Krylov-Veretennikov Formula for Functionals from the Stopped Wiener Process

G. V. Riabov

Institute of Mathematics, NAS of Ukraine

Abstract

We consider a class of measures absolutely continuous with respect to the distribution of the stopped Wiener process $w(\cdot \wedge \tau)$. Multiple stochastic integrals, that lead to the analogue of the Itô-Wiener expansions for such measures, are described. An analogue of the Krylov-Veretennikov formula for functionals $f = \varphi(w(\tau))$ is obtained.

Keywords and phrases. Wiener process, stochastic integral, Itô-Wiener expansion.

2010 Mathematics Subject Classification. Primary 60J60; Secondary 60J50, 60H30.

1 Introduction

Let $\{w(t)\}_{t\geq 0}$ be a standard Wiener process in \mathbb{R}^d , starting from the point $u \in \mathbb{R}^d$. Consider an open connected set $G \ni u$, the exit time

$$
\tau = \inf\{t > 0 : w(t) \notin G\},\
$$

and a Borel function $\rho : \mathbb{R}^d \to (0,1)$.

The main object of the investigation in the present paper is the orthogonal structure of the space $L^2(\Omega, \sigma(w(\cdot \wedge \tau)), Q)$, where the measure Q is given by the density

$$
\frac{dQ}{d\mathbb{P}} = \frac{1_{\tau < \infty} \rho(w(\tau))}{\mathbb{E}1_{\tau < \infty} \rho(w(\tau))}.
$$

In [\[11,](#page-8-0) L. 2.4] it was proved that the space $L^2(\Omega, \sigma(w(\cdot \wedge \tau)), Q)$ possesses an orthogonal structure similar to the Itô-Wiener decomposition in the Gaussian case $[1, 5, 8]$ $[1, 5, 8]$ $[1, 5, 8]$. Namely, consider functions

$$
\beta(v) = \mathbb{E}1_{\tau(w-u+v)<\infty}\rho(w(\tau(w-u+v)-u+v)), \ v \in G,
$$

$$
\alpha(s,v) = \beta^{-1}(v)\mathbb{E}1_{s<\tau(w-u+v)<\infty}\rho(w(\tau(w-u+v)-u+v)), \ s > 0, v \in G,
$$

and processes

$$
\tilde{w}(s) = w(s \wedge \tau) - \int_0^{s \wedge \tau} \nabla \log \beta(w(r)) dr, \ s \ge 0;
$$

$$
\hat{w}_t(s) = \tilde{w}(s) - \int_0^{s \wedge \tau} \nabla \log \alpha(t - r, w(r)) dr, \ 0 \le s \le t.
$$

Theorem 1.1. [\[11,](#page-8-0) L. 2.4] Each random variable $f \in L^2(\Omega, \sigma(w(\cdot \wedge \tau)), Q)$ can be uniquely represented as a series of pairwise orthogonal stochastic integrals

$$
f = \sum_{n=0}^{\infty} \int \ldots \int a_n(t_1,\ldots,t_n) d\hat{\tilde{w}}_{t_n}(t_1)\ldots d\hat{\tilde{w}}_{t_n}(t_{n-1}) d\tilde{w}(t_n).
$$
 (1.1)

Conversely, given a sequence of Borel functions $a_n : (0, \infty)^n \to \mathbb{R}^{d^n}$, $n \geq 0$, such that

$$
\sum_{n=0}^{\infty}\int_{0
$$

the series in the right-hand side of [\(1.1\)](#page-1-0) converges in $L^2(\Omega, \sigma(w(\cdot \wedge \tau)), Q)$, and its sum f satisfies

$$
\mathbb{E}f^2 = \sum_{n=0}^{\infty} \int \ldots \int \limits_{0 < t_1 < \ldots < t_n} \alpha(t_n, u) |a_n(t_1, \ldots, t_n)|^2 dt_1 \ldots dt_n.
$$

In this paper we derive the explicit form of the expansion [\(1.1\)](#page-1-0) for random variables of the kind $f = \varphi(w(\tau))$. The resulting formula is similar to the well-known Krylov-Veretennikov formula [\[6\]](#page-7-3). It is written in terms of the transition semigroup $\{T_t^k\}_{t\geq0}$ of a certain diffusion, killed at the boundary of G. Indeed, the process \tilde{w} is a stopped Wiener process relatively to the measure Q [\[11,](#page-8-0) L. 2.4]. Respectively, the initial Wiener process w is a diffusion process relatively to the measure Q . Then $\{T_t^k\}_{t\geq0}$ is the transition semigroup of the process w killed at the boundary of G . Let T denote the integration with respect to the exit distribution of w from G (precise expressions for these operators are given in the section 2). The main result of the present paper is the following formula, proved in the theorem [2.1:](#page-4-0)

for every random variable $\varphi(w(\tau)) \in L^2(\Omega, \sigma(w(\cdot \wedge \tau)), Q)$ the expansion [\(1.1\)](#page-1-0) has the form

$$
\varphi(w(\tau)) = \sum_{n=0}^{\infty} \int \ldots \int \alpha(t_n, u)^{-1} \bigg(T_{t_1}^k \alpha(t_2 - t_1, \cdot) \nabla \big(\alpha(t_2 - t_1, \cdot)^{-1} T_{t_2 - t_1}^k \big) \ldots
$$

\n
$$
\alpha(t_n - t_{n-1}, \cdot) \nabla \big(\alpha(t_n - t_{n-1}, \cdot)^{-1} T_{t_n - t_{n-1}}^k \big) \nabla T \varphi \bigg)(u) d\hat{\tilde{w}}_{t_n}(t_1) \ldots d\hat{\tilde{w}}_{t_n}(t_{n-1}) d\tilde{w}(t_n).
$$
\n(1.2)

Expansions of the kind (1.1) appeared in $[4]$ in connection with the problem of studying the behaviour of Gaussian measures under nonlinear transformations. Such expansions have two main features:

- 1. the summands in [\(1.1\)](#page-1-0) are pairwise orthogonal;
- 2. the summands in [\(1.1\)](#page-1-0) are $\sigma(w(\cdot \wedge \tau))$ –measurable.

Of course, there are other possibilities to organize series expansions for random variables from $L^2(\Omega, \sigma(w(\cdot \wedge \tau)), Q)$. For simplicity, consider the case $Q = \mathbb{P}$. The most straightforward approach comes from the obvious inclusion $\sigma(w(\cdot \wedge \tau)) \subset \sigma(w)$. It means that each

random variable $f \in L^2(\Omega, \sigma(w(\cdot \wedge \tau)), \mathbb{P})$ possesses an Itô-Wiener expansion with respect to the Wiener process w :

$$
f = \sum_{n=0}^{\infty} \int \ldots \int b_n(t_1, \ldots, t_n) dw(t_1) \ldots dw(t_n).
$$
 (1.3)

The summands in the expansion are not $\sigma(w(\cdot \wedge \tau))$ –measurable. While the left-hand side of [\(1.3\)](#page-2-0) is $\sigma(w(\cdot \wedge \tau))$ –measurable, one can condition (1.3) with respect to $w(\cdot \wedge \tau)$ and get another expansion

$$
f = \sum_{n=0}^{\infty} \int \ldots \int_{0 < t_1 < \ldots < t_n < \tau} b_n(t_1, \ldots, t_n) dw(t_1) \ldots dw(t_n). \tag{1.4}
$$

Now the stochastic integrals of different degree are not orthogonal. This causes known inconveniences: the expansion (1.4) is not unique (an example is given in [\[4\]](#page-7-4)); the conditions for the expression in the right-hand side of [\(1.4\)](#page-2-1) to converge are complicated. An application of the Gram-Shmidt orthogonalization procedure to expansions [\(1.4\)](#page-2-1) was considered in [\[2\]](#page-7-5). However, in our framework it seems to be too complicated either to obtain the orthogonalized form of [\(1.4\)](#page-2-1), or to find the orthogonalized expansion [\(1.4\)](#page-2-1) for a concrete random variable f. The expansion [\(1.1\)](#page-1-0) overcomes all these problems.

Motivation for the $\sigma(w(\cdot \wedge \tau))$ −measurability of the summands in [\(1.1\)](#page-1-0) comes from B. S. Tsirelson's theory of black noise. It is well-known that Brownian coalescing flows produce filtrations with trivial Gaussian parts [\[12,](#page-8-1) [7\]](#page-7-6). So, to get a unified description of functionals measurable with respect to such flows, it is reasonable to use the noise generated by the flow itself. The results from [\[4,](#page-7-4) [11\]](#page-8-0) show that this idea works: in [\[4\]](#page-7-4) an orthogonal expansion of the kind [\(1.1\)](#page-1-0) was obtained for the stopped Brownian motion; in [\[11\]](#page-8-0) the same was done for the n−point motions of the Arratia flow. We refer to [\[4,](#page-7-4) [11\]](#page-8-0) for the detailed discussion of this and related questions.

Generalization of the Krylov-Veretennikov formula to the wide class of dynamical systems driven by the additive Gaussian noise was obtained in $[3]$. Our formula (2.7) is similar to the one obtained in [\[3\]](#page-7-7) despite the additional multipliers α . They occure to normalize operators T_t^k , as $T_t^k 1 = \alpha(t, \cdot)$.

The article is organized in the following way. In the section 2 we introduce all the needed notions and constructions. Also, it contains the reduction of the main theorem [2.1](#page-4-0) to lemmata [2.1](#page-5-0) and [2.2.](#page-5-1) Sections 3 and 4 are devoted to the proof of these auxiliary results.

2 Notations and Main Results

To formulate our results, we will use the following notations.

 $\{w(t)\}_{t\geq0}$ is the Wiener process in \mathbb{R}^d . Without loss of generality, we will assume that w is constructed in a canonical way:

 $\Omega = C([0,\infty), \mathbb{R}^d)$ is a space of continuous functions equipped with a metric of uniform convergence on compacts;

 $\mathcal F$ is the Borel σ −field on Ω ;

 $w(t, \omega) = \omega(t)$ is the canonical process on (Ω, \mathcal{F}) , $\mathcal{F}_t = \sigma(w(s) : 0 \le s \le t)$ is the natural filtration of w;

 $(\mathbb{P}_{v})_{v\in\mathbb{R}^{d}}$ is a family of probability measures on (Ω,\mathcal{F}) , such that relatively to \mathbb{P}_{v} , w is a d−dimensional Wiener process starting from v. The expectation with respect to certain probability measure Q on (Ω, \mathcal{F}) will be denoted by \mathbb{E}_{Q} . $\mathbb{E}_{\mathbb{P}_{v}}$ will be abbreviated to \mathbb{E}_{v} .

Let $G \subset \mathbb{R}^d$ be an open connected set, τ be the exit time of w from the set G :

$$
\tau = \inf\{t > 0 : w(t) \notin G\}.
$$

We will assume that for all $v \in G$, $\mathbb{P}_v(\tau < \infty) > 0$. Fix a Borel function $\rho : \mathbb{R}^d \to (0,1)$ and consider the function

$$
\beta(v) = \mathbb{E}_v 1_{\tau < \infty} \rho(w(\tau)), \ v \in G.
$$

It is a harmonic function in G [\[9,](#page-7-8) Ch. 4, Prop. 2.1]:

$$
\Delta_v \beta(v) = 0, \ v \in G.
$$

Denote Q_u the probability measure on (Ω, \mathcal{F}) , defined via the density

$$
\frac{dQ_u}{d\mathbb{P}_u} = \beta(u)^{-1} 1_{\tau < \infty} \rho(w(\tau)).
$$

We will need another probability measure corresponding to the process w killed at the moment τ . Consider the function

$$
\alpha(s,v) = Q_v(\tau > s), \ s > 0, v \in G.
$$

In the section 1 following processes were introduced.

$$
\tilde{w}(s) = w(s \wedge \tau) - \int_0^{s \wedge \tau} \nabla_v \log \beta(w(\tau)) d\tau, \ s \ge 0; \tag{2.5}
$$

$$
\hat{\tilde{w}}_t(s) = \tilde{w}(s) - \int_0^{s \wedge \tau} \nabla_v \log \alpha(t - r, w(r)) dr, \ 0 \le s \le t.
$$
\n(2.6)

Throughout the paper derivatives will be taken in $v \in G$, so we will omit the index v in the derivatives' notation.

Consider a probability measure $Q_{t,u}$ on (Ω, \mathcal{F}_t) , defined via the density

$$
\frac{dQ_{t,u}}{dQ_u} = \alpha(t,u)^{-1}1_{\tau>t}.
$$

The key observation leading to the theorem [1.1](#page-1-1) is that on the probability space $(\Omega, \mathcal{F}_t, Q_{t,u})$ the process $\hat{\tilde{w}}_t$ is a Wiener process [\[10,](#page-8-2) Ch. VIII, Th. (1.4)].

Introduce following operators:

1. $T\psi(v) = \mathbb{E}_v 1_{\tau < \infty} \rho(w(\tau)) \psi(w(\tau)), v \in G.$

Denote μ_v the distribution of $w(\tau)$ relatively to the measure $1_{\tau<\infty}d\mathbb{P}_v$. Then the action of the operator T reduces to the integration with respect to μ_v :

$$
T\psi(v) = \int \psi(x)\mu_v(dx).
$$

2. $\widetilde{T}\psi(v) = \beta(v)^{-1}T\psi(v), v \in G.$

The operator \widetilde{T} is the expectation relatively to the probability measure Q_v :

$$
\widetilde{T}\psi(v) = \mathbb{E}_{Q_v} \rho(w(\tau)).
$$

3. $T_s^k \psi(v) = \mathbb{E}_{Q_v} 1_{\tau > s} \psi(w(s)), \ s > 0, v \in G.$ From equations (2.5) , (2.6) it follows that

$$
dw(s) = (\nabla \log \alpha(t - s, w(s)) + \nabla \log \beta(w(s)))ds + d\hat{\tilde{w}}(s),
$$

where $\hat{\hat{w}}$ is a Wiener process on $(\Omega, \mathcal{F}_t, Q_{t,u})$. So, relatively to the measure $Q_{t,u}$ the process w satisfies (degenerate) SDE. Respectively, $\{T_t^k\}_{t\geq 0}$ is the transition semigroup of a killed diffusion process w. Denote $\mu_{s,v}$ the distribution of $w(s)$ relatively to the measure $1_{\tau > s} dQ_v$. Then the action of the operator T_s^k reduces to the integration with respect to $\mu_{s,v}$:

$$
T_s^k \psi(v) = \int \psi(x) \mu_{s,v}(dx).
$$

4. $T_s^k \psi(v) = \alpha(s, v)^{-1} T_s^k \psi(v), \ s > 0, v \in G.$

The operator T_s^k is the expectation relatively to the probability measure $Q_{s,v}$:

$$
\widetilde{T_s^k}\psi(v) = \mathbb{E}_{Q_{s,v}}\psi(w(s)).
$$

The following theorem is the main result of the paper.

Theorem 2.1. For every $\varphi \in L^2(\rho d\mu_u)$ the expansion [\(1.1\)](#page-1-0) has the form

$$
\varphi(w(\tau)) = \sum_{n=0}^{\infty} \int \ldots \int \alpha(t_n, u)^{-1} \left(\alpha(t_1, \cdot) \widetilde{T}_{t_1}^k \alpha(t_2 - t_1, \cdot) \nabla \widetilde{T}_{t_2 - t_1}^k \ldots \right. \\
\left. \alpha(t_n - t_{n-1}, \cdot) \nabla \widetilde{T}_{t_n - t_{n-1}}^k \nabla \widetilde{T} \varphi \right) (u) d\hat{\tilde{w}}_{t_n}(t_1) \ldots d\hat{\tilde{w}}_{t_n}(t_{n-1}) d\tilde{w}(t_n).
$$
\n(2.7)

The proof is divided into two lemmas, which are proved in the next sections. At first we derive the Clark representation for $\varphi(w(\tau))$ with respect to the stopped Wiener process \tilde{w} [\[10,](#page-8-2) Ch. V, Th. (3.5)]

Lemma 2.1. For every $\varphi \in L^2(\rho d\mu_u)$, one has the representation

$$
\varphi(w(\tau)) = \widetilde{T}\varphi(u) + \int_0^{\tau} \nabla \widetilde{T}\varphi(w(t))d\widetilde{w}(t), \ Q_u - a.s. \tag{2.8}
$$

Subsequently, we find the Itô-Wiener expansion for the random variable $\psi(w(t))$ with respect to the Wiener process \tilde{w} .

Lemma 2.2. For every $\psi \in L^2(\mu_{t,u})$ the Itô-Wiener expansion of $\psi(w(t))$ has the form

$$
\psi(w(t)) = \sum_{n=0}^{\infty} \int \ldots \int \alpha(t, u)^{-1} \left(\alpha(t_1, \cdot) \widetilde{T}_{t_1}^k \alpha(t_2 - t_1, \cdot) \nabla \widetilde{T}_{t_2 - t_1}^k \ldots \right. \\
\left. \alpha(t - t_n, \cdot) \nabla \widetilde{T}_{t - t_n}^k \varphi \right) (u) d\hat{\tilde{w}}_t(t_1) \ldots d\hat{\tilde{w}}_t(t_n).
$$
\n(2.9)

The theorem [2.1](#page-4-0) follows by substituting $\psi = \nabla \tilde{T} \varphi$ in [\(2.9\)](#page-5-2) and inserting the right-hand side of [\(2.9\)](#page-5-2) into [\(2.8\)](#page-5-3).

3 Clark Representation Formula with respect to the Measure Q_u . Proof of the Lemma [2.1](#page-5-0)

Proof. 1) At first we will prove that the function $\widetilde{T}\varphi$ is smooth and satisfies the equation

$$
(\nabla \widetilde{T}\varphi, \nabla \log \beta) + \frac{1}{2}\Delta \widetilde{T}\varphi = 0
$$
\n(3.10)

in G. Indeed,

$$
\widetilde{T}\varphi(v) = \frac{\mathbb{E}_v 1_{\tau < \infty} \rho(w(\tau)) \varphi(w(\tau))}{\beta(v)}\tag{3.11}
$$

is the ratio of two harmonic functions [\[9,](#page-7-8) Ch. 4, Th. 3.7] (for the numerator the condition $\varphi \in L^2(\rho d\mu_u)$ is used). The equation [\(3.10\)](#page-5-4) is checked by straightforward calculation.

2) We will prove the relation [\(2.8\)](#page-5-3) for bounded and continuous functions φ and ρ , the other cases being covered by the usual limiting procedure. Let ${G_n}_{n>1}$ be a sequence of open relatively compact sets, such that $\overline{G_n} \subset G$ and $G = \bigcup_{n=1}^{\infty} G_n$. Denote τ_n be the exit time from G_n :

$$
\tau_n = \inf\{t \ge 0 : w(t) \notin G_n\}.
$$

The convergence $\tau_n \to \tau$, $n \to \infty$, holds.

From the relation [\(2.5\)](#page-3-0) it follows that the stopped process $w(\cdot \wedge \tau_n)$ satisfies the SDE

$$
dw(s) = \nabla \log \beta(w(s))ds + d\tilde{w}(s), 0 \le s \le \tau_n.
$$

Applying the Itô formula to the function $\widetilde{T}\varphi$ and the process $w(\cdot \wedge \tau_n)$, and using [\(3.10\)](#page-5-4), one gets the representation

$$
\widetilde{T}\varphi(w(\tau_n)) = \widetilde{T}\varphi(u) + \int_0^{\tau_n} \nabla \widetilde{T}\varphi(w(s))d\widetilde{w}(s), Q_u - \text{a.s.}
$$

It remains to check that $\widetilde{T}\varphi(w(\tau_n)) \to \widetilde{T}\varphi(w(\tau_n))$. As the function φ is bounded, one has

$$
\sup_{n\geq 1}\int_0^\infty \mathbb{E}_u 1_{\tau_n>s}(\nabla \widetilde{T}\varphi(w(s)))^2ds < \infty.
$$

Now, the convergence $\tau_n \to \tau$, $n \to \infty$, implies the convergence

$$
\int_0^{\tau_n} \nabla \widetilde{T} \varphi(w(s)) d\tilde{w}(s) \xrightarrow{L^2(Q_u)} \int_0^{\tau} \nabla \widetilde{T} \varphi(w(s)) d\tilde{w}(s), \ n \to \infty.
$$

It remains to check that $\widetilde{T}\varphi(w(\tau_n)) \to \varphi(w(\tau))$, $n \to \infty$. By [\[9,](#page-7-8) Ch. 4, Th. 2.3] the point $w(\tau)$ is the regular point for the Dirichlet problem on G. The needed convergence follows from the representation [\(3.11\)](#page-5-5). \Box

4 The Krylov-Veretennikov Formula. Proof of the Lemma [2.2](#page-5-1)

Proof. The kernels a_n in the expansion

$$
\psi(w(t)) = \sum_{n=0}^{\infty} \int \ldots \int a_n(t_1,\ldots,t_n) d\hat{\tilde{w}}_t(t_1)\ldots d\hat{\tilde{w}}_t(t_n)
$$

will be recovered from the expression

$$
\mathbb{E}_{Q_{t,u}}\psi(w(t))\int\limits_{0
$$
\left(\alpha(t_1,\cdot)\widetilde{T}_{t_1}^k\alpha(t_2-t_1,\cdot)\nabla\widetilde{T}_{t_2-t_1}^k...\alpha(t-t_n,\cdot)\nabla\widetilde{T}_{t-t_n}^k\varphi\right)(u)b_n(t_1,...,t_n)dt_1...dt_n,
$$
$$

in which b_n is a deterministic square integrable function. By induction, it is enough to check that for any square integrable $\hat{\tilde{w}}$ –adapted process ${g(s)}_{0 \le s \le t}$, one has

$$
\mathbb{E}_{Q_{t,u}}\psi(w(t))\int_0^t g(s)d\hat{\tilde{w}}_t(s) = \int_0^t \frac{\alpha(s,u)}{\alpha(t,u)}\mathbb{E}_{Q_{s,u}}\alpha(t-s,w(s))\nabla \widetilde{T}_{t-s}^k\psi(w(s))g(s)ds. \tag{4.12}
$$

To do it note the equalities, which follow from [\(2.6\)](#page-3-1) and lemma [2.1](#page-5-0)

$$
\int_0^t g(s)d\hat{\tilde{w}}_t(s) = \int_0^t g(s)d\tilde{w}(s) - \int_0^t g(s)\nabla \log \alpha(t-s, w(s))ds, Q_{t,u} - \text{a.s.},
$$

$$
1_{\tau>t}\psi(w(t)) = T_t^k \psi(u) + \int_0^{t \wedge \tau} \nabla T_{t-s}^k \psi(w(s))d\tilde{w}(s), Q_u - \text{a.s.}
$$

Consequently,

$$
\mathbb{E}_{Q_{t,u}}\psi(w(t))\int_0^t g(s)d\hat{\tilde{w}}_t(s)=
$$

$$
= \mathbb{E}_{Q_{t,u}} \psi(w(t)) \int_0^t g(s) d\tilde{w}_t(s) - \mathbb{E}_{Q_{t,u}} \psi(w(t)) \int_0^t g(s) \nabla \log \alpha(t-s, w(s)) ds =
$$

\n
$$
= \alpha(t, u)^{-1} \Big(\mathbb{E}_{Q_u} 1_{\tau > t} \psi(w(t)) \int_0^t g(s) d\tilde{w}_t(s) -
$$

\n
$$
- \mathbb{E}_{Q_u} 1_{\tau > t} \psi(w(t)) \int_0^t g(s) \nabla \log \alpha(t-s, w(s)) ds \Big) =
$$

\n
$$
= \alpha(t, u)^{-1} \Big(\int_0^t \mathbb{E}_{Q_u} 1_{\tau > s} \nabla T_{t-s}^k \psi(w(s)) g(s) ds -
$$

\n
$$
- \int_0^t \mathbb{E}_{Q_u} 1_{\tau > s} T_{t-s}^k \psi(w(s)) g(s) \nabla \log \alpha(t-s, w(s)) ds \Big) =
$$

\n
$$
= \alpha(t, u)^{-1} \int_0^t \mathbb{E}_{Q_u} 1_{\tau > s} \Big(\nabla T_{t-s}^k \psi(w(s)) - T_{t-s}^k \psi(w(s)) \nabla \log \alpha(t-s, w(s)) \Big) g(s) ds =
$$

\n
$$
= \int_0^t \frac{\alpha(s, u)}{\alpha(t, u)} \mathbb{E}_{Q_{s,u}} \alpha(t-s, w(s)) \nabla \widetilde{T}_{t-s}^k \psi(w(s)) g(s) ds.
$$

The equality [\(4.12\)](#page-6-0) is proved.

References

[1] Cameron, R. H., Martin, W. T.: The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals, Ann. of Math. 48, no. 2 (1947) 385–392.

 \Box

- [2] Dorogovtsev, A. A.: Conditioning of Gaussian functionals and orthogonal expansion, Theory of Stoch. Proc. 13 (29) no. 3 (2007) 29–37.
- [3] Dorogovtsev, A. A.: Krylov–Veretennikov expansion for coalescing stochastic flows, Commun. Stoch. Anal. 6, no. 3 (2012) 421–435.
- [4] Dorogovtsev, A. A., Riabov, G. V.: Transformations of the Wiener Measure and Orthogonal Expansions, submitted to Infinite Dimensional Analysis, Quantum Probability and Related Topics.
- [5] Itô, K: Multiple Wiener integral, *J. Math. Soc. Japan* 3 (1951) 157–169.
- [6] Krylov, N. V., Veretennikov, A. Ju.: Explicit formulae for the solutions of stochastic equations (in Russian), Mat. Sb. 100, no. 2 (1976), 266–284.
- [7] Le Jan, Y., Raimond, O.: Flows, coalescence and noise, Ann. Probab. 32, no. 2 (2004) 1247–1315.
- [8] Nualart, D.: The Malliavin Calculus and Related Topics, Springer-Verlag, Berlin, Heidelberg, 2006.
- [9] Port, S. C., Stone, Ch. J.:Brownian Motion and Classical Potential Theory, Academic Press, New York, 1978.
- [10] Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin, Heidelberg, 1999.
- [11] Riabov, G. V.: Itô-Wiener expansion for functionals of the Arratia's flow n−point motion, Theory of Stoch. Proc. 19 (35) no. 2 (2014) 64–89.
- [12] Tsirelson, B. S.: Nonclassical stochastic flows and continuous products, Probab. Surv. 1 (2004) 173–298.