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Abstract

We derive the cross-section for exclusive vector meson production in high energy deeply inelastic

scattering off a deuteron target that disintegrates into a proton and a neutron carrying large relative

momentum in the final state. This cross-section can be expressed in terms of a novel gluon Transi-

tion Generalized Parton Distribution (T-GPD); the hard scale in the final state makes the T-GPD

sensitive to the short distance nucleon-nucleon interaction. We perform a toy model computation

of this process in a perturbative framework and discuss the time scales that allow the separation

of initial and final state dynamics in the T-GPD. We outline the more general computation based

on the factorization suggested by the toy computation: in particular, we discuss the relative role of

“point-like” and “geometric” Fock configurations that control the parton dynamics of short range

nucleon-nucleon scattering. With the aid of exclusive J/Ψ production data at HERA, as well as

elastic nucleon-nucleon cross-sections, we estimate rates for exclusive deuteron photo-disintegration

at a future Electron-Ion Collider (EIC). Our results, obtained using conservative estimates of EIC

integrated luminosities, suggest that center-of-mass energies sNN ∼ 12 GeV2 of the neutron-proton

subsystem can be accessed. We argue that the high energies of the EIC can address outstanding

dynamical questions regarding the short-range quark-gluon structure of nuclear forces by providing

clean gluon probes of such “knockout” exclusive reactions in light and heavy nuclei.
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I. INTRODUCTION

The finite range of the strong force ensures that the nucleon-nucleon interaction plays

a vital role in the structure of atomic nuclei. There is a spatial separation of the nucleon-

nucleon potential into three parts which is often captured in distinct theoretical treatments.

The long range part of the nuclear force is described by pion exchange, and is well un-

derstood within the framework of effective field theories. At shorter distances, two pion

exchange, tensor interactions, and vector meson exchange contributions become important,

which are harder to capture in the framework of effective field theories. At short distances,

the nucleon-nucleon interaction has a strong repulsive core, which is essential for the stability

of matter. There has been much recent progress from lattice gauge theory in first principles

simulations of the nucleon-nucleon potential [1]. Because the virtuality of the exchanged

particles at short distances is large, it is natural to consider to what extent the short dis-

tance contributions to nucleon-nucleon scattering can be described directly in terms of the

fundamental quark and gluon degrees of freedom in Quantum Chromodynamics (QCD).

There has been a significant amount of work in trying to understand short-range contri-

butions to nucleon-nucleon (NN) collisions using quark and gluon degrees of freedom. For a

nice recent review, we refer the reader to Ref. [2] and references therein. The interest in short

range nucleon-nucleon correlations has been rekindled by the discovery at Jefferson Lab of

the strong dominance of short range proton-neutron correlations over neutron-neutron and

proton-proton correlations [3] based on expectations from quark-gluon dynamics anticipated

over two decades ago [4]. Remarkably the systematics of such short range correlations appear

to be empirically correlated with nuclear modifications termed the EMC effect that were first

observed in deeply inelastic scattering (DIS) experiments by the European Muon Collabo-

ration [5–8]. It has also been argued that such short range nuclear forces, and their parton

interpretation in particular, have significant implications for the neutron star equation of

state [9, 10].

In this paper, we will address the possibility that a high luminosity, high energy, electron-

ion collider (EIC) can provide novel information on short range nucleon-nucleon interactions.

The construction of such a machine is a prominent recommendation of the Nuclear Physics

community in their recent Long Range Plan [11]. Detailed discussions of the science case

for such a machine in either the US or at CERN can be found in [12–14]; a brief overview

can be found in [15]. In all EIC proposals, Bjorken x < 10−2 and momentum transfer
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squared Q2 ≥ 10 GeV2 will be achieved for light and heavy nuclei. This high energy

kinematics allows for a clean separation of the current fragmentation region of the virtual

photon projectile from the fragmentation region of the nuclear target. In particular, in

diffractive processes where no net color charge is exchanged between the current and nuclear

fragmentation regions, the quark and gluon degrees of freedom from the former can cleanly

probe relatively low energy nucleon-nucleon interactions in the latter. The precise kinematics

of such experiments, the ability to vary the size and nature of the probe, and the availability

of a range of nuclear targets (including polarized light nuclei) have the potential to open

up a new window into the parton structure of nuclear forces. It is therefore a problem of

considerable interest to estimate whether the rates necessary for a comprehensive study of

the nuclear fragmentation region can be achieved with the luminosities projected for an EIC.

The peak luminosities are estimated to be a hundred to a thousand times larger than the

peak luminosity for electron-proton DIS at the HERA collider.

We will consider here, for specificity, the exclusive process e +D −→ e + J/Ψ + n + p,

namely, the electroproduction of J/Ψ mesons in coincidence with a proton and a neutron

produced with relative transverse momenta of a GeV or larger from the disintegration of the

struck deuteron. The exclusive electroproduction of heavy quarkonia has long been known

to be a sensitive probe of the QCD degrees of freedom in a hadronic target. The hard scale

introduced by the mass of a heavy vector meson like the J/ψ ensures that the process is

sensitive to short-distance physics, and is therefore perturbatively calculable [16–18]. Real

or virtual photon-hadron scattering in Regge kinematics, in which the center-of-mass energy
√
s is much larger than any other kinematic scale, is characterized by the fluctuation of the

photon into a quark-antiquark dipole which then scatters from the target by exchanging

gluons [19–22]. Thus the exclusive production of heavy vector mesons is directly sensitive

to the gluon distribution in the target state [17, 23, 24]. When the diffractive gluon ex-

change transfers net momentum to the hadronic target, the process couples the dipole to

the generalized parton distribution (GPD) Hg of gluons (see for instance the review [25]);

when the target is a proton, in the forward limit, the dipole couples to the integrated gluon

distribution xG(x,Q2) [17, 23, 24].

The above-mentioned “dipole picture” works because (in Regge kinematics) there is a

separation of multiple scales between the physics of the projectile and the physics of the

deuteron target. It is important that the virtual momentum squared of the photon Q2, or

equivalently, the invariant mass of the vector meson that the quark-antiquark pair hadronizes

4



into, be very large compared to the intrinsic QCD scale. Then the transverse dipole size

is small enough that two-gluon exchange in a color-singlet “pomeron” configuration is the

dominant process in the scattering off the deuteron target. Furthermore, in a co-moving

frame with the dipole, the time scale over which this exchange occurs is nearly instantaneous

because the target is Lorentz-contracted to a scale which is suppressed by the DIS center-

of-mass energy. As a consequence of these short times, the two gluons exchanged with

the target can probe a number of Fock configurations of the deuteron bound state whose

lifetimes are relatively large. What is novel about the particular kinematics we consider

is that the outgoing proton and neutron have large relative transverse momenta and are

therefore sensitive to the short-range components of these Fock configurations.

The interaction of the two gluons with the deuteron target can be expressed most generally

in terms of a novel gluon Transition Generalized Parton Distribution (T-GPD). This object is

the expectation value of an operator corresponding to the product of the color field strengths

of the two gluons1 acting on the Fock state of the deuteron on one side and the product of the

proton and neutron Fock states on the other. Because the probability that the deuteron can

be found in a two-nucleon configuration is significant on the time scale of the gluon exchange,

in this case the T-GPD reduces to the two-gluon exchange operator sandwiched between

the product of the nucleon states and is therefore much closer in spirit to the usual GPD

distribution [25]. A significant difference is that the former now depends on two momentum

transfer scales; one momentum scale comes from the projectile (T = ∆2), the square of

the four momentum transferred to the vector meson, and the new scale t = (p′1 − p)2, the

square of the four-momentum transferred to the struck nucleon, is contained wholly within

the target. The T-GPD therefore tells us about the short distance structure of the target

when t is large.

When the final-state proton and neutron have low relative transverse momentum (less

than or of the order of the typical Fermi momentum they possess in the deuteron bound

state) the leading-order process corresponds to the two gluons being exchanged with either

the proton or the neutron; the other nucleon acts a spectator, albeit it may exchange soft

gluons with the other nucleon. But if one detects the final-state nucleons with larger pT

than the momentum transfer T from the projectile dipole, p2T ≫ |T |, this extra transverse

momentum must have originated from the interactions between the nucleons themselves.

If this momentum is perturbatively large, p2T ≫ Λ2
QCD (where ΛQCD is the intrinsic QCD

1 As we will elaborate, these are dressed with “gauge links” to ensure the operator is gauge invariant.
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scale), the nucleon-nucleon interaction should be mediated by quark and gluon degrees of

freedom.

Despite the high energy
√
s of the γD system, the center-of-mass energy of the interacting

nucleons is much lower: sNN ∼ 4p2T . In such events, the disintegration of the deuteron is

sensitive to the nucleon-nucleon scattering amplitude at these lower energy scales. One is

therefore using very high energy DIS to probe nucleon-nucleon interactions at much lower

energies, sNN ≪ s.

A further interesting possibility suggested by diffractive DIS at an EIC is the potential

to distinguish between differing parton models of the elastic nucleon-nucleon scattering as

a function of sNN . One such model is the “geometric” or “independent quark scattering

model” whereby collinear quarks from one nucleon each individually exchange a gluon with

a quark from the other nucleon. Another is a “point-like scattering model,” in which all the

valence quarks of the colliding nucleons participate in a single short-distance hard scattering.

From perturbative power counting, the former “Landshoff” mechanism [26] predicts cross-

sections which fall as s−8
NN , while the latter “quark counting” mechanism [27, 28] predicts

that the cross-sections should fall as s−10
NN . This latter dependence is what is seen in data,

albeit significant differences are seen at low values of sNN .

The energy dependence of the nucleon-nucleon interaction, as extracted in diffractive

DIS, could add a different twist to this picture; due to the external gluon probe, the power

counting may differ from that extracted in nucleon-nucleon elastic scattering. For instance,

there are both color-singlet as well as color-octet Landshoff exchanges feasible in the deuteron

disintegration process. Further insight into such parton-based mechanisms of short-range

correlations is highly likely at an EIC because, as we will show, the rates estimated for the

exclusive deuteron photo-disintegration are very sensitive to the energy dependence of the

nucleon-nucleon cross-section. The potential of the EIC to polarize light nuclei will add

equally important insight to the study of spin dependent nucleon-nucleon interactions – we

leave such a study for future work.

The deuteron can also in principle fluctuate into exotic “hidden color” bound color octet-

color octet configurations which the instantaneous gluon exchanges with the projectile are

capable of resolving [29, 30]. The hidden color nucleons can be liberated if struck by hard

back-to-back gluons from the projectile dipole, projecting them onto back-to-back nucleons

in the final state with a characteristic transverse momentum dependence. While a very

intriguing possibility, this mechanism to directly access hidden color configurations breaks
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the factorization between projectile and target. In a parallel investigation, we nevertheless

estimated the rates for such hidden color states; we find these to be prohibitively small even

at the high luminosities of EIC. It is conceivable though that other similar channels to access

such states may exist.

This paper is organized as follows. In Section II, we will begin with an outline of the kine-

matics of an EIC and why they may be favorable to elucidate key aspects of the short range

structure of nuclear forces. We will then discuss quarkonium production in the kinematics

of high energy DIS. As a warmup, we will first consider exclusive J/Ψ production off the

proton before generalizing our results to the deuteron case. In particular, we will obtain an

explicit expression for the cross-section for the exclusive electroproduction of vector mesons

off a deuteron target accompanied by the breakup of the deuteron. When either the pho-

ton virtuality or vector meson mass is a hard scale, the result is proportional to the gluon

T-GPD. We will compare and contrast this object with the GPD probed in the proton case

and argue that, if the proton and neutron fly off back-to-back, each with pT ≫ ΛQCD, the

T-GPD extracted from experiments at the EIC will contain novel information about short

range nucleon-nucleon interactions.

In Section III, we will discuss the simplifications of this T-GPD that occur when there

is a large relative momentum between the proton and the neutron. In this case, a factor-

ization appears to occur between the nonperturbative wavefunction of the deuteron and the

final state interactions between the neutron and the proton. We shall perform an explicit

“toy model” computation (with the proton and the neutron replaced by valence quarks)

that explicitly illustrates this factorization and establishes a baseline for semi-quantitative

estimates for the photo-disintegration cross-section. We will next discuss how the toy model

computation generalizes to the realistic case. The issues are strongly related to the exten-

sive literature on large angle nucleon-nucleon scattering and the insight they provide on

the parton configurations contributing to short range nuclear forces. We will exploit these

lessons to make an ansatz for the cross-section for exclusive J/Ψ photo-disintegration of the

deuteron: the result can be expressed as the product of the deuteron wavefunction times the

cross-section for exclusive photo-production of J/Ψ mesons off the proton times the elastic

nucleon-nucleon cross-section.

In Section IV, we will use the results of the previous section to estimate the rates for

this process at an EIC. We find, for conservative estimates of the EIC luminosity, that rates

comparable to those used to extract the precise HERA data on exclusive photo-production
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of J/Ψ can be achieved for center-of-mass energies of the proton-nucleon subsystem of up

to sNN ∼ 12 GeV2. The extension of the cross-section out to significantly higher sNN

with increasing luminosity will be be challenging if the energy dependence of the cross-

section is close to those measured in nucleon-nucleon scattering. Nevertheless, the range

covered should be sufficient to provide considerable insight into the transition from hadron

to parton degrees of freedom in the description of short range nuclear forces. We conclude

with a discussion of open issues and prospects for future work. Appendix A contains some

details of the deuteron wavefunction employed in our estimates.

II. EXCLUSIVE J/Ψ PRODUCTION IN HIGH-ENERGY DIS

We will begin our discussion in Section II.1 by considering the relevant parameters at an

EIC for the process of interest. We will then in Section II.2 derive the well-known expression

for exclusive J/Ψ production in high-energy DIS off the proton. In light-front perturbation

theory (LFPT) the natural separation of time scales is made explicit, whereby the scattering

amplitude can be factorized into the amplitude of the virtual or real photon to fluctuate

into a quark-antiquark pair which is relatively long lived, and the amplitude of the dipole

to scatter off the target nucleus before recombining into the heavy quarkonium state. The

latter time scale is much longer than the time scale of the interaction of the elastic scattering

of the quark-antiquark pair off the target. We will show that the forward matrix element

of the quark-antiquark interaction with the target is proportional to a generalized parton

distribution (GPD).

In Section II.3, we will extend our analysis to the problem of interest: the exclusive

production of J/Ψ in DIS off the deuteron, accompanied by the proton and neutron that are

produced back-to-back. We will compute the cross-section and show that, in analogy to the

proton case, it is proportional to a novel gluon Transition Generalized Parton Distribution

(T-GPD). As with the discussion of the separation of the time scales in the dipole projectile,

we will argue that a similar factorization of time scales occurs in the T-GPD of the target

when the relative transverse momentum of the final state proton and the neutron is large.

In this case, the T-GPD can be factorized into the deuteron wavefunction convoluted with

a matrix element that is sensitive to the parton structure of the short-range nuclear force.

8



II.1. Insights into Nuclear Structure from an EIC

At a future electron-ion collider (EIC) project in the US [13], high-energy electrons will

collide with nuclei at center-of-mass energies around
√
s ∼ 100 GeV/nucleon; significantly

higher energies will be feasible with the proposed LHeC collider [14]. In this work, for

specificity, we will make estimates for EIC alone; these can easily be extended to studies

with LHeC kinematics. High rates of J/ψ production occur when the virtuality Q2 becomes

small, approaching the photoproduction limit as Q2 → 0. In this regime, the EIC will access

values of x below ∼ 10−3, well into the domain of Regge kinematics x≪ 1.

The diffractive J/ψ photoproduction cross-section is a steeply falling function of the

exchanged momentum |T |, so it is advantageous to look for events in which the J/ψ is

produced with fairly low transverse momentum (relative to the photon) of a few hundred

MeV or so. Events of this class have already been observed on proton targets at HERA [31]

with adequate statistics. Since an EIC would have a luminosity orders of magnitude higher

(∼ 1033−34 cm−2s−1 compared to the peak luminosity ∼ 1031 cm−2s−1 at HERA), low-pT

diffractive J/ψ photoproduction should be relatively easy to observe at an EIC.

The high-pT disintegration of the deuteron in the process of interest here, γ + D →
J/ψ + p + n, only occurs in a subset of the diffractive events. To isolate it, an additional

cut on the pT of the detected nucleons must be imposed: the nucleons should emerge nearly

back-to-back, with pT much larger than the T -channel momentum seen in the J/ψ. In this

regime, an additional nucleon-nucleon (NN) scattering must have occurred, with a relative

center-of-mass energy squared set by the transverse momentum sNN ∼ 4p2T . If the nucleon pT

is larger than a GeV or so, then the NN rescattering takes place over “perturbatively” short

distances where it should be mediated by quark and gluon degrees of freedom. These events

are rarer than the diffractive J/ψ photoproduction events observed at HERA. However

because of the increase in luminosity at an EIC, they may be measured with reasonable

statistics. We will explore this question quantitatively in Sec. IV.

The study of the final state proposed here utilizes the interplay of several scales - hard

and soft - to access the NN interaction in a novel way:

s
(∼ 100 GeV )2

≫ p2T
(∼ 1 GeV )2

≫ |T |
(∼ few 100 MeV )2

M2
J

(∼ 3 GeV )2
≫ Λ2

QCD
(∼ 200MeV )2

. (1)

The photon-deuteron center-of-mass energy
√
s is the hardest scale in the process. It ensures
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that the projectile-deuteron interaction is effectively instantaneous, providing a snapshot of

the deuteron wave function. The mass MJ of the J/ψ is another hard scale which makes

the instantaneous diffractive exchange calculable within perturbative QCD (pQCD). The

invariant momentum transfer |T | between the projectile and the deuteron is a soft scale which

maximizes the diffractive cross-section. The nucleon recoil momentum pT is an intermediate

scale; it is hard enough to guarantee that the nucleons emerge back-to-back (and that the

rescattering is perturbative), yet still small relative to the center-of-mass energy.

Thus the EIC, a machine designed to access high-energy nuclear physics at energies on the

order of
√
s/A ∼ 100 GeV, can also be used to study physics relevant for nuclear structure at

much lower energies
√
sNN ∼ few GeV. This convergence of nuclear physics from both sides

of the energy spectrum provides an opportunity to learn unique information about the NN

potential at short distances and is wholly complementary to the conventional approaches

which measure NN scattering directly. We only consider unpolarized scattering here; similar

exclusive processes off polarized light nuclei will offer additional unique opportunities to

explore the spin-dependent nature of such short range correlations.

II.2. Dipole picture of heavy quarkonium production in high energy DIS off the

proton

Photon-hadron scattering in Regge kinematics (small-x) is intuitively described in terms

of the infinite-momentum scattering formalism of [32, 33]. For an ultrarelativistic system

moving along the x+ axis 2 , one quantizes the theory at a fixed x+. The resulting light-front

perturbation theory (LFPT) [32–36] corresponds to “old-fashioned” time-ordered perturba-

tion theory where x+ plays the role of time and the light-front momentum operator p− = H−

plays the role of the Hamiltonian. In the infinite momentum limit, the interaction of the

high energy projectile with the target is nearly instantaneous (δx+Int ∝ 1√
s
), providing a

“snapshot” of the configuration of the target occurring at a light front time we define to

be x+ ≡ 0+. Then the scattering matrix of the high-energy projectile consists of “time”

evolution from x+=−∞+ to 0+, an instantaneous eikonal scattering in the field A−a of the

target and the “time” evolution from x+= 0+ to +∞+ [33]:

Sfi = 〈f |P exp

(
−i
∫
dz+H−

I (z
+)

)
|i〉 , (2)

2 Light-front coordinates are defined by x± ≡
√

g+−

2

(
x0 ± x3

)
, where g+− = 1 and g+− = 2 are two

common choices of the light-front metric. Here we will use g+− = 1.
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where H−
I = H− − H−

0 is the interaction-picture Hamiltonian, with H−
0 the free-particle

Hamiltonian, and

|i〉 = |e−〉 ⊗ |D〉 ; |f〉 = |J/Ψ〉
∣∣e−
〉
⊗ |n〉 |p〉 . (3)

Defining Sfi = 〈n| 〈p| S̃fi |D〉, one can express the “projectile” S-matrix as

S̃fi = 〈J/ψ| U [+∞+, 0+] TrCP exp

[
−i
∫
d4x j+(0+, x−, x)A−a(x+, 0−, x)T a

]

× U [0+,−∞+] |γ〉 , (4)

where TrC stands for a trace over color matrices, T a are the generators of SU(Nc) in the

fundamental representation, and x ≡ (x1⊥, x
2
⊥) is a two-vector in the transverse plane. Also

j+ is the eikonal current of the high-energy quanta at the collision time x+ = 0+, and

the gluon fields A−a of the target are path-ordered P along the x+-direction. The “time”

evolution operator in the interaction picture is

U [x+f , x+i ] ≡ exp
[
iH−

0 x
+
f

]
exp

[
−iH−(x+f − x+i )

]
exp

[
−iH−

0 x
+
i

]
, (5)

and we emphasize that the gluon fields A−a, and S̃ itself, are operators which are evaluated

between the target states. The photon |γ〉 can fluctuate into one of many Fock states |X〉
before it scatters on the target,

S̃ =
∑∫

X

∑∫

X′

〈J/ψ| U [+∞+, 0+] |X′〉 〈X| U [0+,−∞+] |γ〉

× 〈X′|TrCP exp

[
−i
∫
d4x j+(0+, x−, x)A−a(x+, 0−, x)T a

]
|X〉 . (6)

Here
∑∫

X
denotes a complete sum over Fock states and integrals over their phase spaces.

The leading contribution in QED is the fluctuation of the photon into a quark-antiquark

dipole |qq̄〉 which can scatter by gluon exchange; this light-front wave function (LFWF) is

given by

ψγ→qq̄ ≡ 〈qq̄| U [0+,−∞+] |γ〉 ≈
〈qq̄| (H−

I , QED) |γ〉
p−γ − p−q − p−q̄

. (7)

Truncating the Fock space |X〉 at the quark dipole, we obtain for the S̃-matrix

S̃fi =

∫
dΩqq̄ (ψ

J/ψ→qq̄)∗ ψγ→qq̄

× 〈qq̄|TrCP exp

[
−i
∫
d4x j+(0+, x−, x)A−a(x+, 0−, x)T a

]
|qq̄〉 , (8)
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where we have similarly defined the LFWF of the J/ψ and
∫
dΩqq̄ represents an integral

over the phase space of the dipole.

In ordinary time-ordered perturbation theory, the energy denominator 1/∆E ∼ ∆t is a

direct measure of the lifetime ∆t of a virtual fluctuation, allowing a clear physical interpreta-

tion of the process. The same is true of LFPT, with ∆x+ and ∆p− playing analogous roles.

For example, for J/ψ electroproduction, there are three relevant time scales: the lifetime

∆x+qq̄ of the qq̄ pair, the formation time ∆x+J of the J/ψ, and the duration of the interaction

∆x+Int. Using LFPT to calculate the associated energy denominators, one readily notes a

distinct separation of time scales [23]:

∆x+qq̄
p+qq̄

∼ O
(

1

m2
c

)
∆x+J
p+J

∼ O
(

1

M2
J

)
∆x+Int
p+tot

∼ O
(
1

s

)
, (9)

where mc is the mass of the charm quark and the subscript J refers to the J/ψ, e.g MJ

is the mass of the J/ψ. Since ∆x+J , ∆x+qq̄ ≫ ∆x+Int, the energy denominators in the qq̄

scattering matrix element off the target become independent of the long-time dynamics

in the photon and J/ψ wave functions, factorizing [18] into the on-shell dipole scattering

amplitude TrCM̃
qq̄:

M̃γ→J/ψ =

∫
dΩqq̄

(
ψJ→qq̄

)∗
TrCM̃

qq̄ ψ(γ→qq̄), (10)

where we have subtracted the noninteracting term 1 from the S̃-matrix to form the scattering

amplitude M̃γ→J/ψ.

To determine the full S-matrix in Eq. (2), one must fix the dipole scattering amplitude

on the target. As a warmup to DIS off the deuteron with disintegration into back-to-back

nucleons in the final state, we will first compute explicitly the cross-section for elastic vector

meson production on the proton, γ∗(q) + p(p) → V (q − ∆) + p(p + ∆). This process was

measured at HERA and therefore will also be relevant in our discussion of rates for the

extension to the deuteron case at the EIC.

The center-of-mass energy (squared) of the photon-proton system is s ≡ (p+ q)2, and the

invariant momentum transfer is T ≡ ∆2. We will work in the photon-proton center-of-mass

frame and choose the latter to move along the ⊕ axis with large longitudinal momentum p+

and the photon to move in the opposite direction with large longitudinal momentum q− so

that s ≈ 2p+q−. The incoming momenta of the proton and photon, respectively, are

pµ =
(
p+,

m2
N

s
q−, 0

)
qµ =

(
−x p+, q−, 0

)
, (11)
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where x ≈ Q2

s
≪ 1. The on-shell conditions for the vector meson and the proton fix the

longitudinal components of the momentum transfer ∆µ to be

∆+ = q+ − (q −∆)+ ≈ −p+ ≡ −xeff p+ ; ∆− = p′− − p− ≈
(
p′2T
s

)
q−, (12)

where xeff =
(
Q2+M2

V

s

)
and the outgoing proton momentum is p′ = p+∆,MV is the mass of

the produced vector meson, and we have neglected ∆2
T ≪ max(Q2,M2

V ). Further, p
′2
T = ∆2

T

is the transverse momentum of the scattered proton.

The production cross-section is then

dσ =
1

2s

1

4(2π)2
d2∆ d∆−

q− −∆−
d2p′ dp′+

p′+
|M |2

× δ(p+ +∆+ − p′+)δ(p− +∆− − p′−)δ2(∆− p′) . (13)

This gives dσ ≈ d2∆
(2π)2

∣∣M
2s

∣∣2; defining the invariant momentum transfer T ≡ ∆2 ≈ −∆2
T and

rescaled amplitude A ≡ M/2s to write dσ ≈ dT
4π

dφ∆
2π

|A|2, where φ∆ is the azimuthal angle

of ∆, we obtain

dσN

dT
=

1

4π

∫
dφ∆

2π
|A|2 (14)

for the cross-section for exclusive vector meson production on the nucleon.

As discussed previously, due to the separation of time scales in high energy Regge kine-

matics, manifest in LFPT, the amplitude A can be decomposed into a convolution of the light

front wave functions of the photon and vector meson with the on-shell scattering amplitude

Aqq̄N for the scattering of the quark dipole on the nucleon as

A(∆) =

∫
d2r dz

4πz(1− z)

[
∑

σσ′

ψγλσσ′(r, z)
(
ψVλ′σσ′(r, z)

)∗
]
TrC A

qq̄N(r,∆). (15)

Here r is the separation vector of the quark dipole, z is the fraction of the photon’s mo-

mentum carried by the quark, σ(σ′) are the spins of the quark (antiquark) in the dipole, λ

is the polarization of the photon, and λ′ is the polarization of the produced vector meson.

The notation TrC indicates a trace over the fundamental color representation of the dipole,

and we have used the conventions of [36] for the normalization of the wave functions and

phase space integrals. Note that in the above decomposition, we have used the fact that the

eikonal scattering of the quark-antiquark pair off the target is spin independent and helicity

conserving. We also remark that in the literature (for example, [37]) it is common to assign

a color factor
√
Nc to the wave functions so that the dipole scattering amplitude enters with

13



1
Nc
TrCA

qq̄N . We use a convention in which the color factor is contained entirely within the

dipole scattering amplitude.

If a hard scale is present in the quark loop, then the quark dipole has small transverse

size. This can occur either if the photon has large virtuality Q2 ≫ Λ2
QCD (Deeply Virtual

Meson Production), or if the vector meson has a heavy mass M2
V ≫ Λ2

QCD (Heavy Exclusive

Meson Production). The typical transverse size of the dipole is set by the photon wave

function to be 1
r2T

∼ 〈k2T 〉 ∼ z(1 − z)Q2 +m2
q . If either Q2 or the quark mass m2

q is large,

then the dipole becomes perturbatively small. For the case of large Q2, special care must be

taken in the limits z → 0, 1 [38, 39]. At lowest order, the dipole scatters on the proton by

exchanging two gluons, effectively measuring the strength of its gluon field. For scattering

on an unpolarized proton in these Regge kinematics, the dipole scattering amplitude is given

by a trivial “hard factor,” times a nonperturbative gluon matrix element of the proton, the

generalized parton distribution (GPD) Hg(x, ξ, T ) of the nucleon (N):

TrC A
qq̄N(r,∆) ≈ αsπ

2

2
r2T H

g
(N)(xeff , 0,−∆2

T ), (16)

where in the light-cone gauge A+ = 0, the gluon GPD Hg is given by the matrix element

Hg(x, 0,−∆2
T ) =

1

2πp+

∫
dr− eixp

+r−
〈
p+

1

2
∆

∣∣∣∣F
+ia(−1

2
r)F+ia(+1

2
r)

∣∣∣∣p−
1

2
∆

〉
. (17)

The coefficient in (16) is fixed by a direct computation of both sides of the equation for the

case of a quark target, where one has

TrC A
qq̄N (r,∆) ≈ iα2

sCF

∫
d2b ei∆·b

[
ln2 1

|b−zr|TΛ − 2 ln 1
|b−zr|TΛ ln 1

|b+(1−z)r|TΛ

+ ln2 1
|b+(1−z)r|TΛ

]
. (18)

In general, the field strength tensors in the operator (17) are dressed with light-like Wilson

lines to make the quantity gauge invariant; these Wilson lines are equal to unity in the

A+ = 0 light cone gauge3.

Altogether, combining this with Eqs. (15) and (14), one obtains for the cross-section for

elastic vector meson production on the proton4

dσN

dT
=

1

4π

∣∣∣∣
∫

d2r dz

4πz(1− z)

[
ψγψV ∗](r, z) αsπ

2

2
r2T H

g
(N)(xeff , 0, T )

∣∣∣∣
2

, (19)

3 Note that a general GPD depends on the skewness ξ ∼ ∆+/p+ with Hg ≡ Hg(x, ξ,−∆2
T ) but in these

kinematics the skewness is small and is set to zero in our discussion.
4 Here and in the following, we ignore saturation corrections that become important when r2⊥Q

2
s ∼ 1, where

Qs is the saturation scale in the proton that grows with decreasing x. Our formalism can be extended to

include such corrections.
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q
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p′1

p′2 = p− p′1 +∆

J/ψ

q −∆

∆

D

J/ψ

γ∗

p

n

FIG. 1. Schematic illustration of the amplitude for diffractive J/ψ electroproduction on the

deuteron: γ(q) +D(p) → J/ψ(q−∆) + p(p′1) + n(p′2). (Left Panel): In Regge kinematics, the photon

preferentially fluctuates into a quark dipole and scatters from the deuteron by pomeron exchange

(double wavy line in the t-channel). (Right Panel): Spacetime picture of the collision. The symbols

⊕ and ⊖ represent the trajectories of the deuteron and photon along the respective light front axes.

where the averaging over the angles of ∆ has now become trivial and we have defined the

wave function overlap [ψγψV ∗](r, z) ≡
[∑

σσ′ ψ
γ
λσσ′(r, z)

(
ψVλ′σσ′(r, z)

)∗]
for brevity. We note

that in the forward limit T → 0, the GPD Hg reduces down to the ordinary unintegrated

gluon distribution: Hg(x, 0, 0) = xG(x, 1/r2T ), where the inverse dipole size 1/rT provides

the transverse momentum cutoff (factorization scale) [17, 23, 24].

II.3. Back-to-Back Electro-disintegration of the Deuteron

We will now consider diffractive J/ψ electro- or photo-production on the deuteron and

require in addition that the deuteron disintegrates into the proton and neutron in the final

state with high transverse momentum: γ +D → J/ψ + p + n. The scattering is illustrated

in Fig. (1) and the kinematics are similar to the proton case,

pµ =
(
p+,

m2
D

s
q−, 0

)
qµ =

(
−xp+, q−, 0

)

∆+ ≈ −xeff p+ ∆− ≈
(
p′2
1T+m2

N

α′(1−α′)s
− m2

D

s

)
q− , (20)

with mD the deuteron mass, mN the nucleon mass, and α′ ≡ p′+1 /p
+ the fraction of the

incoming deuteron momentum carried by the outgoing proton. In deriving these expressions

we have neglected ∆2
T ≪ p′21T as well as ∆2

T ≪ max(Q2,M2
V ). The invariant momentum

transfer is T = ∆2 ≈ −∆2
T and the center-of-mass energy (squared) of the outgoing NN
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system is then

sNN ≈ p′21T +m2
N

α′(1− α′)
−m2

D. (21)

In the limit when p′21T ≫ ∆2
T , the proton and the neutron emerge nearly back-to-back:

p′2 ≈ −p′1. As the recoil momentum p′1T becomes large, the NN invariant mass sNN also

grows; this invariant mass is delivered through the T -channel by the component ∆− ≈
sNN

s
q−. The amount of energy which can be delivered through the T -channel without

disturbing the preceding kinematics is limited by the approximation

T = 2∆+∆− −∆2
T ≈ −xeffsNN −∆2

T ≈ −∆2
T , (22)

which, in turn, limits the invariant mass in the NN system to |T | ≪ sNN ≪ |T |
xeff

for the

approximations to be valid. Thus one needs very high DIS energies for small sized dipoles

(with large M2
V and/or Q2) to probe large relative momenta between the outgoing proton

and neutron.

Following steps identical to those in Section II.2, introducing in addition the rapidity

y′1 = dp′+1 /p
′+
1 of the proton and the new momentum transfer variable

t ≡ (p′1 − p)2 = (1− α′)

(
m2
D − m2

N

α′

)
− 1

α′p
′2
1T (23)

and with
d2p′1
(2π)2

= α′ dt
4π

dφ′1
2π

, one can write down the differential cross-section specifying both

the overall momentum transfer T and the final state proton kinematics as

dσD

dT dt dy′1
=

1

(4π)3
α′

1− α′

∫
dφ∆

2π

dφ′
1

2π

∣∣∣A(∆, p′1, α′)
∣∣∣
2

, (24)

where again the energy rescaled amplitude is A =M/2s.

As with the proton case in Eq. (15), the separation of time scales allows us to factorize

the photon and vector meson wave functions from the scattering amplitude of the dipole on

the deuteron as

A(∆, p′1, α
′) =

∫
d2r dz

4πz(1− z)

[
ψγψV ∗](r, z) TrC Aqq̄D(r,∆; p′1, α

′). (25)

The propagation of the high energy dipole through the gluon field of the deuteron is un-

changed. However now the nonperturbative matrix element from which the gluon field is

taken is not an expectation value in the proton state; it corresponds instead to the transition

from the deuteron to the NN system. Therefore we can define a novel object Ĥg with the

16



same gluon operators as the GPD Hg, but evaluated between the deuteron and NN states;

this gluon Transition Generalized Parton Distribution (T-GPD) is defined to be

Ĥg(x, 0, T ; t) ≡
∫

dr−

2πp+
eixp

+r−
〈
p(p′1)n(p+∆− p′1)

∣∣∣∣F
+ia(− r

2
)F+ia(+ r

2
)

∣∣∣∣D(p)

〉
. (26)

The relation of the scattering amplitude to the T-GPD is the same as in the proton case,

TrC A
qq̄D(r,∆; p′1, α

′) ≈ αsπ
2

2
r2T Ĥ

g
(D)(x, 0, T ; t) . (27)

Note that we are utilizing this quantity in the limit |T | ≪ |t|. The operator expression for

Eq. (26) is only valid in the light cone gauge A+ = 0; in other gauges, it is dressed by light

like Wilson lines to preserve gauge invariance. Since the only major difference from the

proton case is the evaluation of the dipole scattering amplitude between different states, we

obtain a similar formula,

dσD

dT dt dy′1
=

1

(4π)3
α′

1− α′

∣∣∣∣
∫

d2r dz

4πz(1− z)

[
ψγψV ∗](r, z)αsπ

2

2
r2T Ĥ

g
(D)(x, 0, T ; t)

∣∣∣∣
2

, (28)

which differs only in the kinematic prefactor and the appearance of the T-GPD Ĥg
(D).

As with exclusive J/Ψ production off the proton, the leading order process consists of

the projectile dipole exchanging two gluons with deuteron, delivering a sufficient momentum

kick to break apart the deuteron. The nonperturbative gluon matrix element (26) is similar

to (17), but evaluated between the incoming deuteron state |D〉 and outgoing proton and

neutron nucleon states 〈N ⊗N |. In LFPT, the “in” and “out” states are evaluated at

asymptotic infinity, and the operators are evaluated at x+ = 0+:

out 〈pn| [F+iaF+ia](0+) |D〉in = 〈pn| U [+∞+, 0+] [F+iaF+ia](0+) U [0+,−∞+] |D〉

=
∑∫

X

〈pn| U [+∞+, 0+] [F+iaF+ia](0+) |X〉 〈X| U [0+,−∞+] |D〉 , (29)

where we have inserted a complete set of states |X〉 in the second line. This decomposition

relies on the gluon field insertions being nearly instantaneous relative to the lifetimes of the

intermediate states. In principle, the deuteron wave function has nonzero overlap with an

infinite tower of Fock states (NN,∆∆, N8N8, · · · ). However since the deuteron is so loosely

bound, the nucleon-nucleon ground state is the dominant configuration and we will assume

in the following that the complete set of states |X〉 is saturated by this configuration to give

out 〈pn| [F+iaF+ia](0+) |D〉in =
∫
dΩNN 〈pn| U [+∞+, 0+] [F+iaF+ia](0+) |NN (ΩNN)〉ψD→NN(ΩNN ) , (30)
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where the deuteron LFWF is

ψD→NN = 〈NN | U [0+,−∞+] |D〉 . (31)

Like the photon and J/ψ wave functions, the intrinsic time scales ∼ 1/mD of the deuteron

wave function are much longer than the interaction time scale ∼ 1/
√
s with the projectile,

leading to a factorization of the matrix element into the wave function times an on-shell

NN amplitude. One therefore obtains for the gluon T-GPD

Ĥg
(D)(x, 0, T ; t) =

∫
dα

4πα(1− α)

d2p1
(2π)2

∑

σpσn

ψDσD ;σpσn(p1, α)H
g
σ′pσ

′
n;σpσn

(x, 0, T ; t) , (32)

with

Hg
σ′pσ

′
n;σpσn

(x, 0, T ; t) =

∫
dr−

2πp+
eixp

+r−

×
〈
pσ′p(p

′
1)nσ′n(p+∆− p′1)

∣∣U [+∞+, 0+] F+ia(−1
2
r)F+ia(+1

2
r)
∣∣pσp(p1)nσn(p− p1)

〉
. (33)

The polarizations of the incoming deuteron and outgoing proton and neutron are σD, σ
′
p,

and σ′
n, respectively, and the sum over the spins σp, σn of the intermediate nucleons is shown

explicitly.

The NN matrix element Hg
σ′pσ

′
n;σpσn

is close to being the standard GPD, except for de-

scribing a two-hadron system and therefore retaining dependence on the momentum transfer

t to one hadron (the proton) in addition to the momentum transfer T to the center of mass.

In terms of this NN matrix element, the production cross-section can be written

dσD

dT dt dy′1
=

1

(4π)3
α′

1− α′

∣∣∣∣∣

∫
d2r dz

4πz(1− z)

[
ψγψV ∗](r, z) αsπ

2

2
r2T

×
∫

dα

4πα(1− α)

d2p1
(2π)2

∑

σpσn

ψDσD ;σpσn(p1, α)H
g
σ′pσ

′
n;σpσn

(x, 0, T ; t)

∣∣∣∣∣

2

, (34)

and is depicted in Fig. 2.

By considering exclusive vector meson production from DIS on a composite state such

as the deuteron, we have introduced another kinematic parameter t into the “GPD”

Hg(x, 0, T ; t). If t is a soft scale, p′21T ∼ O
(
Λ2
QCD

)
, then this is simply a nonperturba-

tive distribution. Because the deuteron is a loose bound state of nucleons, to leading order,

the singlet two gluon exchange can be thought of as taking place on one of the nucleons,

while the other nucleon is a spectator5. This is equivalent to writing the gluon GPD of the

5 The octet configuration, which we shall soon discuss, where one gluon is exchanged with a proton and the

other with the neutron does not apply here since the necessary color neutralizing octet gluon exchange

between the two nucleons is forbidden by confinement at large distances.
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FIG. 2. Illustration of the factorization (34) of the cross-section into the wave functions of the

virtual photon, vector meson, and deuteron, times the scattering of the dipole on the NN system.

ℓ ∆− ℓ

n

p
p′1p1

p− p1

ℓ ∆− ℓ

n

p

p′1 = p1 +∆p1

p− p1 p− p′1 +∆p− p1

FIG. 3. Examples of the dipole-NN T -matrix which can contribute to the |t| ∼ |T | (left panel)

and |t1| ≫ |T | (right panel) regimes. In the first case, |t| ≈ |T | ≈ ∆2
T , and in the second case

|t| ≈ p′21T ≫ ∆2
T ≈ |T |.

deuteron as the sum of GPD’s in each of its nucleons: Ĥg
(D) = 2Hg

(N). In this mechanism, the

nucleons are ejected with p2T comparable to the momentum transfer |T | from the projectile

dipole, or to the intrinsic momentum scale ∼ Λ2
QCD which the deuteron wave function can

accommodate.

But if the additional kinematic parameter t becomes a hard scale |t| ∼ p′21T ≫ Λ2
QCD, it

must be generated by a short-distance QCD interaction. Inserting another complete set of

states in (33) (and assuming it is also saturated by the NN state), one can then expand the
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“time” evolution operator (5) to lowest nonvanishing order, obtaining

Ĥg
(D)(x, 0, T ; t) =

∫
dα

4πα(1− α)

d2p1
(2π)2

∑

σpσn

ψDσD ; σpσn(p1, α)

×
[ ∫

dr−

2πp+
eixp

+r−
∫
dΩNN

〈
pσ′p(p

′
1)nσ′n(p+∆− p′1)

∣∣V −
NN |NN〉

× 1

∆E− × 〈NN | |F+ia(− r
2
)F+ia(+ r

2
)
∣∣pσp(p1)nσn(p− p1)

〉 ]
, (35)

where V −
NN is the first operator in the expansion of U with a nonvanishing matrix element.

Further, ∆E− is the energy denominator of the virtual |NN〉 state between the two-gluon

exchange and the NN rescattering. In this way, we can hope to extract a nucleon-nucleon

scattering matrix element from a measurement of the J/ψ production cross section.

Specifically, the lowest order process consists of the exchange of an additional gluon

between the proton and neutron, as shown in the right panel of Fig. 3. Normally the

exchange of a single gluon does not contribute to NN scattering, since the gluon carries an

octet color charge. However as part of the dipole scattering amplitude, such a process is

possible if each nucleon absorbed exactly one of the gluons from the diffractive T -channel

exchange with the dipole. The additional gluon exchange between the nucleons can then

neutralize the net octet color charge state each nucleon has acquired from the diffractive

pomeron.

This novel perturbative mechanism, in which the nucleons are temporarily excited into a

color octet state, may provide a new window into nucleon-nucleon interactions at short dis-

tances. We will explore this mechanism quantitatively in Sec. III. While a full understanding

of how this perturbative picture requires that one demonstrate factorization of the nonper-

turbative physics beyond leading order, we will argue that at high t this picture is plausible

because the separation of time scales between the diffractive exchange ∆x+/p+tot ∼ O (1/s)

and the NN rescattering: ∆x+/p+NN ∼ O (1/p′21T ) suggests that a factorization of the T-GPD

should survive in a complete treatment. Regardless, exclusive vector meson production with

deuteron breakup into high-pT nucleons can be used to probe the short distance behavior of

the T-GPD Ĥ(x, 0, T ; t). The magnitude and t dependence of this object will provide novel

information that models of the short range nucleon-nucleon interaction should satisfy. As

an example, the multi-Pomeron exchange model [10], currently applied to model neutron

star equations of state, should be strongly constrained by this T-GPD.
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A B C

FIG. 4. Representative diagrams from the three classes of nucleon-nucleon interactions. The NN

interaction can occur as a final state interaction (A), an initial state interaction (B), or a long lived

fluctuation (C). For each class of diagrams there are also minor variations on the topology, such

as altering the order in which the projectile scatters on the two nucleons.

III. PERTURBATIVE COMPUTATION

We will now perform a perturbative computation of the dipole scattering amplitude

TrCA
qq̄D for exclusive vector meson production with deuteron breakup. In Section III.1 we

will simplify the computation greatly by treating each of the nucleons in the scattering as

valence quarks. The purpose of this toy model computation is to obtain a feel for the relative

importance of initial state versus final state gluon mediated color exchanges, to understand

the structure of so-called pinch singularities that can modify naive power counting and to

fix numerical coefficients that will be important for our later estimates.

In Section III.2 discuss the contours of the full computation which is challenging even

in high-energy asymptotics and and at leading order. While clearly outside the scope of

this work, we outline how this computation relates to previous work on large angle high

energy elastic scattering. This correspondence will provide an important basis for future

quantitative studies. Our study motivates an ansatz for the photo-disintegration cross-

section as a product of the modulus squared deuteron wavefunction with the exclusive vector

meson photoproduction cross-section and the neutron-proton elastic scattering cross-section.

Since each of these quantities can be fixed, they provide a plausible estimate of rates for this

process at an EIC. These will be discussed in Section IV.

III.1. Toy model computation

It is convenient to perform this calculation using covariant Feynman perturbation theory

rather than LFPT, since the on-shell dipole scattering amplitude can be computed in either
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FIG. 5. Final state interaction diagrams. The initial neutron momentum is p2 ≡ p − p1, and the

final neutron momentum is p′2 = p− p′1 +∆.

formalism. It is also convenient to focus on the diagrams in which both exchanged gluons

couple to the quark in the projectile dipole; the generalization to the diagrams involving the

antiquark is straightforward. We will work in Feynman gauge satisfying ∂µA
µ = 0.

The three general diagrammatic topologies relating to the ordering of the NN interaction

with respect to the diffractive exchange with the projectile are illustrated in Fig. 4, by

taking the NN interaction to be the exchange of a single gluon at leading order. In our

toy computation, the valence quark “nucleons” are color singlet; this therefore requires

that the diffractive exchange with the projectile deliver one gluon to each “nucleon”. The

generalization to the scattering amplitude of the full projectile dipole TrCA
qq̄NN will be

straightforward. Once this is accomplished, we will convolute the scattering amplitude with

the deuteron wave function (as in Eq. (32)) to obtain the full dipole scattering amplitude

TrCA
qq̄D on the deuteron target.

Let us begin by calculating in detail the final state interaction diagrams represented in

Fig. 4 by category A. There are two diagrams with this topology, corresponding to the

projectile striking the two nucleons in either order; these diagrams are shown in Fig. 5. By

labeling the momenta and indices appropriately, it is possible to arrange the two diagrams so

that they only differ in the flow of momentum through the projectile quark; this conveniently

allows us to write the sum of the diagrams as

iTrCA
qNN δσσ′ =

1

2s

CF
4Nc

∫
d4ℓ

(2π)4
Uµν(ℓ)

(−i
ℓ2

−i
(∆− ℓ)2

)
Lµν(ℓ) (36)

with Uµν the upper part and Lµν the lower part of the diagrams, as illustrated in Fig. 6.
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FIG. 6. Partition of the diagrams of Fig. 5 into the upper part Uµν(ℓ) (first bracketed sum of

diagrams), lower part Lµν(ℓ) (third bracketed diagram), and gluon propagators.

For the upper part of the diagram, we sum the two pieces shown in Fig. 6 and obtain

Uµν(ℓ) ≡ Uσ′(q −∆)[igγν ]

[
i(/q − /ℓ +mq)

(q − ℓ)2 −m2
q + iǫ

]
[igγµ]Uσ(q)

+ Uσ′(q −∆)[igγµ]

[
i(/q − /∆+ /ℓ +mq)

(q −∆+ ℓ)2 −m2
q + iǫ

]
[igγν]Uσ(q), (37)

where σ(σ′) is the initial (final) spin of the projectile quark and mq is its mass. To simplify

the expression, we take the eikonal part (q−γ+) of the projectile quark propagator in the

numerator, assuming that |ℓ−| ≪ q−:

Uµν(ℓ) = −ig2q−
{
Uσ′(q −∆) γνγ

+γµUσ(q)

(q − ℓ)2 −m2
q + iǫ

+
Uσ′(q −∆) γµγ

+γνUσ(q)

(q −∆+ ℓ)2 −m2
q + iǫ

}
. (38)

The dominant contribution to the numerator algebra comes from the gamma matrix struc-

ture γνγ
+γµ → δ+µ δ

+
ν γ

−γ+γ− = 2δ+µ δ
+
ν γ

−, where we have picked out the eikonal quark/gluon

vertices and used the anticommutation relations. Using this brings the upper part of the

diagram into the form

Uµν(ℓ) = −2ig2q−δ+µ δ
+
ν [Uσ′(q −∆)γ−Uσ(q)]

×
{

1

(q − ℓ)2 −m2
q + iǫ

+
1

(q −∆+ ℓ)2 −m2
q + iǫ

}
. (39)

The leading part of the spinor matrix element is Uσ′(q − ∆)γ−Uσ(q) ≈ 2q−δσσ′ , which

simplifies the expression to

Uµν(ℓ) ≈ −2ig2q−δ+µ δ
+
ν δσσ′

{
− 1

ℓ+ − ℓ+1 − iǫ
+

1

ℓ+ − ℓ+2 + iǫ

}
, (40)
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where the poles of the propagators are given by

ℓ+1 = q+ − (q − ℓ)2T +m2
q

2q−
ℓ+2 = −(q −∆)+ +

(q −∆− ℓ)2T +m2
q

2q−
, (41)

with the projectile quarks treated as (nearly) on-shell. (Recall that this was a consequence

of the separation of time scales.) Using this, we rewrite the amplitude as

TrCA
qNN =

g2CF
8Nc

1

p+

∫
d4ℓ

(2π)4
1

ℓ2T (∆− ℓ)2T

[
1

ℓ+ − ℓ+2 + iǫ
− 1

ℓ+ − ℓ+1 − iǫ

]
L++(ℓ), (42)

where we have taken the t-channel gluons to be Glauber / Coulomb gluons (|ℓ+ℓ−| ≪ ℓ2T ).

Since the upper part of the diagram involving the projectile dipole is the same among all the

diagrams in Fig. 4, we can use (42) as the starting point for the calculation of all of them.

The lower part of the final state interaction diagram in Fig. 6, taken in the eikonal limit

δ+µ δ
+
ν Lµν(ℓ) = L++(ℓ), is given by

L++
A (ℓ) ≡ Uσ′p(p

′
1)[igγα]

[
i( /p1 + /ℓ +mN )

(p1 + ℓ)2 −m2
N + iǫ

]
[igγ+]Uσp(p1)Uσ′n(p

′
2)[igγ

α]

×
[

i( /p2 + /∆− /ℓ +mN)

(p2 +∆− ℓ)2 −m2
N + iǫ

]
[igγ+]Uσn(p2)

[ −i
(p1 + ℓ− p′1)

2 + iǫ

]
, (43)

where σp(σn) are the initial proton (neutron) spins and σ′
p(σ

′
n) are the final spins, and we

use the subscript A to indicate the category from Fig. 4. Again keeping the eikonal part of

the quark propagators p+1(2)γ
− for |ℓ+| ≪ p+1(2), we reduce the expression to

L++
A (ℓ) =

ig4 p+1 p
+
2

[(p1 + ℓ)2 −m2
N + iǫ][(p2 +∆− ℓ)2 −m2

N + iǫ][(p1 + ℓ− p′1)
2 + iǫ]

× [Uσ′p(p
′
1)γαγ

−γ+Uσp(p1)][Uσ′n(p
′
2)γ

αγ−γ+Uσn(p2)]. (44)

In this eikonal approximation for the quark propagators, the only nonzero contribution from

the final state rescattering is from γα = γ⊥. The numerator structure reduces to

Num ≡ [Uσ′p(p
′
1)γαγ

−γ+Uσp(p1)] [Uσ′n(p
′
2)γ

αγ−γ+Uσn(p2)]

= −[Uσ′p(p
′
1)γ

i
⊥γ

−γ+Uσp(p1)] [Uσ′n(p
′
2)γ

i
⊥γ

−γ+Uσn(p2)], (45)

and a direct evaluation of the matrix element yields

Uσ′p(p
′
1)γ

i
⊥γ

−γ+Uσp(p1) = 2

√
p+1
p′+1

{
(δij − iσpǫ

ij
T )p

′j
1⊥δσpσ′p − imN ǫ

ij
T [σ

j
⊥]σ′pσp

}
(46)

using the spinors of [34] ([~σ] are the Pauli matrices, and ǫijT is the two-dimensional Levi-Civita

tensor).
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We can simplify this expression by restricting the range of longitudinal momenta of the

“nucleons”. The deuteron wave function is largely nonrelativistic, with the longitudinal

momentum shared roughly equally among the nucleons: p+1 ≈ p+2 ≈ 1
2
p+. If we consider the

produced nucleon in the same vicinity p′+1 ≈ 1
2
p+, then the longitudinal momentum of the

nucleons is roughly unchanged: p+1 ≈ p′+1 .

Since we are interested in a hard transverse momentum in the final state 6 we will take

p′21T ≫ p21T , m
2
N , which gives

Uσ′p(p
′
1)γ

i
⊥γ

−γ+Uσp(p1) = 2(δij − iσpǫ
ij
T )p

′j
1⊥δσpσ′p

Uσ′n(p
′
2)γ

i
⊥γ

−γ+Uσn(p2) = −2(δik − iσnǫ
ik
T )p

′k
1⊥δσnσ′n , , (47)

where we have used p′2 = p − p′1 + ∆ ≈ −p′1. Multiplying the two spinor matrix elements,

we obtain for the numerator factor

Num = −[Uσ′p(p
′
1)γ

i
⊥γ

−γ+Uσp(p1)] [Uσ′n(p
′
2)γ

i
⊥γ

−γ+Uσn(p2)]

= +8p′21T δσ′pσpδσ′nσnδσp,−σn . (48)

The resulting spin structure is interesting; in addition to the helicity preserving eikonal

scattering which keeps σ′
p(n) = σp(n), the expression couples to the component σp = −σn of

the deuteron wave function. Inserting this back into Eq. (44), we obtain

L++
A (ℓ) =

+8ig4 p+1 p
+
2 p

′2
1T δσ′pσpδσ′nσnδσp,−σn

[(p1 + ℓ)2 −m2
N + iǫ][(p2 +∆− ℓ)2 −m2

N + iǫ][(p1 + ℓ− p′1)
2 + iǫ]

. (49)

The final state interaction gluon (p1 + ℓ − p′1)
µ has longitudinal +,− components which

are both small–it is a Glauber gluon. We therefore keep only the transverse momentum

(p1 + ℓ− p′1)
2
T ≈ −p′21T and neglect the pole in the longitudinal integrals. This simplifies the

expression down to

L++
A (ℓ) =

+2ig4 δσ′pσpδσ′nσnδσp,−σn

[ℓ− − ℓ−3 + iǫ][ℓ− − ℓ−4 − iǫ]
, (50)

where

ℓ−3 = −p−1 +
(p1 + ℓ)2T +m2

N

2p+1
ℓ−4 = p−2 +∆− − (p2 +∆− ℓ)2T +m2

N

2p+2
(51)

are the poles of the “proton” and “neutron” propagators respectively.

6 In principle, a hard transverse momentum can also exist in the initial state such that p′21T ∼ p21T ≫ m2
N .

This corresponds to the high-pT tail of the deuteron wave function, which is mimicked in this model by

the initial-state interaction diagrams (class B of Fig. 4).
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ℓ+ ℓ+ ℓ+

ℓ−

FIG. 7. Pole structure in the complex ℓ± plane. The ℓ+ pole (upper panel) corresponds to the

intermediate quark propagator from the projectile dipole, with a contour that can be deformed far

away from the origin. The magnitude of the deformation is limited by the presence of auxiliary

poles (denoted by crosses) from the t-channel gluons. The ℓ− poles (lower panel) correspond to

the intermediate proton/neutron propagators.

Combining Eqs. (42) and (50), we obtain

TrCA
qNN
(A) =

g6CF
4Nc

1

p+
(δσ′pσpδσ′nσnδσp,−σn)

×
∫

d4ℓ

(2π)4
i

ℓ2T (∆− ℓ)2T

[
1

ℓ+ − ℓ+2 + iǫ
− 1

ℓ+ − ℓ+1 − iǫ

]
1

ℓ− − ℓ−3 + iǫ

1

ℓ− − ℓ−4 − iǫ
. (52)

The pole structure which remains in the integral is important; it determines not only the

value of the expression, but also the virtuality - and hence the lifetime - of the propagators

(see Fig. 7).

The arguments below follow the discussion of factorization and pinched poles in [40].

The poles ℓ−3 and ℓ−4 of ℓ− generated by our proton and neutron propagators are “pinched”

(Fig. 7, lower panel): they occur at parametrically small values ℓ−3(4) ∝ 1/p+ and lie on

opposite sides of the real axis. This means that the integration contour along the real ℓ− axis

cannot be deformed to avoid the poles at ℓ− ≈ 0, and, correspondingly, the proton / neutron

propagators are trapped to have parametrically small virtualities (p1 + ℓ)2, (p2 +∆− ℓ)2 ∼
p21T , p

′2
1T . When expressed as a dimensionless ratio compared to the hardest scales in the

problem, e.g. (p1 + ℓ)2/s or (p1 + ℓ)2/〈k2T 〉 with 〈k2T 〉 ∼ z(1 − z)Q2 + m2
q , the relative

virtuality of these propagators goes to zero. So it seems that, similar to the case of collinear

factorization, the proton/neutron propagators can be well approximated as being on-shell,

with long lifetimes proportional to the inverse of the virtuality.
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A more unusual case is given by the poles ℓ+1 and ℓ+2 of ℓ+ generated by the propagator

of the projectile quark in the two diagrams shown in Fig. 5. In this case, the two poles

correspond to two different diagrams, associated with the flow of ℓ+ in either direction

through the projectile quark propagator. Because the two poles are not simultaneously

imposed in the same diagram, it is possible to deform the ℓ+ contour of integration away

from the real axis such that ℓ+ is not parametrically small anywhere on the contour (Fig. 7,

upper panel). However, despite the fact that the ℓ+ integration contours are not trapped

in the individual diagrams, the result of adding the two diagrams together in this fashion

is to effectively trap the contour between the two poles (Fig. 7, upper panel). By explicitly

adding the bracketed terms in (52), we obtain

I ≡
∫

d4ℓ

(2π)4
i

ℓ2T (∆− ℓ)2T

[
1

ℓ+ − ℓ+2 + iǫ
− 1

ℓ+ − ℓ+1 − iǫ

]
1

ℓ− − ℓ−3 + iǫ

1

ℓ− − ℓ−4 − iǫ

=

∫
d4ℓ

(2π)4
i

ℓ2T (∆− ℓ)2T

[
ℓ+2 − ℓ+1

[ℓ+ − ℓ+1 − iǫ][ℓ+ − ℓ+2 + iǫ]

]
1

ℓ− − ℓ−3 + iǫ

1

ℓ− − ℓ−4 − iǫ
. (53)

Although it is not a physical pinch corresponding to a long-lived intermediate state, the sum

of the diagrams generates an effective pinch which can be used to evaluate the integral. One

obtains

Im TrCA
qNN
(A) =

g6CF
4Nc

(
1

p+(ℓ−4 − ℓ−3 )

)
(δσ′pσpδσ′nσnδσp,−σn)

∫
d2ℓ

(2π)2
1

ℓ2T (∆− ℓ)2T
, (54)

where in the eikonal approximation used here, the real part of the amplitude is zero. The

factor 1/p+(ℓ−4 −ℓ−3 ) is the residual effect of the proton/neutron poles, arising from collecting

the residue of one pole (putting it on shell) and obtaining the resulting “off-shell-ness” of

the other pole. Evaluating this factor, one observes that the “residual off-shell-ness” of

the intermediate pn state is just the difference between the minus momentum of the on-

shell final-state pn system (p′−1 + p′−2 ) and the minus momentum of the intermediate state,

evaluated with both nucleons on shell: (p1 + ℓ3)
− + (p2 + ∆ − ℓ4)

−. This is exactly the

energy denominator from LFPT of the intermediate state (see Fig. 8 and compare with

Eq. (35)): ℓ−4 − ℓ−3 = p′−1 + p′−2 − (p1 + ℓ3)
− − (p2 + ∆ − ℓ4)

− ≡ ∆E−
FSI . If we take

p′21T ≫ p21T , ℓ
2
T ,∆

2
T , then the energy denominator is dominated by the minus momentum of

the final state ∆E−
FSI ≈ +E−

final and

ℓ−4 − ℓ−3 ≈ p′21T
2p+1

+
p′21T
2p+2

≈ p′21T
2α(1− α)p+

, (55)

where α ≡ p+1 /p
+ is the momentum fraction of the deuteron carried by the proton. We then
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p′1

p′2

p1 + ℓ3

p2 +∆− ℓ4

FIG. 8. Energy denominator of the intermediate pn state (dashed line) for the final-state interaction

topology ∆EFSI representing the “residual off-shell-ness” of the intermediate state.

obtain

Im TrCA
qNN
(A) = +8π

α3
sCF
Nc

α(1− α)

p′21T
(δσ′pσpδσ′nσnδσp,−σn)

∫
d2x e−iℓ·x e−i(∆−ℓ)·x ln2 1

xTΛ
, (56)

where we have replaced the transverse momentum integral in Eq. (54) by its coordinate

space equivalent. The suggestive form of the Fourier factors in (56) was chosen to show that

both gluons interact with the projectile quark at transverse position x. The generalization

to the case of the full dipole is then straightforward (compare with Eq. (18)), yielding for

the final state interaction topology (A):

ImTrCA
qq̄NN
(A) ≈ +8π

α3
sCF
Nc

α(1− α)

p′21T
(δσ′pσpδσ′nσnδσp,−σn)

∫
d2b e−i∆·b

(
ln2 1

|b− zr|TΛ

− 2 ln
1

|b− zr|TΛ
ln

1

|b+ (1− z)r|TΛ
+ ln2 1

|b+ (1− z)r|TΛ

)
, (57)

where we have kept the dominant imaginary part of the amplitude.

Now let us consider the initial state interaction diagrams (Panel B of Fig. 4). The

treatment of the upper part of the diagram Uµν is the same as before, so we can begin with

Eq. (42) and the lower part of the diagram shown in Fig. 9. Eikonalizing the “valence” proton

and neutron propagators, as previously, using the approximation p′+1 ≈ p+1 and recognizing

(p1 + ℓ− p′1)
2 ≈ −p′21T to be a Glauber gluon propagator, we find

L++
B (ℓ) =

−1
4
ig4 [Uσ′p(p

′
1)γ

+γ−γi⊥Uσp(p1)][Uσ′n(p
′
2)γ

+γ−γi⊥Uσn(p2)]

[ℓ− − ℓ−5 − iǫ][ℓ− − ℓ−6 + iǫ] p′21T
, (58)

where the poles of the proton and neutron propagators, respectively, are

ℓ−5 = p′−1 − (p′1 − ℓ)2T +m2
N

2p+1
; ℓ−6 = p′−1 − p− +

(p− p′1 + ℓ)2T +m2
N

2p+2
. (59)

The form Ū(p′1)γ
+γ−γ⊥U(p1) in Eq. (58) is different from the form Ū(p′1)γ⊥γ

−γ+U(p1)

which appeared for the final state interaction topology. Direct evaluation of the new matrix
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p1

p2

p′1

p′2

p′1 − ℓ

p− p′1 + ℓ

FIG. 9. The lower half of the diagram L++ for the initial-state interaction topology (Panel B of

Fig. 4).

p1

p2

p′1

p′2

p1

p2

p′1

p′2

p′1 − ℓ

p2 +∆− ℓ

p1 + ℓ

p− p′1 + ℓ

FIG. 10. Two diagrams for the “long-lived fluctuation” topology (Panel C in Fig. 4).

element yields

Uσ′p(p
′
1)γ

+γ−γi⊥Uσp(p1) = 2

√
p′+1
p+1

{
(δij + iσpǫ

ij
T )p

j
1⊥δσpσ′p + imN ǫ

ij
T [σ

j
⊥]σ′pσp

}
. (60)

In the final state interaction topology, the numerator structure Ū(p′1)γ⊥γ
−γ+U(p1) coupled

to the transverse momentum p′1⊥ in the final state, which is large; in the the initial state

interaction topology considered here, the numerator structure Ū(p′1)γ
+γ−γ⊥U(p1) couples

to the transverse momentum p1⊥ in the initial state, which is small. As a consequence, in the

limits p′+1 ≈ p+1 and p′21T ≫ p21T , m
2
N being considered, the complete numerator of Eq. (58)

remains fixed at O (m2
N ) instead of becoming large as O (p′21T ) as in Eq. (48). Since the gluon

propagator (p1 + ℓ− p′1)
2 ≈ −p′21T itself is large, this leads to a suppression by O (m2

N/p
′2
1T )

of the initial state interaction diagrams relative to the final state interaction diagrams.

One can check that the integrals over the poles in the initial state interaction topology

are comparable to those in the final state interaction expression. Thus since the numerator

algebra has introduced a suppression factor of O (m2
N/p

′2
1T ), we can neglect the contributions

from the initial state interaction topology (category B from Fig. 4) when the transverse

momentum of the detected proton is much larger than 1 GeV.

A similar analysis to the initial and final state cases can be carried out for the “long
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lived fluctuation” diagrams (Panel C in Fig. 4, leading to the lower parts shown in Fig. 10).

As for the initial state interaction case, there is a suppression by O
(
mN

p′
1T

)
coming from the

Ūγ⊥γ
−γ+U structure. Furthermore (and more importantly), the combination of poles which

appear in these long lived fluctuations are both on the same side of the real axis. This breaks

the pinch of the ℓ− poles which was present before, allowing us to close the ℓ− integration

contour on the opposite side of the real axis and obtain zero for the integral (with eikonal

accuracy). Thus these diagrams in category C are far more suppressed than the initial state

interaction diagrams and can therefore be neglected entirely.

As a result of these considerations, we find that the dominant diagrams for p′21T ≫ m2
N are

the final state interaction diagrams (category A from Fig. 4), so that the leading contribution

at this order is then given by Eq. (57):

TrC A
qq̄NN = +8πi

α3
sCF
Nc

α(1− α)

p′21T
(δσ′pσpδσ′nσnδσp,−σn)

∫
d2b ei∆·b

(
ln2 1

|b− zr|TΛ

− 2 ln
1

|b− zr|TΛ
ln

1

|b+ (1− z)r|TΛ
+ ln2 1

|b+ (1− z)r|TΛ

)
. (61)

The dipole scattering amplitude on the deuteron is simply obtained by convoluting this

result with the deuteron wave function:

TrC A
qq̄D =

∑

σpσn

∫
dα

4πα(1− α)

d2p1
(2π)2

ψDσD ;σpσn(p1, α)× TrCA
qq̄NN . (62)

Comparing this to the dipole scattering amplitude (18) on a single “nucleon” in the valence

quark model, we obtain

TrC A
qq̄D ≈

[
2
αs
Nc

1

p′21T
ψDσD ;σ′p,−σ′p(0,

1
2
)δσ′p,−σ′n

]
TrC A

qq̄N , (63)

where in Eq. (62), we have approximated the momentum fraction in the deuteron by its

nonrelativistic value α = 1
2
and used the momentum integral d2p1 to Fourier transform

the deuteron wave function to its value with zero transverse separation ∆x⊥ = 0 between

the nucleons. From this relation, and using Eq. (16) and Eq. (27)), one obtains a relation

between the gluon distributions7:

Ĥg
(D)(xeff , 0,−∆2

T ;−2p′21T ) ≈
[
2
αs
Nc

1

p′21T
ψDσD ; σ′p,−σ′p(0,

1
2
) δσ′p,−σ′n

]
Hg

(N)(xeff , 0,−∆2
T ). (64)

7 Note that in the approximations being considered here (α ≈ α′ ≈ 1

2
and p′21T ≫ m2

N ), the invariant t

defined by Eq. (23) reduces to t ≈ −2p′21T .

30



N(p′1)

N(p′2)N(p2)

N(p1)

N(p′2)N(p2)

N(p1) N(p′1)N∗

N∗N(p′2)

N(p′1)

N(p2)

N(p1)

FIG. 11. (Left Panel) Generic nonperturbative matrix element represented by Eqs. (32) and (33).

(Center Panel) Perturbative evaluation of the matrix element. (Right Panel) Possible factorization

of the final-state rescattering based on the perturbative evaluation.

This expression has a simple interpretation in terms of the proposed factorization illus-

trated in the right panel of Fig. 11, which we write schematically as

Ĥg
(D) ∼ ψD(0, 1

2
)×

[
1

Nc

Hg
(N)

]
×
[
αs
p′21T

]
. (65)

The gluon field Ĥg
(D) of the deuteron seen by the projectile dipole is a simple product of

the deuteron wave function at the origin (∆xT = 0), the ordinary gluon distribution Hg
(N)

of the “nucleons,” and a new factor ∼ αs/p
′2
1T describing the hard scattering between the

“nucleons” in the final state.

The additional suppression by the color factor 1/Nc occurs because the colors of “valence

nucleons” in our toy model cannot be chosen independently; the total color exchanged

between the projectile and the composite NN system must be color singlet in order to

generate a rapidity gap; further, the total color acquired by any given nucleon must be

individually color singlet.

We also note that the simple factorization which arises here at leading order in the per-

turbative calculation is very far away from a demonstration of factorization to all orders.

However as we argued previously, there is a separation of characteristic time scales between

the long time dynamics of the deuteron wave function, the instantaneous diffractive scat-

tering with the projectile dipole and the final state interaction. This was manifest in the

pinching of the poles of ℓ− associated with the intermediate state between the diffractive

scattering and final state interaction (Fig. 7) which trap the intermediate “nucleons” to be

close to on-shell. Whether these features persist in the more general case requires a much

more sophisticated calculation that we leave for future work.

The relation (64) between the gluon distributions can be carried over to the cross-sections

through the use of Eq. (19) and Eq. (28), yielding for fixed values of the deuteron spin σD
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and final state nucleon spins σ′
p, σ

′
n

dσD

dT dt dy′1

∣∣∣∣
α′≈1

2

=

[
1

(2π)2
α2
s

N2
c

1

p′41T

∣∣∣ψDσD ; σ′p,−σ′p(0,
1
2
)
∣∣∣
2

δσ′p,−σ′n

]
× dσN

dT
, (66)

where we have again emphasized the restriction α′ ≈ α ≈ 1
2
and summed over the spins of

the proton and neutron in the final state.

In Appendix A, we examine some common choices of the deuteron wave function used in

phenomenology. In these applications, the orbital part of the wave function is independent

of the spin configuration, multiplying a separately normalized spin state. Thus

ψDσD ; σpσn(0,
1
2
) = ψorbit(0,

1
2
)
〈
(1
2
, σp

2
)⊗ (1

2
, σn

2
)
∣∣ (SD, σD)〉 , (67)

where ψorbit is the orbital wave function, and the bra-ket product represents a Clebsch-

Gordan coefficient. The ground state of the deuteron is in an S-wave orbital state, with

spin quantum number SD = 1, and the condition σp = −σn arising from the scattering

mechanism implies that there is only nonzero overlap with the spin state σD = 0. When

calculating the cross-section for unpolarized scattering, we should average over the deuteron

spin and sum over the spins of the final state nucleons, to obtain

dσD

dT dt dy′1

∣∣∣∣
α′≈1

2

=

[
1

12π

α2
s

N2
c

1

p′41T

∣∣ΨD(0,
1
2
)
∣∣2
]
× dσN

dT
. (68)

Note that the wave function |ΨD(0,
1
2
)|2 from Appendix A differs from |ψorbit(0, 12)|2 by a

factor of π due to a different convention for the Fourier transform. With this result, and

with input for the deuteron wave function and the measured diffractive cross-section on

the nucleon at HERA, one can obtain the simplest possible perturbative estimate for the

desired cross-section. Quantitative results from this numerical analysis will be discussed in

Section IV.

III.2. Models of the perturbative structure of final state nucleon-nucleon scatter-

ing

In our discussion above, we considered a highly simplified model wherein the individual

nucleons in the deuteron bound state are treated as valence quarks. We performed a per-

turbative computation of DIS off these “nucleons”, with the exclusive production of a heavy

vector meson (the J/Ψ) and back-to-back nucleons with high relative momenta in the final
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state. Though this model is not realistic, it does provide useful lessons and a first rough esti-

mate of the rates for such a process. In a realistic computation, when p′21T ≫ m2
N , if nucleons

are to remain collinear, additional gluon or quark exchanges must occur between the valence

quarks in a nucleon and between the two nucleons. These additional exchanges break the

naive power counting of the toy model which prefers a color octet final-state exchange; now

both color singlet and color octet exchanges enter at the same parametric order. Examples

of such a process, with final state exchanges between the nucleons, are shown in Fig. (12)

and (13).

In the “color singlet” exchange process shown in Fig. (12), the two gluons exchanged from

the small sized dipole scatter off one of the nucleons. Ensuring that the three valence quarks

remain collinear requires the outgoing nucleons to exchange multiple partons, an example

of which is shown in the figure. On a much longer time scale relative to the gluon exchange

from the projectile, a large transverse momentum p′1T is transferred to the other nucleon

via the color singlet exchange of three hard gluons–thereby ensuring that the valence quarks

absorbing the gluons remain collinear after the scattering.

In the language of high energy nucleon–nucleon scattering, such a process is called a

Landshoff process [26]. The “conventional” mechanism shown in Fig. (12) is a color-singlet

exchange, but a novel Landshoff process can occur if the two gluons from the projectile are

absorbed on a different nucleon. In this case, the bound state is excited into a color octet-

color octet configuration; they can then decay into the large relative momentum neutron-

proton final state either by a color octet Landshoff mechanism or via a quark exchange

diagram as shown in Fig. (13).

The discussion of high-energy, large-angle elastic scattering has a long history [41]. In

pQCD, such scattering can asymptotically be represented as the product of the nonpertur-

bative incoming and outgoing wavefunctions of the scattering nucleons, convoluted with a

perturbative matrix element for the scattering [34, 42]. In considerations of the latter, the

quark counting rules describe configurations in which all the valence quarks of the incoming

and outgoing nucleons are found within a small-sized “color transparent” configuration [20],

so that they all participate in a single “point-like” hard scattering mechanism [27, 28]. This

leads to an elastic nucleon-nucleon scattering cross-section that goes as dσ/dt ∝ s−10. Al-

ternately, in the Landshoff or “independent quark scattering” process, the valence quarks

can scatter pairwise, without requiring that all the quarks be simultaneously within the

same short-distance region. This leads to a “geometric enhancement” of s2 in the elastic
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scattering cross-section such that dσ/dt ∝ s−8. The technical reason for this difference arises

precisely from “pinch singularities” of the sort we outlined in some detail in our toy model

computation.

An example of these “technical” contributions is the Sudakov suppression of soft gluon

emissions [43] which were conjectured to eliminate the Landshoff pinch singularities. How-

ever the Sudakov suppression does not eliminate the singularities, and only changes the

power of s in the cross-section [44] to one that is intermediate between the independent

scattering and point-like processes. Indeed, the resulting infrared structure of the indepen-

dent quark scattering model results in a “Chromo-Coulomb” phase shift resulting from the

interference between the long distance physics of the former and the short distance physics

of the latter [45]. A remarkable consequence of this interference are oscillations in the en-

ergy dependence of fixed angle elastic scattering, which were observed experimentally in

proton-proton collisions [46].

A systematic derivation of large angle nucleon-nucleon scattering, which includes the

Landshoff pinch contributions as well as the noted effects due to the summation of Sudakov

logarithms was initiated by Botts and Sterman [47]. They studied the interplay between “the

geometric enhancement and radiative suppression” of the hard cross-section that controls

the physics of hard large angle elastic scattering–an excellent review of the physics and

subsequent developments from [47] onwards can be found in [48]. (See also [49].)

Much of the discussion thus far is based on high-energy asymptotics. It remains an

open question whether this carries over to finite energies where experiments have been

performed [50]. Another interesting avenue, which we have not discussed thus far, is the effect

of spin dependence for polarized nucleon-nucleon scattering. In particular, for fixed target

polarized proton-proton scattering at the BNL AGS, large spin-spin correlation asymmetries

were observed at s ≈ 23 GeV2 [51] which, along with the aforementioned oscillations, were

alternatively interpreted as arising from the onset of exotic resonant structures in the vicinity

of the open charm threshold [52]. In summary, as discussed in [2], there are a number of issues

that remain unresolved in first principles approaches to elastic nucleon-nucleon scattering

at large momentum transfers.

The process we identified therefore has the potential to cast fresh light on both the

nonperturbative and perturbative aspects of short range nucleon-nucleon interactions as the

relative s between the measured photon and proton is varied. The ability to vary Q2 as well

as use a range of vector meson final states as probes allows us to search for this mechanism
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ψγ→qq̄

(
ψV→qq̄

)∗

ψD→NN
M qq̄N→qq̄N

MNN→NN

∆E

FIG. 12. Breakdown of the amplitude for the process γ∗D −→ J/ΨNN with a hard color singlet

exchange between the nucleons.

in a variety of processes to optimize the observable rates. Further, our discussion of the

deuteron can in principle be extended to “knock-out” reactions–where back-to-back nucleons

are produced in exclusive scattering off other light and heavy nuclei.

It is therefore important to estimate the rates necessary to study this process, in particular

the maximal accessible pT ’s. A first principles perturbative computation, while feasible, is

challenging and outside the scope of this work. However the take away lesson from our pQCD

computation can be generalized to the process shown in Figs. 12 and 13; we expect from the

separation of time scales that the lower part of the amplitude factorizes into diffraction on a

nucleon, times the LFPT energy denominator of the NN state, times the NN rescattering

matrix element, as in Eq. (54). 8.

One can therefore make the following ansatz:

dσγD→V NN

dTdtdy
=

1

(4π)3
1

(2s)2
∣∣MγD→V NN (∆2

T , p
′2
1T )
∣∣2 , (69)

8 We note that precisely because the presence or absence of pinches may be important, a full computation

beyond our initial estimate will be necessary in future.
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ψγ→qq̄
(
ψV→qq̄

)∗

ψD→NN
M (qq̄) (NN)→(qq̄) (N8N8) MN8N8→NN

∆E

FIG. 13. Breakdown of the amplitude the process γ∗D −→ J/ΨNN with a hard color octet

exchange between the nucleons.

with

MγD→V NN (∆2
T , p

′2
1T ) =

∫
dα

4πα(1− α)

d2p1
(2π)2

ψDσD ;σ′pσ
′
n
(p1, α)

[
2MγN→V N(∆2

T )
]

× 1

2p+∆E−
[
MNN→NN (p′21T )

]
(70)

There is a factor of 2 at the amplitude level coming from diffraction proceeding on either

the proton or neutron, and in principle there can be nontrivial spin dependence in the two

amplitudes. We assume that the scattering amplitudes are spin independent and helicity-

conserving, which allows us to couple to any of the deuteron spin states. Averaging over

deuteron spins (including the sum over Clebsch-Gordan coefficients), summing over final-

state nucleon spins, one obtains

dσγD→V NN

dTdtdy
=

1

64π4

1

(2s)2

∣∣ΨD(0,
1
2
)
∣∣2 ∣∣2MγN→V N(∆2

T )
∣∣2 1

(2p+∆E−)2

∣∣MNN→NN (p′21T )
∣∣2 (71)

The energy denominator is

2p+∆E− = 2p+
[
p′−1 + (p− p′1 +∆)− − (p1 +∆)− − (p− p1)

−] ≈ 4 p′21T = sNN (72)

assuming α′ = 1/2, and the other amplitudes are related to the cross sections by |MγN→V N(∆2
T )|2 =

4π(s)2 dσγN→V N

dT
and |MNN→NN (sNN)|2 = 4π(2sNN)

2 dσNN→NN

dTNN
. (Note that the photon-
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nucleon invariant mass is 1
2
s.) Putting it all together, one then obtains

dσγD→V NN

dTdtdy
=

1

π2

∣∣ΨD(0,
1
2
)
∣∣2
[
dσγN→V N

dT

]

T=−∆2
T

[
dσNN→NN

dTNN

]

TNN=−p′2
1T

(73)

In the next Section, we will discuss the rates obtained from this cross-section at an EIC.

IV. ESTIMATION OF RATES

Diffractive J/ψ electro- and photo-production events were previously measured at HERA

on a proton target for a range of energies corresponding to the photon-proton subprocess.

The analogous measurement of interest here is of small momentum transfer exchange T ≈ 0

but with the target deuteron undergoing an additional interaction causing it to disintegrate

with high pT ; this process will clearly be suppressed compared to the leading order process

in which the target remains intact. We will now address the question of what this margin

of suppression is. Further by comparing with the kinematics from the HERA data, we will

attempt to determine how readily accessible such a process should be at a future EIC.

As a warmup, we will first do this estimate directly using the pQCD calculation of

Section III.1 in which the nucleons are treated as single valence quarks. We will then

generalize this treatment to the more realistic case discussed in Section III.2. The asymptotic

power counting we will obtain for the former is likely very optimistic and may therefore be

considered as an absolute upper bound to the rates one obtains with the latter at very high

pT . In the toy example, if we integrate Eq. (68) over a finite window in p′1T to implement

a finite detector acceptance, and to restrict the kinematics to the regime of validity of our

calculation, we obtain

dσD

dT dy′1

∣∣∣∣
α′≈1

2

=

[
1

6π

α2
s

N2
c

∣∣ΨD(0,
1
2
)
∣∣2

p2T,min

(
1− p2T,min

p2T,max

)]
× dσN

dT
. (74)

The requirement that the invariant momentum transfer |T | ≈ ∆2
T to the NN center of mass

be small compared to the transverse momentum p′21T of the final state nucleons and that

∆− ≈ sNN

s
q− does not grow beyond the small-x regime of Glauber gluon exchange gives the

bound

Max{1 GeV 2, 1
4
|T |} ≪ p′21T ≪ |T |

4xeff
. (75)

For |T | ≈ (ΛQCD)
2 ≈ 0.04 GeV2, Q = 0,MV ≈ 3.1 GeV and s ≈ (90 GeV)2 for an EIC,

we obtain via Eq. (20) that xeff ≈ 1.2 × 10−3. This results in a window of validity of

1 GeV2 ≤ p′21T ≤ 8.4 GeV2.
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In addition to the theoretical limitations on the range of p′21T , we should also consider the

practical limitations due to detector acceptance. Simulations of Roman pot detectors at a

future EIC – performed with the eRHIC design specifications – show that good acceptance

of protons is feasible in a finite pT range ≈ 0.4 GeV − 1.5 GeV [53, 54]. This provides

a more stringent upper bound of p′21T ≤ 2.25 GeV2. Such events have also been discussed

previously in the context of centrality selection in e+A collisions [55]; further precision in the

measurement of the process of interest is allowed by installation of neutron detectors [56]. We

note that neutron-proton coincidence studies have been performed previously at Jefferson

lab–see for instance [57] and references therein.

However since experiments at the EIC are a decade away, we will consider two scenar-

ios: a “Roman pot” scenario suggested by the one extant simulation of a specific machine

configuration and the “Full” scenario limited only by the constraints of theory.

Roman pot : p2T,min = 1 GeV2 p2T,max = 2.3 GeV2

Full : p2T,min = 1 GeV2 p2T,max = 8.4 GeV2. (76)

We will now like to use some realistic numbers in (74) to estimate the cross-section for

exclusive vector meson production with high-pT deuteron breakup. For the coefficients, we

take αs ≈ 0.3 and Nc = 3, and we take the model value ΨD(0,
1
2
) ≈ 1.05 fm−1 from (A15)

in Appendix A for the deuteron wave function. We take the values of p2T,min and p2T,max from

the kinematic windows of (76). The last ingredient is the baseline diffractive cross-section

on the nucleon. For this, we take the ZEUS fit to J/ψ photoproduction data at HERA from

[31]:

dσN

d|T |

∣∣∣∣
ZEUS

=
(
dσN

d|T |

)

T=0
e−b|T | ;

(
dσN

d|T |

)

T=0
≈ 208 nb/GeV2 ; b ≈ 4.02 GeV−2. (77)

It is instructive to use this fit to note separately the p′21T dependence and the |T | dependence
of the cross-section. In the fully differential case,

dσD

dT dt dy′1

∣∣∣∣
α′≈1

2

=

[
1

12π

α2
s

N2
c

∣∣ΨD(0,
1
2
)
∣∣2
(
dσN

d|T |

)

T=0

]
× 1

p′41T
× e−b|T |, (78)

and in the pT -integrated case,

dσD

dT dy′1

∣∣∣∣
α′≈1

2

=

[
1

6π

α2
s

N2
c

∣∣ΨD(0,
1
2
)
∣∣2

p2T,min

(
1− p2T,min

p2T,max

)(
dσN

d|T |

)

T=0

]
× e−b|T |. (79)
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FIG. 14. Selected data for J/ψ photoproduction at HERA. The data and the fit (77) are taken

from Ref. [31], corresponding to a photon-proton center-of-mass energy
√
s =W between 50 GeV

and 70 GeV.

Note that the |T | dependence is exponential, reflecting the nonperturbative gluon distribu-

tion of the target, while the p′21T ∼ |t| dependence is a power law, reflecting the perturbative

exchange of hard gluons9. Using the values specified above, we obtain for the fully differential

case

dσD

dT dt dy′1
≈
[
2.1

pb

GeV4

](
1 GeV

p′1T

)4

(80)

and for the pT -integrated case,

dσD

dT dy′1
≈
[
4.1

pb

GeV2

](
1 GeV

pT,min

)2
(
1− p2T,min

p2T,max

)

≈
[
2.3 (3.7)

pb

GeV2

]
Roman pot (Full) (81)

The ZEUS data corresponds to an integrated luminosity of only 38 pb−1, which provided

sufficient statistics out to |T | = 1.5 GeV2. This is a useful baseline to estimate how easily

the deuteron photodisintegration process could be measured at an EIC, by determining the

integrated luminosity necessary to achieve comparable statistics to ZEUS’ |T | = 1.5 GeV2

data point10. Requiring the number of proton events N corresponding to an integrated

luminosity of LZEUS = 38 pb−1 in the |T | = 1.5 GeV2 bin at ZEUS to be equal to the

9 Dipole model frameworks, along the lines employed here, provide excellent fits to the combined ZEUS and

HERA data for exclusive vector meson production [37].
10 We note that this ZEUS data is taken for 50 GeV < W < 70 GeV .
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number of deuteron events at an EIC

N = LZEUS
[
dσp
dT

∣∣∣∣
(1.5 GeV2)

ZEUS

]
∆|T |bin = LEIC

[
dσD
dTdy′1

∣∣∣∣
EIC

]
∆|T |bin∆ybin (82)

corresponds to a necessary integrated luminosity for the EIC of

LEIC ≈
[
19 fb−1

]( 1 pb /GeV2

dσD / dTdy′1

)
≈
[
8.3 (5.1) fb−1

]
Roman pot (Full), (83)

where we take ∆ybin = 1 unit. Given that the present EIC design goal for instantaneous

luminosity is

(1033 − 1034) cm−2 s−1 ∼ (0.6− 6) fb−1 /wk, (84)

these statistics could potentially be achieved within about a week of EIC operation, assuming

generous estimates for the luminosity. However as noted, this toy model calculation was

done for “nucleons” consisting of single quarks so that all factors could be accounted for

consistently. The quark-quark scattering which drove the deuteron disintegration process is

fairly weak, scaling as αs/p
′2
1T at the amplitude level. For more realistic treatment of the

nucleons, the cross-sections at low transverse momentum are enhanced by nonperturbative

form factors, while the cross-sections at large transverse momentum fall off much faster with

p′1T based on measurements of the NN cross-sections.

We will now use Eq. (73) to estimate the rate. As previously, we will use ΨD(0,
1
2
) ≈

1.05 fm−1 from the appendix, and the ZEUS fit for exclusive photoproduction of J/Ψ

(for |T | = 0.04 GeV2) which gives dσγN/dT = 177 nb/GeV2. For the neutron-proton

cross-section, we will employ the available data on nucleon-nucleon scattering [58]. The

neutron-proton cross-section is shown in Fig. 15 as a function of energy. We note that the

nucleon-nucleon cross-sections are commonly quoted for the center-of-mass scattering angle

θCM = 90◦; however, this does not quite correspond to the kinematics in our case. The

center-of-mass scattering angle is related to sNN and TNN by

TNN = −(1
2
sNN − 2m2

N)(1− cos θCM), (85)

where sNN is given by (21), and TNN ≈ −p′2T . In the kinematics at hand, (α′ ≈ 1
2
and

p2T ≫ m2
N ) we have TNN ≈ −1

4
sNN , corresponding to θCM = 60◦ rather than 90◦. Therefore

we interpolate to cos θCM = 0.5 from the data tables of [58], resulting in the cross-sections

shown in Fig. 15. The cross-sections for θCM = 60◦ are about an order of magnitude larger

than the ones for θCM = 90◦. As noted in [58], the energy dependence of the neutron-proton
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FIG. 15. Proton-neutron elastic scattering cross-sections as a function of the nucleon-nucleon

invariant mass sNN . The data points are interpolated to θCM = 60◦ from the data tables of [58].

cross-section at 60◦ prefers a power law dσ
dT

∼ s−8.04
NN , rather than the s−10.40

NN dependence

shown by the 90◦ data.

Using the NN cross-sections of Fig. 15 in (73), we obtain the cross-sections for J/ψ

photoproduction with hard deuteron breakup shown in Fig. 16. Using the same criterion

of Eq. (82) to determine the necessary integrated luminosity at an EIC, we obtain the plot

shown in Fig. 17. A detection threshold of 2 fb−1 is also shown, obtained from a conservative

estimate in Eq. (84) of 0.1 fb−1/wk (average luminosity of 1.6 ·1032/cm2/sec) for the average

instantaneous luminosity and assuming an operating time of 20 weeks out of the year. The

result, shown as the red line in Fig. 17, suggests that in this time frame an EIC could

measure this breakup process on realistic nucleons out to sNN ∼ 12 GeV2 with the same

level of statistics obtained at HERA. With more generous estimates of the EIC luminosity,

this limit could extend out to sNN ∼ 18 GeV 2.

V. SUMMARY

We considered here the process of back-to-back electro- or photo-production of high trans-

verse momentum protons and neutrons accompanied by J/Ψ production in DIS scattering

off the deuteron. Such a process, which is a unique measurement at a future Electron-Ion

Collider (EIC), offers the striking possibility of using high energy quark-antiquark dipole

pairs of varying size to probe short-distance correlations between protons and neutrons at
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FIG. 16. Cross-sections for J/ψ production with deuteron breakup using proton-neutron scattering

data. The valence-quark toy model (red dashed curve) of (80) has a smaller magnitude at low sNN ,

but a slow decrease with energy as s−2
NN . The fit (73) taken from NN scattering data (blue solid

curve) has larger magnitude at low sNN due to nonperturbative form factors, but a very fast

decrease with energy as s−8
NN .

much lower energies. To leading order, the nonperturbative matrix element characterizing

the scattering, is a novel gluon Transition Generalized Parton Distribution (T-GPD), which

is sensitive to the underlying structure of the short range nucleon-nucleon potential. Mea-

surements of the T-GPD at an EIC can therefore significantly constrain models of the short

range nuclear force.

When the relative transverse momentum pT of the outgoing proton and neutron are large

(with the center of mass energy of this subsystem expressed as sNN ∼ 4p2T ), perturbative

computations of the scattering are feasible. We performed such a toy model computation

with the nucleons replaced by valence quarks which demonstrated the importance of so-

called “pinch singularities” – these ensure that the intermediate “nucleon” states are close

to being on-shell. This permits a factorization, for large sNN asymptotics, of the T-GPD

into a convolution of the deuteron wavefunction, the absorption of a color octet gluon by

each of the intermediate nucleons, and final state octet gluon exchange between the two

nucleons that ensures they remain color singlets.

The full perturbative computation is quite challenging even at leading order. Neverthe-

less, it bears strong similarities to a vast literature on large angle elastic nucleon-nucleon

scattering at high energies. The previous research addressed the relative importance of
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FIG. 17. Integrated luminosities at an EIC needed to detect J/Ψ production in the deuteron

breakup process with a given NN invariant mass sNN . With statistics from 20 weeks of running

assuming a luminosity of ∼ 1.6 ·1032/cm2/sec (black dashed line), a reasonable reach of ∼ 12 GeV2

can be obtained.

large sized Fock state configurations–the so-called Landshoff processes–where independent

quarks in a nucleon each scatter off a partner in the oncoming nucleon, versus the impor-

tance of point like Fock configurations. In the latter, all the valence quarks participate in

a single short-distance hard scattering. Quark counting rules devised for these processes

give a different asymptotic sNN dependence from the Landshoff process. Understanding

these asymptotics, and extending our understanding to lower sNN is esential for uncovering

the parton structure of short range nuclear forces. Further, as discussed, the elastic scat-

tering studies suggest a strong spin dependence to this parton structure, and the possible

contribution of hitherto unobserved multi-parton configurations.

Towards this end, exploiting the lessons from our toy model study and the extant litera-

ture, we made an ansatz that the cross-section for this process factorizes into a product of

the squared deuteron waven function, the photoproduction cross-section for diffraction J/Ψ

production, and the neutron-proton elastic scattering cross-section. We note that our ansatz

relied on a configuration where the two gluon exchange from the quark-antiquark dipole is

off one of the nucleons, with a subsequent color-singlet exchange between the nucleons. As

we discussed, other configurations are also feasible. With this ansatz, we were able to use

information on the deuteron wavefunction (articulated in the appendix), data from HERA

on exclusive photoproduction of J/Ψ and data on neutron-proton elastic scattering cross-
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sections to estimate the rates for this process at an EIC.

We imposed as a condition that the statistical accuracy of the data be comparable to that

measured in exclusive photoproduction of J/Ψ off the proton at HERA. Thus knowing the

integrated luminosity of the HERA measurements, we were able to make estimates of the

required luminosity at an EIC. The toy model calculation, in which the deuteron T-GPD

can be factorized as a product of the proton gluon distribution times a suppression factor

αS/(Nc p
′2
T ) arising from one gluon exchange in the final state, provides a lower bound for

the rates at moderate p′T . Even these small rates, however, are still accessible at an EIC

with peak luminosities a factor of 102-103 that of HERA. In the toy model, the cross-section

falls off very slowly with increasing energy, scaling as s−2
NN , which is likely overly optimistic.

We showed that a more realistic ansatz of the exclusive photo-disintegration deuteron

cross-section for J/Ψ production can be expressed as a convolution of the deuteron wave-

function at the origin, the exclusive J/Ψ photo-production cross-section at HERA and the

neutron-proton 60◦ elastic cross-section. The rates for this channel are much larger at mod-

erate p′T due to nonperturbative form factors, but fall sharply with increasing energy as s−8
NN .

These two models can be considered as upper and lower bounds for the behavior that can

be expected at an EIC.

Employing the known empirical values to compute the rates for the realistic ansatz, we

find that for a conservative average luminosity of 1.6× 1032 cm−2 s−1, comparable statistics

to the HERA measurement can be attained with a 20 week run at an EIC for squared

center-of-mass energies of the neutron-proton subsystem out to sNN ∼ 12 GeV2. With these

values of sNN , it is feasible to scan the transition region from hadron to parton degrees

of freedom in the description of short range nuclear forces. How the maximal sNN scales

with luminosity will of course depend very sensitively on the power law dependence of the

data with respect to this parameter. We stress that at present there are significant detector

related challenges to extending this measurement out to even sNN = 12 GeV2.

The EIC offers the opportunity of extending the measurement outlined here to the quark-

gluon dynamics of the target fragmentation region in DIS off polarized light nuclei as well as

in large nuclei. In addition to photo-production of heavy vector mesons, the large Q2 electro-

production of light vector mesons will provide complementary insight. Recent experiments

at Jlab, RHIC and the LHC that are sensitive to rare parton configurations in protons and

nuclei have revealed a number of surprises; the measurement we have outlined, and like

measurements, are important for a theoretical understanding of such states. Further, as
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our study clearly illustrates, the potential of EIC to scan the transition region from hadron

to parton degrees of freedom at short distances, provides an important missing link of this

physics to first principles studies of the structure of nuclei and neutron stars.
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Appendix A: Estimates of the Deuteron Wave Function

Here we discuss some model results for the wave function of the deuteron. It is common

in these nonrelativistic models to work with the convention

Ψ̃D(~p) =

∫
d3r

(2π)3/2
e−i~p·~r ΨD(~r) (A1)

and with both the coordinate- and momentum-space wave functions normalized to unity:

1 =

∫
d3r Ψ2

D(~r) =

∫
d3p Ψ̃2

D(~p). (A2)

In the nonrelativistic approximation, which is very accurate here, the momentum fraction

is given by

x =
1

2
+

pz
2m

, (A3)

so that we can define the mixed-representation wave functions

Ψ̃D(p⊥, x) =

√
dpz
dx

Ψ̃D(p
2
⊥ + p2z(x)) =

√
2m Ψ̃D(p

2
⊥ +m2(2x− 1)2), (A4)
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where we have taken the wave functions to be spherically symmetric (S-wave). With the

normalization (A4), the mixed wave functions are normalized as

1 =

∫
d2p⊥

∫
dx Ψ̃2

D(p⊥, x) =

∫
d2r⊥

∫
dxΨ2

D(r⊥, x). (A5)

First let us consider the simple model of [59]:

Ψ̃D(p⊥, x) =
1

π

√
2m

√
ab(a + b)

(a− b)2

[
1

a2 +m2(2x− 1)2 + p2⊥
− 1

b2 +m2(2x− 1)2 + p2⊥

]
(A6)

where a = 0.23161 fm−1, b = 1.308 fm−1, m= nucleon mass =4.76 fm−1. We want the wave

function at zero transverse separation,

ΨD(r = 0, x) =

∫
d2p⊥
2π

Ψ̃D(p⊥, x), (A7)

and direct integration gives

ΨD(r = 0, x) =
1

π

√
2m

√
ab(a + b)

(a− b)2
π

2π
log

b2 +m2(2x− 1)

a2 +m2(2x− 1)
(A8)

We can see this is narrowly peaked about x = 1/2 (but not as narrowly peaked as more

realistic wave functions. Evaluation at x = 1/2 gives

ΨD(r = 0, x = 1/2) =
1

π

√
m

2

√
ab(a + b)

(a− b)2
log

b2

a2
(A9)

so that

ΨD(r = 0, x = 1/2) = 1.1fm−1 = 0.22GeV (A10)

It is also convenient to write the wave function at r = 0, x = 1
2
in terms of the spherically-

symmetric coordinate-space wave function:

ΨD(r = 0, x = 1/2) =
√
2m
∫

d2p⊥
2π

∫
d2r⊥

(2π)3/2
e−i~p⊥·~r⊥

∫∞
−∞ dzΨD(

√
r2⊥ + z2) (A11)

=
√

m
π

∫∞
−∞ dzΨD(

√
z2) (A12)

This last expression has a nice physical interpretation: fixing pz = 0 means all values of z

contribute. Using instead the ANL V18 potential [60] gives

ΨAV 18
D (r = 0, x = 1/2) = 1.01 fm−1. (A13)

Similarly the Reid93 potential [61]gives

ΨR93
D (r = 0, x = 1/2) = 1.05 fm−1, (A14)
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and the Nimeggen II potential [61] gives

ΨN
D(r = 0, x = 1/2) = 1.05 fm−1. (A15)

All three of these wave functions contain a 6% D-wave state as well, so these numbers could

be multiplied by 1.06 to compensate.
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