B(H) is σ-weakly
closed if and only if M = (M⊥)

⊥.
If U ,V are two non-empty sets of operators, then we denote by UV the set of all

products TS, where T ∈ U and S ∈ V .

Proposition 2.3. Let M be a linear subspace of B(H). Then the following asser-

tions hold.

(i) (AM)∗ = BM∗ .
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(ii) If M is σ-weakly closed, then AM = (M∗M⊥)
⊥ and BM = (MM⊥)

⊥.

(iii) If M is selfadjoint and σ-weakly closed, then AM = BM is a C∗-algebra.

(iv) If M is selfadjoint, σ-weakly closed, and reflexive, then AM = BM is a von

Neumann algebra.

Proof. (i) An operator A ∈ B(H) lies in (AM)∗ if and only if TA∗ ∈ M for every
T ∈ M. However this is equivalent to AT ∗ ∈ M∗ for any T ∗ ∈ M∗, which by the
definition means that A ∈ BM∗ .

(ii) Let A ∈ AM. For arbitrary T ∈ M and C ∈ M⊥, we have tr(T ∗CA∗) =
tr(C(TA)∗) = 0, since TA ∈ M. This proves that A ∈ (M∗M⊥)

⊥. On the other
hand, if A ∈ (M∗M⊥)

⊥ and T ∈ M, then tr(C(TA)∗) = tr(T ∗CA∗) = 0, for any
C ∈ M⊥. Hence TA ∈ (M⊥)

⊥ = M. The second equality is similarly proved.
(iii) It follows from (ii) that AM = BM. By (i), the algebra AM is selfadjoint

and closed since M itself is closed. Hence AM is a C∗-algebra.
(iv) By (iii), AM = BM is a C∗-algebra. However, since M is reflexive, it is

weakly closed and, therefore, AM is also weakly closed. �

3. A characterization of reflexivity

Let M ⊆ B(H1, H2) be a linear subspace and let AM and BM be the algebras
defined in (2.1)–(2.2). The associated bilattice BIL(M) (see (1.3)) is very large.
For our purposes it suffices to consider a smaller bilattice to be defined below.
Firstly, we state the following lemma which is just a formalization of a remark in
[8, p. 298]. We include a short proof.

Lemma 3.1. Let M be a linear subspace of B(H1, H2). For any pair (P,Q) ∈
BIL(M), there exists a pair (P ′, Q′) ∈ BIL(M) such that P ′ ∈ Lat(AM), Q′

∈ Lat(BM)⊥, P ≤ P ′, and Q ≤ Q′.

Proof. Let P ′ be the orthogonal projection onto AMPH1 and let Q′ be the or-
thogonal projection onto B∗

MQH2. It is obvious that AMPH1 is invariant for any

A ∈ AM and that B∗
MQH2 is invariant for anyB

∗ ∈ B∗
M. Hence P ′ ∈ Lat(AM) and

Q′ ∈ Lat(B∗
M) = Lat(BM)⊥. Observe that PH1 ⊆ AMPH1 and QH2 ⊆ B∗

MQH2,
since both algebras contain the identity operator. Consequently, P ≤ P ′ and
Q ≤ Q′.

To prove that (P ′, Q′) lies in BIL(M), we have to see that, for any T ∈ M,
the equality Q′TP ′ = 0 holds, i.e., TP ′H1 ⊥ Q′H2. Let x ∈ H1 be arbitrary. For
any ε > 0, there exist Aε ∈ AM and xε ∈ H1 such that ‖P ′x − AεPxε‖ < ε, and
therefore ‖TP ′x−TAεPxε‖ < ε‖T ‖. For arbitrary B∗ ∈ B∗

M and y ∈ H2, we have
〈TAεPxε, B

∗Qy〉 = 〈QBTAεPxε, y〉 = 0, since BTAε ∈ M. Hence

|〈TP ′x,B∗Qy〉| = |〈TP ′x− TAεPxε, B
∗Qy〉|

≤ ‖TP ′x− TAεPxε‖‖B
∗Qy‖ < ε‖T ‖‖B∗Qy‖,

yielding TP ′x ⊥ B∗QH2, from which it follows that TP ′H1 ⊥ Q′H2. �

Let
Bil(M) = BIL(M) ∩

(

Lat(AM)×� Lat(BM)⊥
)

.

It is clear that Bil(M) is a bilattice.

Proposition 3.2. Let M be a linear subspace of B(H1, H2). Then

OpBIL(M) = OpBil(M).
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Proof. SinceBil(M) is a subset ofBIL(M), it follows thatOpBIL(M)⊆ OpBil(M).
To show that the reverse inclusion also holds, we begin by fixing an operator
T ∈ OpBil(M) and a pair of projections (P,Q) ∈ BIL(M). By Lemma 3.1,
there exists a pair (P ′, Q′) ∈ Bil(M) such that P ≤ P ′ and Q ≤ Q′. Hence
P ′P = P and QQ′ = Q. It follows that QTP = QQ′TP ′P = 0 and, therefore, T
lies in OpBIL(M), as required. �

Let M ⊆ B(H1, H2) be a linear space. Define φ : Lat(AM) → Lat(BM)⊥ by

(3.1) φ(P ) = ∨{Q ∈ Lat(BM)⊥; (P,Q) ∈ Bil(M)},

and similarly define θ : Lat(BM)⊥ → Lat(AM) by

(3.2) θ(Q) = ∨{P ∈ Lat(AM); (P,Q) ∈ Bil(M)}.

Observe that none of the sets appearing in (3.1)–(3.2) is empty as (P, 0), (0, Q) ∈
Bil(M), for any P ∈ Lat(AM), Q ∈ Lat(BM)⊥. The next proposition lists some
properties of the maps φ and θ.

Proposition 3.3. Let M be a linear subspace of B(H1, H2) and let φ, θ be the maps

defined in (3.1)–(3.2). Then the following assertions hold.

(i) φ and θ are order-reversing maps.

(ii) (P, φ(P )), (θ(Q), Q) ∈ Bil(M), for any P ∈ Lat(AM) and Q ∈ Lat(BM)⊥.
(iii) If C ⊆ Lat(AM) and D ⊆ Lat(BM)⊥ are non-empty sets, then φ(∨C) =

∧φ(C) and θ(∨D) = ∧θ(D).
(iv) P ≤ θφ(P ) and Q ≤ φθ(Q), for all P ∈ Lat(AM) and Q ∈ Lat(BM)⊥.
(v) φθφ = φ and θφθ = θ.

Proof. Assertions (i)–(iv) will only be proved for the map φ, since the corresponding
assertions concerning the map θ can be similarly proved. For the same reason, only
the first equality in (v) will be proved.

(i) If P1, P2 ∈ Lat(AM) are such that P1 ≤ P2, then P1P2 = P1 = P2P1. Hence,
if Q is a projection in P(H2) with (P2, Q) ∈ Bil(M), then, for every T ∈ M, we
have QTP1 = QTP2P1 = 0, yielding (P1, Q) ∈ Bil(M). It follows that

φ(P2) = ∨{Q ∈ Lat(BM)⊥; (P2, Q) ∈ Bil(M)}

≤ ∨{Q ∈ Lat(BM)⊥; (P1, Q) ∈ Bil(M)} = φ(P1).

(ii) Let P ∈ Lat(AM). We have to show that φ(P )TP = 0, for every T ∈ M.
Let T ∈ M, x ∈ H1, y ∈ H2 be arbitrary, and let Q ∈ P(H2) be a projection
such that (P,Q) ∈ Bil(M). Then 〈TPx,Qy〉 = 〈QTPx, y〉 = 0, that is to say that
TPH1 ⊥ QH2. Since φ(P ) is the orthogonal projection onto the closed linear span
of all the spaces QH2, where Q is an orthogonal projection in P(H2) such that
(P,Q) ∈ Bil(M), we conclude that TPH1 ⊥ φ(P )H2, i.e., φ(P )TP = 0.

(iii) Let C ⊆ Lat(AM) be a non-empty set. Then, for all P ∈ C, P ≤ ∨C
and, since Lat(AM) is complete, ∨C ∈ Lat(AM). It follows that, for all P ∈ C,
φ(∨C) ≤ φ(P ), as φ is an order-reversing map. Therefore φ(∨C) ≤ ∧φ(C).

To show that this inequality can be reversed, we shall prove firstly that (∨C,
∧φ(C)) ∈ Bil(M). Let T ∈ M be arbitrary. Then, for every P ∈ C, we have
∧φ(C) ≤ φ(P ), from which it follows that

(

∧φ(C)
)

φ(P ) = ∧φ(C). Hence, for all
P ∈ C,

(

∧φ(C)
)

TP =
(

∧φ(C)
)

φ(P )TP = 0
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and, consequently,
(

∧φ(C)
)

T
(

∨C
)

= 0, i.e.,
(

∨C,∧φ(C)
)

∈ Bil(M). It follows, by
the definition of φ(∨C), that ∧φ(C) ≤ φ(∨C).

(iv) Let P ∈ Lat(AM). By assertion (ii), we have (P, φ(P )), (θ(φ(P )), φ(P )) ∈
Bil(M). Since, by the definition (3.1), the projection θ(φ(P )) is the largest P ′ ∈
Lat(AM) such that (P ′, φ(P )) ∈ Bil(M), we conclude that P ≤ θ

(

φ(P )
)

.
(v) Let P ∈ Lat(AM) be arbitrary. By assertion (iv), we know that φ(P ) ≤

φθφ(P ). Moreover, since by (ii) of this proposition, (P, φ(P )) and (θφ(P ), φθφ(P ))
lie in the bilattice Bil(M), we have

(

P ∧ θφ(P ), φ(P )∨φθφ(P )
)

∈ Bil(M). Notice
however that (iv) implies P ∧ θφ(P ) = P and φ(P ) ∨ φθφ(P ) = φθφ(P ). Thus,
(P, φθφ(P )) ∈ Bil(M). By the definition of φ, the projection φ(P ) is the largest
Q ∈ Lat(BM)⊥ having the property (P,Q) ∈ Bil(M). Hence, φθφ(P ) ≤ φ(P ).
Consequently, for all P ∈ Lat(AM), we have φθφ(P ) = φ(P ). �

Let Ψ1, Ψ2 : Bil(M) → Bil(M) be defined by

Ψ1(P,Q) = (θφ(P ), φ(P )) and

Ψ2(P,Q) = (θ(Q), φθ(Q)) (P,Q) ∈ Bil(M).
(3.3)

Observe that Proposition 3.3 (ii) guarantees that the maps Ψ1 and Ψ2 are well
defined.

Corollary 3.4. Let M be a linear subspace of B(H1, H2) and let Ψ1, Ψ2 : Bil(M)
→ Bil(M) be the maps defined in (3.3). Then Ψ1, Ψ2 are order-preserving maps

and Ψ1(Bil(M)) = Ψ2(Bil(M)).

Proof. It easily follows from Proposition 3.3 (i) that Ψ1 and Ψ2 are order-preser-
ving maps. That the images of Ψ1 and Ψ2 coincide is an immediate consequence
of Proposition 3.3 (v). �

We are now able to prove our main result.

Theorem 3.5. Let M be a linear subspace of B(H1, H2) and let AM, BM be the

algebras defined in (2.1)–(2.2). The following assertions are equivalent.

(i) M is a reflexive space.

(ii) There exists a map Ψ = (ψ1, ψ2) : Bil(M) → Bil(M) such that P ≤
ψ1(P,Q) and Q ≤ ψ2(P,Q), for any pair (P,Q) ∈ Bil(M), and

M = {T ∈ B(H1, H2); ψ2(P,Q)Tψ1(P,Q) = 0, for all (P,Q) ∈ Bil(M)}.

(iii) There exists a map ψ1 : Lat(BM)⊥ → Lat(AM) such that P ≤ ψ1(Q), for
any pair (P,Q) ∈ Bil(M), and

M = {T ∈ B(H1, H2); QTψ1(Q) = 0, for all Q ∈ Lat(BM)⊥}.

(iv) There exists a map ψ2 : Lat(AM) → Lat(BM)⊥ such that Q ≤ ψ2(P ), for
any pair (P,Q) ∈ Bil(M), and

M = {T ∈ B(H1, H2); ψ2(P )TP = 0, for all P ∈ Lat(AM)}.

Proof. Firstly we show that (i) ⇐⇒ (ii). Assume that M is a reflexive space. Let
Ψ be the map Ψ1 defined in (3.3), and let F = Ψ(Bil(M)). Clearly, F ⊆ Bil(M)
and, therefore, Op(F) ⊇ OpBil(M) = M.

To reverse the inclusion, fix T ∈ Op(F). Observe that, by Proposition 3.3 (iv),
for any pair (P,Q) ∈ Bil(M), P ≤ θφ(P ) = ψ1(P,Q) and, by the definition of
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the map φ, Q ≤ φ(P ) = ψ2(P,Q). Hence, for all (P,Q) ∈ Bil(M), P = θφ(P )P ,
Q = Qφ(P ) and, consequently,

QTP = Qφ(P )Tθφ(P )P = 0.

It follows that T ∈ OpBil(M) = M, as required.
Conversely, suppose that there exists a map Ψ = (ψ1, ψ2) as stated in (ii). It

has to be shown that M = OpBil(M). Since it is clear that M ⊆ OpBil(M), it
remains to show that M ⊇ OpBil(M). Let S ∈ OpBil(M) be arbitrary. Hence,
for any pair (P ′, Q′) ∈ Bil(M), we have Q′SP ′ = 0. In particular, since for
(P,Q) ∈ Bil(M), the image (ψ1(P,Q), ψ2(P,Q)) lies also in BilM, it follows that
ψ2(P,Q)Tψ1(P,Q) = 0. Finally, this yields that S lies in the set

{T ∈ B(H1, H2); ψ1(P,Q)Tψ2(P,Q) = 0 ∀ (P,Q) ∈ Bil(M)},

which coincides with M, by the assumption.
The remaining equivalences are similarly proved. Notice that to prove the impli-

cation (i)⇒(iii) (respectively, (i)⇒(iv)), we set ψ1 = θ (respectively, ψ2 = φ). �

Observe that the maps appearing in the equalities characterizing a reflexive space
M in Theorem 3.5 need not be unique (see [2, Remark, p. 223]). In particular, the
map Ψ in Theorem 3.5 (ii) can be chosen to be order-preserving.
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