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Abstract

We consider a class of measures absolutely continuous with respect to the distribution
of the stopped Wiener process w(· ∧ τ). Multiple stochastic integrals, that lead to the
analogue of the Itô-Wiener expansions for such measures, are described. An analogue of
the Krylov-Veretennikov formula for functionals f = ϕ(w(τ)) is obtained.
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1 Introduction

Let {w(t)}t≥0 be a standard Wiener process in R
d, starting from the point u ∈ R

d.

Consider an open connected set G ∋ u, the exit time

τ = inf{t > 0 : w(t) 6∈ G},

and a Borel function ρ : Rd → (0, 1).
The main object of the investigation in the present paper is the orthogonal structure

of the space L2(Ω, σ(w(· ∧ τ)), Q), where the measure Q is given by the density

dQ

dP
=

1τ<∞ρ(w(τ))

E1τ<∞ρ(w(τ))
.

In [11, L. 2.4] it was proved that the space L2(Ω, σ(w(·∧τ)), Q) possesses an orthogonal
structure similar to the Itô-Wiener decomposition in the Gaussian case [1, 5, 8]. Namely,
consider functions

β(v) = E1τ(w−u+v)<∞ρ(w(τ(w − u+ v)− u+ v)), v ∈ G,

α(s, v) = β−1(v)E1s<τ(w−u+v)<∞ρ(w(τ(w − u+ v)− u+ v)), s > 0, v ∈ G,

and processes

w̃(s) = w(s ∧ τ)−

∫ s∧τ

0

∇ log β(w(r))dr, s ≥ 0;

ˆ̃wt(s) = w̃(s)−

∫ s∧τ

0

∇ logα(t− r, w(r))dr, 0 ≤ s ≤ t.
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Theorem 1.1. [11, L. 2.4] Each random variable f ∈ L2(Ω, σ(w(·∧τ)), Q) can be uniquely
represented as a series of pairwise orthogonal stochastic integrals

f =
∞∑

n=0

∫
. . .

∫

0<t1<...<tn<τ

an(t1, . . . , tn)d ˆ̃wtn(t1) . . . d ˆ̃wtn(tn−1)dw̃(tn). (1.1)

Conversely, given a sequence of Borel functions an : (0,∞)n → R
dn, n ≥ 0, such that

∞∑

n=0

∫
. . .

∫

0<t1<...<tn

α(tn, u)|an(t1, . . . , tn)|
2dt1 . . . dtn <∞,

the series in the right-hand side of (1.1) converges in L2(Ω, σ(w(· ∧ τ)), Q), and its sum
f satisfies

Ef 2 =

∞∑

n=0

∫
. . .

∫

0<t1<...<tn

α(tn, u)|an(t1, . . . , tn)|
2dt1 . . . dtn.

In this paper we derive the explicit form of the expansion (1.1) for random variables
of the kind f = ϕ(w(τ)). The resulting formula is similar to the well-known Krylov-
Veretennikov formula [6]. It is written in terms of the transition semigroup {T k

t }t≥0 of a
certain diffusion, killed at the boundary of G. Indeed, the process w̃ is a stopped Wiener
process relatively to the measure Q [11, L. 2.4]. Respectively, the initial Wiener process w
is a diffusion process relatively to the measure Q. Then {T k

t }t≥0 is the transition semigroup
of the process w killed at the boundary of G. Let T denote the integration with respect
to the exit distribution of w from G (precise expressions for these operators are given in
the section 2). The main result of the present paper is the following formula, proved in
the theorem 2.1:

for every random variable ϕ(w(τ)) ∈ L2(Ω, σ(w(· ∧ τ)), Q) the expansion (1.1) has the
form

ϕ(w(τ)) =

∞∑

n=0

∫
. . .

∫

0<t1<...<tn

α(tn, u)
−1

(
T k
t1
α(t2 − t1, ·)∇

(
α(t2 − t1, ·)

−1T k
t2−t1

)
. . .

α(tn − tn−1, ·)∇
(
α(tn − tn−1, ·)

−1T k
tn−tn−1

)
∇Tϕ

)
(u)d ˆ̃wtn(t1) . . . d ˆ̃wtn(tn−1)dw̃(tn).

(1.2)

Expansions of the kind (1.1) appeared in [4] in connection with the problem of studying
the behaviour of Gaussian measures under nonlinear transformations. Such expansions
have two main features:

1. the summands in (1.1) are pairwise orthogonal;

2. the summands in (1.1) are σ(w(· ∧ τ))−measurable.

Of course, there are other possibilities to organize series expansions for random variables
from L2(Ω, σ(w(· ∧ τ)), Q). For simplicity, consider the case Q = P. The most straightfor-
ward approach comes from the obvious inclusion σ(w(· ∧ τ)) ⊂ σ(w). It means that each
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random variable f ∈ L2(Ω, σ(w(·∧τ)),P) possesses an Itô-Wiener expansion with respect
to the Wiener process w :

f =

∞∑

n=0

∫
. . .

∫

0<t1<...<tn

bn(t1, . . . , tn)dw(t1) . . . dw(tn). (1.3)

The summands in the expansion are not σ(w(· ∧ τ))−measurable. While the left-hand
side of (1.3) is σ(w(· ∧ τ))−measurable, one can condition (1.3) with respect to w(· ∧ τ)
and get another expansion

f =
∞∑

n=0

∫
. . .

∫

0<t1<...<tn<τ

bn(t1, . . . , tn)dw(t1) . . . dw(tn). (1.4)

Now the stochastic integrals of different degree are not orthogonal. This causes known
inconveniences: the expansion (1.4) is not unique (an example is given in [4]); the con-
ditions for the expression in the right-hand side of (1.4) to converge are complicated.
An application of the Gram-Shmidt orthogonalization procedure to expansions (1.4) was
considered in [2]. However, in our framework it seems to be too complicated either to
obtain the orthogonalized form of (1.4), or to find the orthogonalized expansion (1.4) for
a concrete random variable f. The expansion (1.1) overcomes all these problems.

Motivation for the σ(w(· ∧ τ))−measurability of the summands in (1.1) comes from
B. S. Tsirelson’s theory of black noise. It is well-known that Brownian coalescing flows
produce filtrations with trivial Gaussian parts [12, 7]. So, to get a unified description
of functionals measurable with respect to such flows, it is reasonable to use the noise
generated by the flow itself. The results from [4, 11] show that this idea works: in [4] an
orthogonal expansion of the kind (1.1) was obtained for the stopped Brownian motion; in
[11] the same was done for the n−point motions of the Arratia flow. We refer to [4, 11]
for the detailed discussion of this and related questions.

Generalization of the Krylov-Veretennikov formula to the wide class of dynamical
systems driven by the additive Gaussian noise was obtained in [3]. Our formula (2.7) is
similar to the one obtained in [3] despite the additional multipliers α. They occure to
normalize operators T k

t , as T
k
t 1 = α(t, ·).

The article is organized in the following way. In the section 2 we introduce all the
needed notions and constructions. Also, it contains the reduction of the main theorem
2.1 to lemmata 2.1 and 2.2. Sections 3 and 4 are devoted to the proof of these auxiliary
results.

2 Notations and Main Results

To formulate our results, we will use the following notations.
{w(t)}t≥0 is the Wiener process in R

d. Without loss of generality, we will assume that
w is constructed in a canonical way:

Ω = C([0,∞),Rd) is a space of continuous functions equipped with a metric of uniform
convergence on compacts;
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F is the Borel σ−field on Ω;
w(t, ω) = ω(t) is the canonical process on (Ω,F), Ft = σ(w(s) : 0 ≤ s ≤ t) is the

natural filtration of w;
(Pv)v∈Rd is a family of probability measures on (Ω,F), such that relatively to Pv, w is

a d−dimensional Wiener process starting from v. The expectation with respect to certain
probability measure Q on (Ω,F) will be denoted by EQ. EPv

will be abbreviated to Ev.

Let G ⊂ R
d be an open connected set, τ be the exit time of w from the set G :

τ = inf{t > 0 : w(t) 6∈ G}.

We will assume that for all v ∈ G, Pv(τ < ∞) > 0. Fix a Borel function ρ : Rd → (0, 1)
and consider the function

β(v) = Ev1τ<∞ρ(w(τ)), v ∈ G.

It is a harmonic function in G [9, Ch. 4, Prop. 2.1]:

∆vβ(v) = 0, v ∈ G.

Denote Qu the probability measure on (Ω,F), defined via the density

dQu

dPu

= β(u)−11τ<∞ρ(w(τ)).

We will need another probability measure corresponding to the process w killed at the
moment τ. Consider the function

α(s, v) = Qv(τ > s), s > 0, v ∈ G.

In the section 1 following processes were introduced.

w̃(s) = w(s ∧ τ)−

∫ s∧τ

0

∇v log β(w(r))dr, s ≥ 0; (2.5)

ˆ̃wt(s) = w̃(s)−

∫ s∧τ

0

∇v logα(t− r, w(r))dr, 0 ≤ s ≤ t. (2.6)

Throughout the paper derivatives will be taken in v ∈ G, so we will omit the index v in
the derivatives’ notation.

Consider a probability measure Qt,u on (Ω,Ft), defined via the density

dQt,u

dQu

= α(t, u)−11τ>t.

The key observation leading to the theorem 1.1 is that on the probability space (Ω,Ft, Qt,u)
the process ˆ̃wt is a Wiener process [10, Ch. VIII, Th. (1.4)].

Introduce following operators:
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1. Tψ(v) = Ev1τ<∞ρ(w(τ))ψ(w(τ)), v ∈ G.

Denote µv the distribution of w(τ) relatively to the measure 1τ<∞dPv. Then the
action of the operator T reduces to the integration with respect to µv :

Tψ(v) =

∫
ψ(x)µv(dx).

2. T̃ ψ(v) = β(v)−1Tψ(v), v ∈ G.

The operator T̃ is the expectation relatively to the probability measure Qv :

T̃ ψ(v) = EQv
ρ(w(τ)).

3. T k
s ψ(v) = EQv

1τ>sψ(w(s)), s > 0, v ∈ G.

From equations (2.5), (2.6) it follows that

dw(s) =
(
∇ logα(t− s, w(s)) +∇ log β(w(s))

)
ds+ d ˆ̃w(s),

where ˆ̃w is a Wiener process on (Ω,Ft, Qt,u). So, relatively to the measure Qt,u

the process w satisfies (degenerate) SDE. Respectively, {T k
t }t≥0 is the transition

semigroup of a killed diffusion process w. Denote µs,v the distribution of w(s)
relatively to the measure 1τ>sdQv. Then the action of the operator T k

s reduces to
the integration with respect to µs,v :

T k
s ψ(v) =

∫
ψ(x)µs,v(dx).

4. T̃ k
s ψ(v) = α(s, v)−1T k

s ψ(v), s > 0, v ∈ G.

The operator T̃ k
s is the expectation relatively to the probability measure Qs,v :

T̃ k
s ψ(v) = EQs,v

ψ(w(s)).

The following theorem is the main result of the paper.

Theorem 2.1. For every ϕ ∈ L2(ρdµu) the expansion (1.1) has the form

ϕ(w(τ)) =
∞∑

n=0

∫
. . .

∫

0<t1<...<tn

α(tn, u)
−1

(
α(t1, ·)T̃

k
t1
α(t2 − t1, ·)∇T̃

k
t2−t1

. . .

α(tn − tn−1, ·)∇T̃
k
tn−tn−1

∇T̃ ϕ

)
(u)d ˆ̃wtn(t1) . . . d ˆ̃wtn(tn−1)dw̃(tn).

(2.7)

The proof is divided into two lemmas, which are proved in the next sections. At first
we derive the Clark representation for ϕ(w(τ)) with respect to the stopped Wiener process
w̃ [10, Ch. V, Th. (3.5)]
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Lemma 2.1. For every ϕ ∈ L2(ρdµu), one has the representation

ϕ(w(τ)) = T̃ ϕ(u) +

∫ τ

0

∇T̃ϕ(w(t))dw̃(t), Qu − a.s. (2.8)

Subsequently, we find the Itô-Wiener expansion for the random variable ψ(w(t)) with
respect to the Wiener process ˆ̃w.

Lemma 2.2. For every ψ ∈ L2(µt,u) the Itô-Wiener expansion of ψ(w(t)) has the form

ψ(w(t)) =
∞∑

n=0

∫
. . .

∫

0<t1<...<tn<t

α(t, u)−1

(
α(t1, ·)T̃

k
t1
α(t2 − t1, ·)∇T̃

k
t2−t1

. . .

α(t− tn, ·)∇T̃
k
t−tn

ϕ

)
(u)d ˆ̃wt(t1) . . . d ˆ̃wt(tn).

(2.9)

The theorem 2.1 follows by substituting ψ = ∇T̃ϕ in (2.9) and inserting the right-hand
side of (2.9) into (2.8).

3 Clark Representation Formula with respect to the

Measure Qu. Proof of the Lemma 2.1

Proof. 1) At first we will prove that the function T̃ ϕ is smooth and satisfies the equation

(∇T̃ϕ,∇ log β) +
1

2
∆T̃ ϕ = 0 (3.10)

in G. Indeed,

T̃ ϕ(v) =
Ev1τ<∞ρ(w(τ))ϕ(w(τ))

β(v)
(3.11)

is the ratio of two harmonic functions [9, Ch. 4, Th. 3.7] (for the numerator the condition
ϕ ∈ L2(ρdµu) is used). The equation (3.10) is checked by straightforward calculation.

2) We will prove the relation (2.8) for bounded and continuous functions ϕ and ρ, the
other cases being covered by the usual limiting procedure. Let {Gn}n≥1 be a sequence of
open relatively compact sets, such that Gn ⊂ G and G =

⋃∞

n=1Gn. Denote τn be the exit
time from Gn :

τn = inf{t ≥ 0 : w(t) 6∈ Gn}.

The convergence τn → τ, n→ ∞, holds.
From the relation (2.5) it follows that the stopped process w(· ∧ τn) satisfies the SDE

dw(s) = ∇ log β(w(s))ds+ dw̃(s), 0 ≤ s ≤ τn.

Applying the Itô formula to the function T̃ ϕ and the process w(· ∧ τn), and using (3.10),
one gets the representation

T̃ ϕ(w(τn)) = T̃ ϕ(u) +

∫ τn

0

∇T̃ ϕ(w(s))dw̃(s), Qu − a.s.
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It remains to check that T̃ ϕ(w(τn)) → T̃ ϕ(w(τn)). As the function ϕ is bounded, one has

sup
n≥1

∫ ∞

0

Eu1τn>s(∇T̃ ϕ(w(s)))
2ds <∞.

Now, the convergence τn → τ, n→ ∞, implies the convergence

∫ τn

0

∇T̃ ϕ(w(s))dw̃(s)
L2(Qu)
−−−−→

∫ τ

0

∇T̃ ϕ(w(s))dw̃(s), n→ ∞.

It remains to check that T̃ ϕ(w(τn)) → ϕ(w(τ)), n→ ∞. By [9, Ch. 4, Th. 2.3] the point
w(τ) is the regular point for the Dirichlet problem on G. The needed convergence follows
from the representation (3.11).

4 The Krylov-Veretennikov Formula. Proof of the

Lemma 2.2

Proof. The kernels an in the expansion

ψ(w(t)) =
∞∑

n=0

∫
. . .

∫

0<t1<...<tn<t

an(t1, . . . , tn)d ˆ̃wt(t1) . . . d ˆ̃wt(tn)

will be recovered from the expression

EQt,u
ψ(w(t))

∫
. . .

∫

0<t1<...<tn<t

bn(t1, . . . , tn)d ˆ̃wt(t1) . . . d ˆ̃wt(tn) =

∫
. . .

∫

0<t1<...<tn<t

α(t, u)−1

(
α(t1, ·)T̃

k
t1
α(t2 − t1, ·)∇T̃

k
t2−t1

. . . α(t− tn, ·)∇T̃
k
t−tn

ϕ

)
(u)bn(t1, . . . , tn)dt1 . . . dtn,

in which bn is a deterministic square integrable function. By induction, it is enough to
check that for any square integrable ˆ̃w−adapted process {g(s)}0≤s≤t, one has

EQt,u
ψ(w(t))

∫ t

0

g(s)d ˆ̃wt(s) =

∫ t

0

α(s, u)

α(t, u)
EQs,u

α(t− s, w(s))∇T̃ k
t−sψ(w(s))g(s)ds. (4.12)

To do it note the equalities, which follow from (2.6) and lemma 2.1

∫ t

0

g(s)d ˆ̃wt(s) =

∫ t

0

g(s)dw̃(s)−

∫ t

0

g(s)∇ logα(t− s, w(s))ds, Qt,u − a.s.,

1τ>tψ(w(t)) = T k
t ψ(u) +

∫ t∧τ

0

∇T k
t−sψ(w(s))dw̃(s), Qu − a.s.

Consequently,

EQt,u
ψ(w(t))

∫ t

0

g(s)d ˆ̃wt(s) =
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= EQt,u
ψ(w(t))

∫ t

0

g(s)dw̃t(s)− EQt,u
ψ(w(t))

∫ t

0

g(s)∇ logα(t− s, w(s))ds =

= α(t, u)−1

(
EQu

1τ>tψ(w(t))

∫ t

0

g(s)dw̃t(s)−

−EQu
1τ>tψ(w(t))

∫ t

0

g(s)∇ logα(t− s, w(s))ds

)
=

= α(t, u)−1

(∫ t

0

EQu
1τ>s∇T

k
t−sψ(w(s))g(s)ds−

−

∫ t

0

EQu
1τ>sT

k
t−sψ(w(s))g(s)∇ logα(t− s, w(s))ds

)
=

= α(t, u)−1

∫ t

0

EQu
1τ>s

(
∇T k

t−sψ(w(s))− T k
t−sψ(w(s))∇ logα(t− s, w(s))

)
g(s)ds =

=

∫ t

0

α(s, u)

α(t, u)
EQs,u

α(t− s, w(s))∇T̃ k
t−sψ(w(s))g(s)ds.

The equality (4.12) is proved.
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[11] Riabov, G. V.: Itô-Wiener expansion for functionals of the Arratia’s flow n−point
motion, Theory of Stoch. Proc. 19 (35) no. 2 (2014) 64–89.

[12] Tsirelson, B. S.: Nonclassical stochastic flows and continuous products, Probab. Surv.
1 (2004) 173–298.

9


	1 Introduction
	2 Notations and Main Results
	3 Clark Representation Formula with respect to the Measure Qu. Proof of the Lemma ??
	4 The Krylov-Veretennikov Formula. Proof of the Lemma ??

