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Nucleon Effective E-Mass in Neutron-Rich Matter from the Migdal-Luttinger Jump
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The well-known Migdal-Luttinger theorem states that the jump of the single-nucleon momentum
distribution at the Fermi surface is equal to the inverse of the nucleon effective E-mass. Recent
experiments studying short-range correlations (SRC) in nuclei using electron-nucleus scatterings at
the Jefferson National Laboratory (JLAB) together with model calculations constrained significantly
the Migdal-Luttinger jump at saturation density of nuclear matter. We show that the corresponding
nucleon effective E-mass is consequently constrained to M∗,E

0 /M ≈ 2.22±0.35 in symmetric nuclear
matter (SNM) and the E-mass of neutrons is smaller than that of protons in neutron-rich matter.
Moreover, the average depletion of the nucleon Fermi sea increases (decreases) approximately linearly
with the isospin asymmetry δ according to κp/n ≈ 0.21±0.06±(0.19±0.08)δ for protons (neutrons).
These results will help improve our knowledge about the space-time non-locality of the single-nucleon
potential in neutron-rich nucleonic matter useful in both nuclear physics and astrophysics.

PACS numbers: 21.65.Ef, 24.10.Ht, 21.65.Cd

I. INTRODUCTION

In the framework of Landau Fermi liquid theory [1–8],
the (Landau) effective mass of a Fermion is a fundamen-
tal quantity describing to leading order effects related to
the space-time nonlocality of the underlying interactions
and the Pauli exclusion principle. The study of nucleon
effective mass in finite nuclei and/or infinite nuclear mat-
ter has a long history because of the great challenges
involved and its significance for both nuclear physics
and astrophysics, see, e.g., refs. [9–11] for earlier reviews.
Moreover, there are interesting new issues related to the
isospin dependence of space-time nonlocality determin-
ing, such as the neutron-proton effective mass splitting
and their interaction cross sections in neutron-rich nucle-
onic matter, see, e.g., ref. [12] for a recent review. Despite
of the impressive progress made in this field, our current
knowledge on the nucleon effective mass especially its
isospin dependence is still rather poor. It is thus widely
recognized that better knowledge on the nucleon effective
mass is critical for us to make further progress in solving
many other interesting problems in both nuclear physics
and astrophysics. For example, the isospin dependence
of space-time non-locality affects the symmetry energy of
asymmetric nuclear matter (ANM) [13–26], the momen-
tum dependence of both the isoscalar and isovector parts
of the single-nucleon potential [27–35] and the in-medium
nucleon-nucleon scattering cross sections [36–39] used in
simulating heavy-ion collisions especially those induced
by rare isotopes, the level densities and thermal proper-
ties of hot nuclei [40–45] as well as the cooling rate and
transport properties of neutron stars [46, 47].

The effective mass of a nucleon J = (n,p) can be calcu-
lated from the derivative of its potential UJ with respect
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to either its energy E or momentum k [11]

M∗
J

M
= 1−

dUJ (k(E), E, ρ, δ)

dE
(1)

=

[

1 +
M

~2kJF

dUJ(k, E(k), ρ, δ)

d|k|

]−1

where M is the average mass of nucleons in free-space.
Moreover, we take |k| = kJF in this work with kJF =

(1 + τJ3 δ)
1/3 · kF and kF = (3π2ρ/2)1/3 being the nu-

cleon Fermi momentum in symmetric nuclear matter
at density ρ, τJ3 = +1 or −1 for neutrons or protons
and δ = (ρn − ρp)/(ρn + ρp) is the isospin asymme-
try of the medium. The M∗

J/M at saturation den-
sity ρ0 can be extracted from the energy/momentum
dependence of nucleon optical potentials using an on-
shell energy-momentum dispersion relation [48–50]. It is
known that the total nucleon effective mass can be de-
composed into [9–11]

M∗
J

M
=

M∗,E
J

M
·
M∗,k

J

M
(2)

with

M∗,E
J

M
= 1−

∂UJ

∂E
and

M∗,k
J

M
=

[

1 +
MJ

|k|

∂UJ

∂|k|

]−1

(3)

the nucleon E-effective mass (E-mass) and k-effective
mass (k-mass) to characterize the energy and momen-
tum dependence of the single-nucleon potential UJ due
to the non-locality in time and space of the underlying
interaction, respectively.
Most experiments and phenomenological models probe

only the total effective mass M∗
J/M [9–12, 48–51]. From

Eq. (2), it is seen that an independent determination
of either the E-mass or k-mass together with the total
effective mass will then allow us to know all three kinds
of nucleon effective masses. Interestingly, the Migdal-
Luttinger theorem [52, 53] connects the nucleon E-mass
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FIG. 1: A sketch of the single nucleon momentum distribution
with a high momentum tail used in this work.

directly with the jump (discontinuity) ZJ
F ≡ nJ

k
(kJF−0)−

nJ
k
(kJF+0) of the single-nucleon momentum distribution

nJ
k
at the Fermi momentum kJF illustrated in Fig. 1 via

M∗,E
J /M = 1/ZJ

F . (4)

The nuclear physics community has devoted much ef-
forts to probing the depletion of the nucleon Fermi sphere
by using transfer, pickup and (e,e′p) reactions. Results
of these studies normally given in terms of the nucleon
spectroscopic factors can constrain the nJ

k
(kJF−0) [9–11].

On the other hand, quantitative information about both
the shape and magnitude of the high-momentum tail
(HMT) above the Fermi surface have been extracted
recently from analyzing cross sections of both inclu-
sive and exclusive electron-nucleus scatterings [54–58] as
well as medium-energy photonuclear absorptions [59, 60],
providing a constraint on the nJ

k
(kJF+0). These ex-

perimental results together with model analyses pro-
vide a significant empirical constraint on the Migdal-
Luttinger jump. In this work, we show that the corre-
sponding nucleon E-mass is consequently constrained to
M∗,E/M ≈ 2.22± 0.35 in symmetric nuclear matter and
the E-mass of neutrons is smaller than that of protons
in neutron-rich matter. Moreover, the average depletion
of the nucleon Fermi sea increases (decreases) approxi-
mately linearly with the isospin asymmetry δ according
to κp/n ≈ 0.21± 0.06 ± (0.19 ± 0.08)δ for protons (neu-
trons).

II. THE SINGLE-NUCLEON MOMENTUM

DISTRIBUTION FUNCTION IN COLD

NEUTRON-RICH NUCLEONIC MATTER

We briefly recall here the main features of nJ
k
used in

the present work [61]. It is well known that the SRC due
to tensor components and/or the repulsive core of nu-
clear forces leads to a high (low) momentum tail (deple-
tion) in the single-nucleon momentum distribution above
(below) the nucleon Fermi momentum in cold nucleonic
matter, see refs. [62–65] for comprehensive reviews. It

has been found from analyzing electron-nucleus scatter-
ing data that the percentage of nucleons in the HMT is
about 25% in SNM but decreases gradually to about only
1% in pure neutron matter (PNM) [54, 55].
We parameterize the single-nucleon momentum distri-

bution in cold ANM with

nJ
k(ρ, δ) =







∆J + βJI
(

|k|/kJF
)

, 0 < |k| < kJF,

CJ

(

kJF/|k|
)4

, kJF < |k| < φJk
J
F.
(5)

As sketched in Fig. 1, the ∆J measures the depletion of
the Fermi sphere at zero momentum with respect to the
free Fermi gas (FFG) model prediction while the βJ is the
strength of the momentum dependence I(k/kJF) of the
depletion near the Fermi surface. The parameters ∆J ,
CJ , φJ and βJ depend linearly on the isospin asymmetry
according to YJ = Y0(1 + Y1τ

J
3 δ) [61]. The amplitude

CJ and the cutoff coefficient φJ determine the fraction
of nucleons in the HMT via

xHMT
J = 3CJ

(

1−
1

φJ

)

. (6)

The normalization condition [2/(2π)3]
∫∞

0
nJ
k
(ρ, δ)dk =

ρJ = (kJF)
3/3π2 requires that only three of the four pa-

rameters, i.e., CJ , φJ , βJ and ∆J , are independent. Here
we choose the first three as independent and determine
the ∆J by [61]

∆J = 1−
3βJ

(kJF)
3

∫ kJ

F

0

I

(

k

kJF

)

k2dk − 3CJ

(

1−
1

φJ

)

.

(7)
The C/|k|4 shape of the HMT both for SNM and

PNM is strongly supported by recent findings theoret-
ically and experimentally. Combining results of ana-
lyzing the d(e, e′p) cross sections [55] with an evalua-
tion of medium-energy photonuclear absorption cross sec-
tions [59] leads to a value of C0 ≈ 0.161 ± 0.015. With
this C0 and the value of xHMT

SNM = 28% ± 4% [54, 55, 66]
obtained from systematic analyses of inclusive (e,e′) re-
actions and data from exclusive two-nucleon knockout
reactions, the HMT cutoff parameter in SNM is deter-
mined to be φ0 = (1 − xHMT

SNM /3C0)
−1 = 2.38± 0.56 [61].

The value of CPNM
n = C0(1 + C1) is extracted by apply-

ing the adiabatic sweep theorem [67] to the EOS of PNM
predicted by microscopic many-body theories [68–72] as
well as that from the EOS of Fermi systems under uni-
tary condition [67, 73]. More quantitatively, we obtained
CPNM

n ≈ 0.12 and subsequently C1 = −0.25 ± 0.07 [61].
By inserting the value of xHMT

PNM = 1.5%±0.5% [54, 55, 66]
and the CPNM

n into Eq. (6), the high momentum cutoff
parameter for PNM is determined to be φPNM

n ≡ φ0(1 +
φ1) = (1 − xHMT

PNM/3CPNM
n )−1 = 1.04 ± 0.02 [61]. Conse-

quently, we get φ1 = −0.56 ± 0.10 [61] by using the φ0

determined earlier. Moreover, a quadratic momentum-
dependence I(k/kJF) = (k/kJF)

2 is adopted [61] from pre-
dictions of some nuclear many-body theories [74], then
Eq. (7) gives us ∆J = 1 − 3βJ/5 − 3CJ(1 − 1/φJ).
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Specifically, we have β0 = (5/3)[1−∆0−3C0(1−φ−1
0 )] =

(5/3)[1−∆0−xHMT
SNM ] for SNM. Then, using the predicted

value of ∆0 ≈ 0.88 ± 0.03 [75–77] and the experimental
value of xHMT

SNM ≈ 0.28 ± 0.04, the value of β0 is esti-
mated to be about −0.27 ± 0.08. Similarly, the condi-
tion βJ = β0(1 + β1τ

J
3 δ) < 0, i.e., nJ

k
is a decreasing

function of momentum towards kJF, indicates generally
that |β1| ≤ 1. For more details of these parameters, see
ref. [61].
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FIG. 2: (Color Online) The average depletion of the neu-
tron and proton Fermi surface as a function of isospin asym-
metry in neutron-rich matter. The inset shows the average
nucleon depletion in symmetric matter from this work and
earlier studies [10, 80–82].

The average depletion of the Fermi sphere in asymmet-
ric nuclear matter

κJ =1−∆J −
1

kJF

∫ kJ

F

0

βJ

(

|k|

kJF

)2

dk

=
4

15
βJ + 3CJ

(

1−
1

φJ

)

(8)

depends strongly on the tensor part of the nucleon-
nucleon interaction [77, 78]. It provides a quantitative
measure of the validity of the Hugenholtz-Van Hove
(HVH) theorem [79] and more generally independent par-
ticle models. A deeper depletion indicates a more serious
violation of the HVH theorem [80–83]. Experimentally,
it can be measured by using the nucleon spectroscopic
factor from transfer, pickup and (e,e′p) reactions [80]. A
well-known example is the finding that mean-field mod-
els overpredict the occupation of low-momentum nucleon
orbitals compared to data of electron scatterings on nu-
clei from 7Li to 208Pb by about 30-40% due to the ne-
glect of correlations [84]. The κJ is also believed to deter-
mine the rate of convergence of the hole-line expansion
of the nuclear potential [10, 62, 80, 82]. In Fig. 2, the
average depletion of the neutron and proton Fermi sur-
face is shown separately as a function of isospin asymme-

try in neutron-rich matter. It is interesting to see that
the neutron/proton depletion decreases/increases with
δ approximately linearly, indicating that protons with
energies near the Fermi surface experience larger corre-
lations with increasing asymmetry in qualitative agree-
ment with findings from both analyses using microscopic
many-body theories [76, 78] and phenomenological mod-
els [87]. This is also consistent with experimental find-
ings from earlier studies of nucleon spectroscopic factors
[85], dispersive optical model analyses of proton-nucleus
scatterings [86] and the neutron-proton dominance model
analyses of electron-nucleus scattering experiments [54].
More quantitatively, the neutron-proton splitting of the
κJ is approximately κn − κp ≈ [8β0β1/15 + 6C0φ1/φ0 +

6C0C1(1− φ−1
0 )]δ ≈ (−0.37± 0.16)δ. For symmetric nu-

clear matter, we have κ = 4β0/15 + xHMT
SNM ≈ 0.21± 0.06

comparable with the results obtained earlier from other
studies [10, 80–82], as shown in the inset of Fig. 2.

Several consequences of the SRC modified nucleon mo-
mentum distribution have been studied recently. In par-
ticular, it was found that the nucleon kinetic symmetry
energy is reduced compared to the FFG model predic-
tion [61, 66, 88–95]. This has important consequences on
isovector observables in heavy-ion collisions [66, 96–98]
and on the critical densities for forming different charge
states of ∆(1232) resonances in neutron stars [99, 100].
Moreover, the SRC was also found to enhance the isospin-
quartic term in the kinetic energy of ANM within both
non-relativistic [61] and relativistic models [95]. Very re-
cently, it was shown that the SRC-induced depletion of
the nucleon Fermi surface affects significantly the neu-
trino emissivity, heath capacity and neutron superfluidity
in neutron stars [101].

Before going further, it is necessary to address a pos-
sible drawback of our parameterization for the single-
nucleon momentum distribution in Eq. 5. To our best
knowledge, the original derivations [52, 53] of the Migdal-
Luttinger theorem do not explicitly require the deriva-
tive of the momentum disturibution [dnk/dk]k=kF±0 at
the Fermi momentum kF to be −∞. Of course, one
can associate mathematically loosely the finite drop in
nk over zero increase in momentum at kF to a slope of
−∞. Some later derivations using various approxima-
tion schemes, such as the “derivative expansion” in which
the momentum distribution is expressed in terms of en-
ergy derivatives of the mass operator by Mahaux and
Saror [102], have shown that the slope of the momen-
tum distribution should have the asymptotic behavior of
[dnk/dk]k=kF±0 = −∞. Similar to many other calcula-
tions including some examples given in refs. [10, 102], our
parameterization of Eq. 5 does not have such behavior
from neither side of the discontinuity. However, similar
to what has been done in ref. [103], in parameterizing
the nk both above and below the kF one can add a term
that is vanishingly small in magnitude but asymptoti-
cally singular in slope at kF, such as η · (k−kF

Λ
) · ln(k−kF

Λ
)

where η is a constant much smaller than ∆0 and C0. Of
course, one then has to determine the totally 4 additional
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parameters (η and Λ for neutrons and protons above and
below their respective Fermi momenta) and readjust the
other parameters already used in Eq. 5. This has the
potential of reducing the error bars of the quantities we
extract but requires more experimental information. Un-
fortunately, the analyses of existing experimental data we
mentioned above have so far not considered such correc-
tions. While we do not expect the corrections will affect
significantly the size of the Migdal-Luttinger jump since
they have vanishingly small magnitudes at kF, our de-
scription about the discontinuity of nk at kF certainly
should be investigated further and possibly improved in
the future. For the present exploratory study using infor-
mation from phenomenological model analyses of limited
experimental data, we feel that the parameterization of
Eq. 5 is good enough.

III. NUCLEON E-EFFECTIVE MASS AND ITS

ISOSPIN SPLITTING IN NEUTRON-RICH

NUCLEONIC MATTER

We now turn to the nucleon E-mass obtained through
the Migdal-Luttinger theorem of Eq. (4). In terms
of the parameters describing the single-nucleon momen-
tum distribution nJ

k
, we have ZJ

F = ∆J + βJ − CJ =

1 + 2βJ/5 − 4CJ + 3CJφ
−1
J . For SNM, it is given by

Z0
F = 1+2β0/5−4C0+3C0φ

−1
0 = 1+2β0/5−C0−xHMT

SNM ,
then using the values for β0, φ0, C0 and xHMT

SNM given

above, we obtain a value of M∗,E
0 /M ≈ 2.22 ± 0.35.

Shown in Fig. 3 with the filled squares are the ex-
tracted nucleon E-mass in SNM within the uncertain
range of the β0 parameter. It is seen that the variation

of M∗,E
0 /M with β0 is rather small. For comparisons,

also shown are earlier predictions based on (1) a semi-
realistic parametrization through a relative s-wave expo-
nential nucleon-nucleon interaction potential (red dash
line) [104], (2) a Green’s function method considering col-
lective effects due to the coupling of nucleons with the
low-lying particle-hole excitations of the medium (green
solid line) [105], (3) a correlated basis function (CBF)
method using the Reid and Bethe-Johnson potentials
(black and magenta solid lines) [106, 107], (4) two non-
relativistic models with the Paris nuclear potential (pur-
ple and red solid line) [103, 108], (5) a low density expan-
sion of the optical potential (orange solid line) [109] and
(6) a relativistic Dirac-Brueckner approach (dash black
line) [83]. While we are unable to comment on possi-
ble origins of the different model predictions and their
differences from the empirical values presented here, to
our best knowledge, it is the first time that the nucleon
E-mass is extracted using the Migdal-Luttinger theo-
rem from the single-nucleon momentum distribution con-
strained by experiments phenomenologically.

In neutron-rich nucleonic matter, an interesting quan-
tity is the neutron-proton E-mass splitting generally ex-

-0.36 -0.32 -0.28 -0.24 -0.20 -0.16
1.0

1.5

2.0

2.5

3.0

3.5

4.0

0

 Bernard et al., 1981
 Blaizot et al., 1981
 Krotscheck et al., 1981
 Jackson et al., 1982

Sartor, 1977

Grange et al., 1987

Baldo et al., 1990 2.22 0.35

Jong et al., 1991

M
*,E 0
/M

FIG. 3: (Color Online) The nucleon effective E-mass in sym-
metric nuclear matter (blue lines with error bars) at normal
density within the uncertainty range of the shape parameter
β0 of the nucleon momentum distribution extracted using the
Migdal-Luttinger theorem in this work in comparison with
predictions of earlier studies [83, 103–109], see detailed de-
scriptions in the text.

pressed as

M∗,E
n −M∗,E

p

M
= sEδ + tEδ

3 +O(δ5) (9)

where sE and tE are the linear and cubic splitting func-
tions, respectively. The latter generally depend on the
nucleon momentum and the density of the medium.
Shown in Fig. 4 are the values of sE and tE at the nu-
cleon Fermi momentum in nuclear matter at ρ0 within
the uncertainty range of the β1-parameter. More quanti-
tatively, at the lower limit, mid-value and upper limit of
the β1-parameter, we have sE(β1 = −1) ≈ −3.29± 1.23,
tE(β1 = −1) ≈ −1.49± 1.47, sE(β1 = 0) ≈ −2.22± 0.84,
tE(β1 = 0) ≈ −0.41 ± 0.42, sE(β1 = 1) ≈ −1.16 ± 0.64
and tE(β1 = 1) ≈ −0.09 ± 0.05, respectively. We note
that the cubic splitting function tE generally can not be
neglected (e.g., for β1 = 0, tE/sE ≈ 18%), and it may
have sizable effects on the cooling and thermal proper-
ties of neutron stars [46, 101].
An important feature shown in Fig. 4 is that in

neutron-rich nucleonic matter, the E-mass of a neutron
is smaller than that of a proton, i.e., M∗,E

n < M∗,E
p .

However, the neutron-proton E-mass splitting in ANM
has an appreciable dependence on the largely uncertain
β1-parameter characterizing the isospin-dependence of
the nucleon momentum distribution near the Fermi sur-
face. Unfortunately, currently there exists no reliable
constraint on the parameter β1. Thus, it is interesting to
mention that there are experimental efforts to measure
the isospin dependence of the nucleon spectroscopic fac-
tors using direct reactions with radioactive beams [110]
and the isospin-dependence of SRC with both electrons
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FIG. 4: (Color Online) The linear and cubic splitting func-
tions sE and tE at normal density within the uncertain range
of the β1-parameter characterizing the isospin-dependence of
the nucleon momentum distribution near the Fermi surface.

and hadrons [111]. These experiments have the potential
to constrain the β1 and thus the neutron-proton E-mass
splitting in neutron-rich matter.

IV. SUMMARY

In summary, using the Migdal-Luttinger theorem re-
lating the discontinuity of the single-nucleon momentum

distribution function at the Fermi surface with the nu-
cleon E-mass, we have extracted the latter and its isospin
splitting in neutron-rich nucleonic matter at normal den-
sity using the single-nucleon momentum distribution con-
strained by recent experiments at the JLAB. We found

that the nucleon E-mass in SNM isM∗,E
0 /M ≈ 2.22±0.35

while in neutron-rich matter the E-mass of neutrons is
smaller than that of protons. Moreover, the average de-
pletion of the nucleon Fermi sea increases (decreases) ap-
proximately linearly with the isospin asymmetry δ ac-
cording to κp/n ≈ 0.21 ± 0.06 ± (0.19 ± 0.08)δ for pro-
tons (neutrons). These results provide useful references
for microscopic nuclear many-body theories and will help
improve our knowledge about the space-time non-locality
of the single-nucleon potential in neutron-rich nucleonic
matter.

Acknowledgement

We would like to thank Isaac Vidaña and William
G. Newton for helpful discussions. This work was sup-
ported in part by the U.S. National Science Foundation
under Grant No. PHY-1068022, the U.S. Department
of Energy’s Office of Science under Award Number DE-
SC0013702 and the National Natural Science Foundation
of China under grant no. 11320101004.

[1] L.D. Landau, JETP. 3, 920 (1957).
[2] A.A. Abrikosov and I.M. Khalatnikov, Prog. Rep. Phys.

22, 329 (1959).
[3] A.A. Abrikosov, L.P. Gorkov, and I.E. Dzyaloshin-

ski, Methods of Quantum Field Theory in Statistical

Physics, Dover Publications, Inc., 1963.
[4] P. Nozières, Theory of Interacting Fermi System, West-

view, 1964.
[5] E.M. Lifshitz and L.P. Pitaevskii, Statistical Physics 2,

Elsevier, 1980.
[6] G. Baym and C. Pethick, Landau Fermi-Liquid Theory:

concepts and applications, J. Wiley, 1991.
[7] D. Pines, Theory Of Quantum Liquids: Normal Fermi

Liquids, Westview, 1994.
[8] J.W. Negele and H. Orland, Quantum Many-particle

Systems, Westview, 1998.
[9] J.P. Jeukenne, A. Lejeune, and C. Mahaux, Phys. Rep.

25, 83 (1976).
[10] C. Mahaux, P.F. Bortignon, R.A. Broglia and C.H.

Dasso, Phys. Rep. 120, 1 (1985).
[11] M. Jaminon and C. Mahaux, Phys. Rev. C 40, 354

(1989).
[12] B.A. Li and L.W. Chen, Mod. Phys. Lett. A 30, 1530010

(2015).

[13] B.A. Li, C.M. Ko, and W. Bauer, Int. J. Mod. Phys. E
7, 147 (1998).

[14] P. Danielewicz, R. Lacey, and W.G. Lynch, Science 298,
1592 (2002).

[15] V. Baran, M. Colonna, V. Greco, and M. Di Toro, Phys.
Rep. 410, 335 (2005).

[16] A.W. Steiner, M. Prakash, J.M. Lattimer, and P.J. Ellis,
Phys. Rep. 411, 325 (2005).

[17] L.W. Chen, C.M. Ko, B.A. Li, and G.C. Yong, Front.
Phys. China 2, 327 (2007).

[18] B.A. Li, L.W. Chen, and C.M. Ko, Phys. Rep. 464, 113
(2008).

[19] B.M. Tsang et al., Phys. Rev. C 86, 105803 (2012).
[20] L.W. Chen, C.M. Ko, B.A. Li, C. Xu, and J. Xu, Eur.

Phys. J. A 50, 29 (2014).
[21] N.K. Glendenning, Compact Stars, 2nd edition,

Spinger-Verlag New York, Inc., 2000.
[22] J.M. Lattimer and M. Prakash, Science 304, 536 (2004);

Phys. Rep. 442, 109 (2007).
[23] J.M. Lattimer, Annu. Rev. Nucl. Part. Sci. 62, 485

(2012).
[24] J.M. Lattimer and A.W. Steiner, Eur. Phys. J. A50, 40

(2014).
[25] B.A. Li and X. Han, Phys. Lett. B727, 276 (2013).



6

[26] “Topical issue on nuclear symmetry energy”, Eds., B.A.
Li, A. Ramos, G. Verde, and I. Vidaña, Eur. Phys. J. A
50, No. 2, (2014).

[27] I. Bombaci, Chap. 2 in Isospin Physics in Heavy-Ion
Collisions at Intermediate Energies, edited by B. A. Li
and W. Udo Schrder,(Nova Science, New York, 2001).

[28] B.A. Li, Phys. Rev. C 69, 064602 (2004).
[29] B.A. Li, C.B. Das, S. Das Gupta and C. Gale, Phys.

Rev. C 69, 011603 (2004); ibid, Nucl. Phys. A 735, 563
(2004).

[30] W. Zuo, L.G. Cao, B.A. Li, U. Lombardo, and C.W.
Shen, Phys. Rev. C 72, 014005 (2005).

[31] J. Rizzo, M.Colonna and M. Di Toro, Phys. Rev. C 72,
064609 (2005).

[32] V. Giordano, M. Colonna, M. Di Toro, V. Greco, and
J. Rizzo, Phys. Rev. C 81, 044611 (2010).

[33] Z.Q. Feng, Nucl. Phys. A 878, 3 (2012); Phys. Lett. B
707, 83 (2012).

[34] Y. Zhang, M.B. Tsang, Z. Li, and H. Liu, Phys. Lett. B
732, 186 (2014).

[35] W.J. Xie and F.S. Zhang, Phys. Lett. B 735, 250 (2014).
[36] J.W. Negele and K. Yazaki, Phys. Rev. Lett. 62, 71

(1981).
[37] V.R. Pandharipande and S.C. Pieper, Phys. Rev. C45,

791 (1991).
[38] D. Persram and C. Gale, Phys. Rev. C65, 064611 (2002).
[39] Bao-An Li and Lie-Wen Chen, Phys. Rev. C72, 064611

(2005).
[40] M. Prakash, J. Wambachand, and Z.Y. Ma, Phys. Lett.

B128, 141 (1983).
[41] S. Shlomo and J. B. Natowitz, Phys. Rev. C44, 2878

(1991).
[42] R. J. Charity and L. G. Sobotka, Phys. Rev. C71,

024310 (2005).
[43] B. Behera, T.R. Routray, and S.K. Tripathy, J. Phys.

G: Nucl. Part. Phys. 38, 115104 (2011).
[44] R. J. Charity, W. H. Dickhoff, L. G. Sobotka and S.J.

Waldecker, Euro Phys. J. A50, 23 (2014).
[45] Jun Xu, Phys. Rev. C91, 037601 (2015).
[46] P. Haensel, A.Y. Potekhin, and D.G. Yakovlev, Neutron

Star 1, Springer, 2007.
[47] H.F. Zhang, U. Lombardo and W. Zuo, Phys. Rev. C82,

015805 (2010).
[48] Z.H. Li, U. Lombardo, Phys. Rev. C 78 (2008) 047603.
[49] X.H. Li, B.J. Cai, L.W. Chen, R. Chen, B.A. Li and C.

Xu, Phys. Lett. B721, 101 (2013).
[50] X.H. Li, W.J. Guo, B.A. Li, L.W. Chen, F.J. Fattoyev

and W.G. Newton, Phys. Lett. B743, 408 (2015).
[51] Z. Zhang and L.W. Chen, arXiv:1507.04675.
[52] A.B. Migdal, Sov. Phys. JETP. 5, 333 (1957).
[53] J.M. Luttinger, Phys. Rev. 119, 1153 (1960).
[54] O. Hen et al., Science 346, 614 (2015).
[55] O. Hen, L.B. Weinstein, E. Piasetzky, G.A. Miller, M.

Sargsian, and Y. Sagi, Phys. Rev. C 92, 045205 (2015).
[56] C. Colle, O. Hen, W. Cosyn, I. Korover, E. Piasetzky,

J. Ryckebusch, and L.B. Weinstein, Phys. Rev. C 92,
024604 (2015).

[57] K.S. Egiyan et al., Phys. Rev. Lett. 96, 082501 (2006).
[58] E. Piasetzky et al., Phys. Rev. Lett. 97, 162504 (2006);

R. Shneor et al., Phys. Rev. Lett. 99, 072501 (2007); R.
Subedi et al., Science 320, 1467 (2008); L.B. Weinstein
et al., Phys. Rev. Lett. 106, 052301 (2011); I. Korover
et al., Phys. Rev. Lett. 113, 022501 (2014).

[59] R. Weiss, B. Bazak, and N. Barnea, Phys. Rev. Lett.

114, 012501 (2015).
[60] R. Weiss, B. Bazak, and N. Barnea, Phys. Rev. C92,

054311 (2015).
[61] B.J. Cai and B.A. Li, Phys. Rev. C 92, 011601(R)

(2015).
[62] H.A. Bethe, Ann. Rev. Nucl. Part. Sci. 21, 93 (1971).
[63] A.N. Antonov, P.E. Hodgson, and I.Zh. Petkov, Nu-

cleon Momentum and Density Distribution in Nuclei,
Clarendon Press, Oxford, 1988.

[64] J. Arrington, D.W. Higinbotham, G. Rosner, and M.
Sargsian, Prog. Part. Nucl. Phys. 67, 898 (2012).

[65] C. Ciofi degli Atti, Phys. Rep. 590, 1 (2015).
[66] O. Hen, B.A. Li, W.J. Guo, L.B. Weinstein, and E.

Piasetzky, Phys. Rev. C 91, 025803 (2015).
[67] S.N. Tan, Ann. Phys. 323, 2952 (2008); 323, 2971

(2008); 323, 2987 (2008).
[68] A. Schwenk and C.J. Pethick, Phys. Rev. Lett. 95,

160401 (2005).
[69] E. Epelbaum, H. Krebs, D. Lee, and Ulf-G. Meissner,

Eur. Phys. A 40, 199 (2009).
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