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We investigate the mass spectra of open heavy flavor mesons in an external constant magnetic
field within QCD sum rules. Spectral Ansätze on the phenomenological side are proposed in order
to properly take into account mixing effects between the pseudoscalar and vector channels, and the
Landau levels of charged mesons. The operator product expansion is implemented up to dimension-
5 operators. As a result, we find for neutral D mesons a significant positive mass shift that goes
beyond simple mixing effects. In contrast, charged D mesons are further subject to Landau level
effects, which together with the mixing effects almost completely saturate the mass shifts obtained
in our sum rule analysis.

I. INTRODUCTION

Strong electromagnetic fields created in ultrarelativis-
tic heavy-ion collisions [1] and neutron stars/magnetars
[2, 3] have motivated a number of phenomenological stud-
ies that lead to the discovery of novel phenomena such
as the chiral magnetic effect [4] and the (inverse) mag-
netic catalysis [5] (see Refs. [6–10] for recent reviews and
references therein). Recently, using an effective field the-
ory method, the ρ-meson condensation was also discussed
[11]. While the zero mode proposed to emerge in the ρ-
meson channel has not been supported by QCD-based
arguments, lattice QCD simulations or quark model cal-
culations [12–15], these studies have shown intriguing dy-
namics of the composite particles which are quite differ-
ent from the naive picture on the basis of the hadronic
degrees of freedom, and thus suggest the importance of
taking into account the elementary degrees of freedom,
i.e., quarks and gluons, when the strength of the mag-
netic field becomes larger than the QCD scale.
The QCD sum rule (QCDSR) is a semianalytic method

[16–20] which allows one to investigate the hadron mass
spectrum on the basis of QCD using the dispersion rela-
tion for a current correlator. With the help of the opera-
tor product expansion (OPE) [21], one can include non-
perturbative properties of the QCD vacuum, as well as
perturbative dynamics of quarks and gluons, into a power
series expansion of the current correlator. The informa-

∗ pgubler@riken.jp
† koichi.hattori@riken.jp
‡ suhoung@yonsei.ac.kr
§ oka@th.phys.titech.ac.jp
¶ sho@post.kek.jp

∗∗ kei.suzuki@riken.jp

tion encoded in the OPE is then connected to the spec-
tral density on the other side of the dispersion relation
called the phenomenological side. After having been de-
veloped for the vacuum [16, 22, 23], QCDSR was applied
to hadron properties at finite temperature and density
[24]. Some of the present authors investigated light vec-
tor mesons [25–28] and quarkonium spectra [25, 29–33]
in media which are related to important issues in heavy-
ion collisions [34, 35]. Open heavy flavor systems have
also been investigated in vacuum [36] and finite density
[37–39].

Recently, we have extended the framework of QCDSR,
applying it to charmonium spectroscopy in magnetic
fields [40, 41], where the effects of magnetic fields were
implemented both on the OPE side and the phenomeno-
logical side. Investigating the roles of magnetically in-
duced terms on the phenomenological side, we have con-
structed a spectral Ansatz that takes into account the
mixing effects between ηc and J/ψ induced by a mag-
netic field. By using this Ansatz, we have obtained mass
spectra consistent with those from potential model cal-
culations [42, 43]. Therefore, it is now understood that
one should use the correctly modified spectral Ansatz not
only for the charmonia but also for general hadrons when
the mixing effects emerge.

In this work, we investigate mass spectra of pseu-
doscalar open heavy flavors in the presence of external
constant magnetic fields. Here again, we take into ac-
count the effects of magnetic fields both on the OPE side
and on the phenomenological side. In contrast to char-
monia, open heavy flavors include not only electrically
neutral but also charged mesons, whose masses will split
in magnetic fields. While the mixing effects occur to both
of them, charged mesons are subject to another effect,
namely the Landau level quantization in magnetic fields.
In this paper, we will discuss how to properly treat the
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Landau levels on the phenomenological side for the first
time. On the OPE side, we take into account operators
up to dimension 5 for the vacuum part and compute the
Wilson coefficients of operators up to dimension 4 and
second order in eB for terms depending on the magnetic
field. This expansion is valid when the magnitude of the
magnetic field is small compared to the separation scale
of the OPE1. New operator expectation values appear in
the presence of external magnetic fields as seen in the
tensor-type quark condensate 〈q̄σµνq〉 [44, 45].
We should mention here a preceding work [46] in which

B-meson spectra in magnetic fields were investigated by
using QCDSR. While we follow their basic strategy for
the implementation of the OPE, we would like to point
out two important differences between their and our re-
sults. First, in Ref. [46], the mixing effects between B
and B∗ mesons were not taken into account on the phe-
nomenological side. This mixing effect could be strong,
when the mass difference between the mixing partners is
small, as is indeed the case for the B and B∗ mesons.
Second, the emergence and exact cancellation of infrared
(IR) divergences on the OPE side were not treated prop-
erly in Ref. [46]. In the chiral limit, infrared diver-
gences appear in quark loops with insertions of constant
magnetic fields, due to soft (zero) momentum transfers
from the external constant field. However, as shown in
Ref. [38] at finite density and in the present work for
magnetic fields, the IR divergences between the quark
loops and the quark condensates exactly cancel, leading
to an IR-finite OPE. To achieve this, it is necessary to
consistently include all types of quark condensates up to
the second order in the magnetic field. We show that a
dimension-4 condensate should be included as well as the
dimension-3 condensates considered in Ref. [46]. We will
come back to these points below.
This manuscript is organized as follows: We first

briefly describe the conventional QCDSR analysis in
Sec. II, and then examine the phenomenological side of
the D-meson channel in magnetic fields in Sec. III and
the corresponding OPE side in Sec. IV. The mass spectra
obtained from the QCDSR analysis are given in Sec. V.
Section VI is devoted to the summary of this work. Ap-
pendixes include estimates of the mixing strengths, the
treatment of the infrared divergences, estimates of the
condensates, and tables of the Borel-transformed OPE.

II. BRIEF DESCRIPTION OF QCD SUM RULES

We define a time-ordered current correlator by

ΠJ (q) = i

∫

d4x eiqx〈0|T [J(x)J(0)]|0〉 , (1)

1 More precisely, the magnitude of magnetic fields should be com-
pared with the Borel mass since it works as a separation scale as
discussed below (see Appendix C).

where the superscript J specifies a channel. We investi-
gate neutral and charged open heavy flavors composed of
a light quark and a heavy antiquark and their antiparti-
cles:

Neutral : J (0) = iūγ5c, J (0̄) = ic̄γ5u (2)

Charged : J (+) = id̄γ5c, J (−) = ic̄γ5d. (3)

While we will focus on charmed mesons throughout this
paper, extension to bottom mesons is straightforward.
The mass spectra of the two neutral and separately the
two charged mesons remain degenerate in an external
magnetic field. The QCD sum rule relates the hadronic
spectral function in the physical region (q2 = −Q2 ≥
0) to the operator product expansion (OPE) performed
in the deep Euclidean region (Q2 → ∞), through the
dispersion relation given as

ΠJ (Q2) =
1

π

∫ ∞

0

ImΠJ (s)

s+Q2
ds + (subtractions). (4)

To extract the lowest-lying pole in the spectral function
ρ(s) = π−1ImΠJ (s), one can use an Ansatz convention-
ally called “pole + continuum” given by

ρvac(s) = f0δ(s−m2) +
1

π
ImΠJ

pert(s)θ(s − sth). (5)

The parameters sth and f0 are the threshold of the con-
tinuum and the coupling strength between the current
and the lowest-lying pole, respectively. To make the in-
tegral on the right-hand side of Eq. (4) dominated by
the pole contribution and improve the convergence of the
OPE, we use the Borel transform defined by

B[f(Q2)] ≡ lim
Q2,n→∞
Q2/n=M2

(Q2)n+1

n!

(

− d

dQ2

)n

f(Q2). (6)

Since the right-hand side of Eq. (4) is transformed to

B[rhs of Eq. (4)] =
∫

ρ(s)e−s/M2

ds, (7)

the contribution from the continuum in the high-energy
perturbative region is exponentially suppressed. By ap-
plying the Borel transform to both sides of Eq. (4), we
find the mass formula

m2 = − ∂

∂(1/M2)
ln[MOPE −Mcont] (8)

with

MOPE = B[ΠJ
OPE], (9)

Mcont =
1

π

∫ ∞

sth

ImΠpert(s)e
−s/M2

ds. (10)

Since the results should be independent of the unphysical
Borel parameter M2, we should find a window in which
the mass formula (8) is approximately independent of
M2. One can estimate the precision of the results by
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the M2 dependence of the mass within the Borel win-
dow. This is the conventional procedure in QCD sum
rule analyses.
We, however, need to reexamine the Ansatz (5) when

investigating effects of an externally applied magnetic
field. Its effects should be consistently taken into account
on both sides of Eq. (4) because effects of magnetic fields
appear at both hadronic and quark levels. In the next
section, we show how the Ansatz (5) should be modified
in the presence of an external magnetic field, and obtain
appropriate Ansätze for neutral and charged D mesons,
respectively.

III. EFFECTS OF HADRONIC MIXING AND

LANDAU LEVELS ON THE

PHENOMENOLOGICAL SIDE

In this section, we discuss effects of external magnetic
fields on the meson spectrum by using effective field theo-
ries composed of mesonic degrees of freedom. This will be
helpful not only to understand the naive expectation of
the effects but also to construct the appropriate spectral
Ansatz (5) on the phenomenological side of QCDSR. In
the following, we discuss two important effects, which are
magnetically induced mixing effects and Landau levels.

A. Mixing effects

Effects of magnetic fields give rise to mixing among
spin eigenstates [40–43, 47], such as between ηc and one
spin state of J/ψ. This mixing is caused by the break-
ing of a part of the spatial rotation symmetry: there
remains only the azimuthal component along the direc-
tion of the external magnetic field. This indicates that
only the spin state along the magnetic field can persist
as a good quantum number of the meson systems, and
thus that there is a mixing between the eigenstates of the
total spin, (Stotal, Sz) = (1, 0) and (0, 0). The vector me-
son state with this polarization is called the longitudinal
state below. Mixing effects will also arise in the spectra
of both charged and neutral D mesons.
In two recent papers [40, 41], the QCDSR has been

extended so that hadronic mixing effects are tractable
on the phenomenological side. An important observa-
tion in these works was that the mixing effect induces
two adjacent poles in the spectral function ρ(q2) corre-
sponding to the original lowest-lying pole and its mix-
ing partner. In the present pseudoscalar channel case,
these are the D-meson and the longitudinal D∗-meson
poles, and vice versa in the vector channel. To obtain
the precise mass spectrum from QCDSR, contributions
from these poles have to be treated separately, as other-
wise, one would obtain an average of the two pole masses
from a naive QCDSR analysis with a single pole. How-
ever, it is difficult to separate them by using the Borel
transform unlike the separation between the lowest-lying

pole and the continuum, because these poles are close to
each other. Moreover, the mixing effect becomes stronger
as the poles approach each other, and the contamina-
tion thus becomes a serious problem. Hence, it is crucial
to have a sufficiently accurate knowledge of the mixing
strength between the two states.

This mixing strength can in our case be estimated by
using the effective interaction vertex (see Ref. [41])

LγPV =
g
PV

m0
eF̃µν(∂

µP )V ν (11)

where P and V µ represent the pseudoscalar and vector
fields, and Fµν andm0 are the field strength tensor of the
external magnetic field and the average massm0 = (mP+
mV)/2. Diagonalizing these states, we find the physical
D and D∗ states To obtain the coupling constant g

PV

for the charged case, we fit the experimentally measured
radiative decay width Γ[V → P + γ], as shown in the
first section of Appendix A. For the neutral D meson, the
same radiative decay width has so far not been directly
measured. The estimate for the mixing strength can thus
not be as precise as for the charged case. In Appendix A
we therefore use two independent methods to evaluate
g
PV

and its systematic uncertainty.
Let us discuss the mass spectra obtained by diagonaliz-

ing the mass matrix in the presence of the effective vertex
(11). The physical mass eigenvalues are found to be

m2
D∗,D =

1

2



M2
+ +

γ2

m2
0

±
√

M4
− + 2

γ2M2
+

m2
0

+
γ4

m4
0

,



(12)

where M2
+ = m2

p +m2
v, M

2
− = m2

v −m2
p, and γ = gPVeB.

Expanding the right-hand side of Eq. (12) up to the sec-
ond order in γ, we find

m2
D∗,D = m2

V,P ± γ2

M2
−

. (13)

Figure 1 shows the mass spectra of the physical D- and
D∗- meson states. We see a level repulsion between
D and the longitudinal D∗ mesons for all considered
cases. In particular, in the neutral case, the second-
order perturbation breaks down above eB ∼ 0.1 GeV2

for g
PV

= 3.6736.

The mixing effect is shown diagrammatically in Fig. 2,
in which the D meson created by the pseudoscalar cur-
rent is mixed with a D∗ meson in the intermediate state
through the vertex (11). Note that we here ignore the
direct coupling of the current to the D∗ meson in the
presence of a magnetic field. At least in the heavy-
quark limit, this coupling was, however, shown to be
small [40, 41]. From the diagram in Fig. 2, we find the
spectral Ansatz up to the second order in the external
magnetic field as

ρ(0)(s) = ρvac(s) +
1

π
ImΠ

(0)
mix(s) (14)
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FIG. 1. Level repulsion due to a mixing between the D and the longitudinal D∗ mesons. The left panel shows masses of neutral
D and D∗, while the right panel show those of charged ones.

FIG. 2. Diagrammatic representation of mixing effects from
a three-point vertex (11).

with

Πmix(q
2) = −f0

γ2

M4
−

[

1

q2 −m2
V

(15)

− 1

q2 −m2
P

− M2
−

(q2 −m2
P
)2

]

.

The superscript of ρ(0)(s) denotes a neutral D meson.
The roles of the three terms in Eq. (15) have been elab-
orated in Refs. [40, 41], and will be briefly discussed in
Sec. V.

B. Summation of Landau levels

For the charged D mesons, we should examine effects
of the Landau levels in addition to the mixing effect. In
a magnetic field, the energy levels of spin-0 and spin-1
particles are discretized as

E(0)(n, pz) =
√

m2
P
+ (2n+ 1)eB + p2z, (16)

E(1)(n, pz, Sz) =
√

m2
v + (2n+ 1)eB + p2z + gSzeB,

(17)

specified by the integer n (≥ 0) for the Landau levels, the
continuous momentum pz, and the spin quantum number
Sz along the external magnetic field. In what follows, we
will for simplicity consider the case of zero momentum

in the z direction (pz = 0) and focus on the treatment
of the spin-0 particles. Generalizations to nonzero pz
and spin 1 are straightforward. Furthermore, we here
for the moment ignore possible mixing effects, that were
discussed in the previous subsection.
First, it is clear from Eqs. (16) and (17) that in the

small-eB limit, higher Landau levels (n > 0) will be lo-
cated infinitesimally close to the ground state (n = 0).
As will be seen in the discussion below, some of their
poles, moreover, happen to have negative residues and
can therefore not be treated as part of the continuum.
Therefore, the simple “pole + continuum” Ansatz of
Eq. (5) will not be sufficient to describe the phenomeno-
logical side of the sum rules and some method has to be
devised to take all the Landau levels explicitly into ac-
count. We will therefore here generalize Eqs. (5)–(10) to
the case of an infinite number of Landau levels.
We start by observing that the propagator of a charged

spin-0 particle at rest in our conventions changes from

Πpole(s) = −f0
1

s−m2
P + iǫ

(18)

in vacuum to

Πpole
eB (s) = −2f0

∞
∑

n=0

(−1)n
1

s−m2
P
− (2n+ 1)|eB|+ iǫ

(19)

at finite |eB| [48]. Here, spatial momentum components
perpendicular to the magnetic field are taken to be zero.
Note especially the factor (−1)n, which leads to negative
residues for odd n Landau levels. Therefore, we have

1

π
ImΠpole(s) = f0δ(s−m2

P
) (20)

for |eB| = 0, which is the first term of Eq. (5), and

1

π
ImΠpole

eB (s) = 2f0

∞
∑

n=0

(−1)nδ
(

s−m2
P
− (2n+ 1)|eB|

)

(21)
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for nonzero values of |eB|, which should replace the pole
term in Eq. (5). Let us now compute its contribution to
the right-hand side of Eq. (7). In the vacuum, this gives

f0e
−m2

P/M
2

, which the Landau levels modify as
∫ ∞

0

ds
1

π
ImΠpole

eB (s)e−
s

M2 = 2f0

∞
∑

n=0

(−1)ne−
m2

P+(2n+1)|eB|

M2

= 2f0e
−

m2
P+|eB|

M2
1

1 + e−2
|eB|

M2

= f0e
−m2

P/M
2 1

cosh
(

|eB|
M2

) .(22)

Comparing this to the vacuum case, we see that, some-
what surprisingly, the effects of the fully resummed
Landau levels can be expressed as a simple factor
1/ cosh(|eB|/M2). The vacuum formula of Eq. (8) can
thus be easily generalized:

m2
P
= − ∂

∂(1/M2)
ln
[

cosh
( |eB|
M2

)

(MOPE −Mcont)
]

= − ∂

∂(1/M2)
ln[MOPE −Mcont]− |eB| tanh

( |eB|
M2

)

.

(23)

The quantity m2
P
in this formula corresponds to the mass

of the charged particle, from which all Landau level ef-
fects have been subtracted. We emphasize that the above
formula is exact and its usage is not restricted to small
|eB| values. In the present work, we will, however, com-
pute the OPE side only up to terms of second order in
|eB| and therefore for reasons of consistency should re-
tain only terms of the same order in Eq. (23). We thus
expand the tanh term to leading order in |eB|, which
gives

m2
P
=− ∂

∂(1/M2) ln[MOPE −Mcont]− |eB|2

M2 . (24)

It is instructive to see that the same result can be de-
rived perturbatively from the scalar QED effective La-
grangian, as we shall briefly demonstrate here. We use

L = (Dµφ)∗(Dµφ)−
1

2
m2

Pφ
∗φ , (25)

where the covariant derivative is defined by Dµ = ∂µ −
ieAµ

ext with an external field Aµ
ext. The above Lagrangian

contains linear and quadratic couplings to an external
field which are proportional to φ∗Aµ

ext∂µφ and |φ|2A2
ext,

respectively. Inserting the linear-coupling vertex between
two free propagators D(0)(p) = i/(p2−m2

P), we find that
it vanishes identically, i.e., D(0)Aµ

ext∂µD
(0) = 0, when

using the Fock-Schwinger gauge for an external mag-
netic field Aµ

ext(x) = −2−1Fµνxν . Therefore, only the
quadratic coupling shown in Fig. 3 provides a relevant
correction. Following a straightforward computation, we
obtain the second-order correction as

Πpole
eB (s) = −f0

[ 1

s−m2
P + iǫ

− |eB|2 1

(s−m2
P + iǫ)3

]

,

(26)

FIG. 3. A nonvanishing diagram associated with the Landau
level of a charged D meson.

where we have as before assumed the transverse momen-
tum to be zero. Taking the imaginary part and comput-
ing the same integral as in Eq. (22), we get

∫

ds
1

π
ImΠpole

eB (s)e−
s

M2 = f0e
−m2

P/M
2
[

1− 1

2

|eB|2
M4

]

,

(27)

which coincides with the expanded version of Eq. (22) up
to terms of second order in |eB|.

IV. OPERATOR PRODUCT EXPANSION FOR

OPEN HEAVY FLAVORS

In this section, we will discuss the OPE for open heavy
flavors in an external magnetic field up to dimension-4
operators, which can be divided into three classes

ΠOPE = Πvac +Π(eB)2 +Πcond, eB . (28)

The terms commonly included in Πvac are the pertur-
bative terms at leading and next-to-leading orders in
αs, the scalar gluon condensate 〈GµνGµν〉, the light-
quark condensate 〈q̄q〉, and the mixed light-quark con-
densate 〈q̄gσGq〉. We use the Wilson coefficients shown
in Ref. [38] for these terms. The other terms induced by
the external magnetic field, Π(eB)2 and Πcond, eB , are dia-
grammatically depicted in Figs. 4 and 5, respectively, and
are computed in the subsequent sections. We also include
effects of the modification of the usual quark condensate
〈q̄q〉 due to the external magnetic field [5, 44, 45, 49–
53]. While the gluon condensate is also modified in a
magnetic field, we do not take this into account as the
modification is estimated to be less than 10 % in the
range eB . 0.3GeV2 [54, 55].

A. External magnetic field insertions

First, we compute the Wilson coefficients shown in
Fig. 4. As explained in Appendix B, we perform the
loop integrals using the standard Feynman parameters,
and then take the chiral limit for the light-quark mass.
The computation in the chiral limit is not only helpful
for analytically performing the Borel transform but is
also necessary for treating infrared singularities and cor-
rectly defining the condensates. Since there is no mo-
mentum transfer from a constant external magnetic field
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FIG. 4. Two insertions of external magnetic fields. Dotted and solid lines show light and heavy quarks, respectively.

FIG. 5. Current correlator with quark condensates.

to the quarks, the insertions of soft external lines induce
an infrared divergence in the soft momentum region of
the loop integral when the chiral limit is taken. This
infrared singularity is similar to that of the Wilson co-
efficients for the gluon condensates, which is known to
be infrared safe due to the cancellation with infrared sin-
gularities emerging from quark condensates [38, 56]. We
show the explicit form of the infrared singularities in this
section, and find that the OPE in an external constant
magnetic field is indeed infrared safe in the next section.
For comparing our results with the corresponding Wil-

son coefficients of the gluon condensates at finite density
[38], we decompose the product of the field strength ten-
sor into a scalar part, and a traceless and symmetric ten-
sor part as 2

αem

π
FµνFµν = F0, (29)

αem

π

(

FµαF ν
α − 1

4
gµνFαβFαβ

)

= F2(g
µν
‖ − gµν⊥ ),

(30)

with F0 = αem

π 2B2 and F2 = αem

π

(

− 1
2B

2
)

. Correspond-

ingly, one can decompose the correlator as

Π(eB)2(q)=
∑

w=a,b,c

[

Π
(w0)
(eB)2(q) + Π

(w2)
(eB)2 (q)

]

, (31)

where the superscripts, a, b, and c, represent the cor-
responding graphs with the same index shown in Fig.
4. The first and second terms correspond to the scalar
and the tensor parts proportional to F0 and F2, respec-
tively. Following the computation briefly discussed in
Appendix B, we obtain the scalar part as

Π
(a0)
(eB)2(q) = −QlQh

8
κF0

1

q2 −mh
2
, (32)

Π
(b0)
(eB)2(q) =

Q2
h

24
κF0

1

q2 −mh
2
, (33)

Π
(c0)
(eB)2(q) =

Ql
2

24
κF0

(

−2
mh

ml

1

q2 −mh
2
+

q2 − 2mh
2

(q2 −mh
2)2

)

,

(34)

and the tensor part as

Π
(a2)
(eB)2 (q) = −QlQhκF2 · 3(q2‖ − q2⊥)

[

1

3q4
− 1

6q2
1

q2 −m2
h

− 1

3

m2
h

q6
ln

(

− m2
h

q2 −m2
h

)]

, (35)

Π
(b2)
(eB)2 (q) = −Q2

hκF2 · 3(q2‖ − q2⊥)

[

− 1

9q4
− 1

18q2
1

q2 −m2
h

+

(

− 1

9q4
+
m2

h

9q6

)

ln

(

− m2
h

q2 −m2
h

)]

, (36)

Π
(c2)
(eB)2 (q) = −Q2

l κF2 · 3(q2‖ − q2⊥)

[

− 2

9q4
+

1

18q2
1

q2 −m2
h

− 1

6q2
m2

h

(q2 −m2
h)

2
+

(

1

9q4
+

2m2
h

9q6

)

ln

(

− m2
h

q2 −m2
h

)

2 It is useful to introduce metric tensors in the longitudinal
and transverse subspaces gµν

‖
= diag(1, 0, 0,−1) and gµν⊥ =

diag(0,−1,−1, 0), respectively. With these metrics, we define
the longitudinal momentum qµ

‖
= gµν

‖
qν = (q0, 0, 0, q3) and the

transverse momentum qµ⊥ = gµν⊥ qν = (0, q1, q2, 0), so that the

inner products are given by p‖ · q‖ = p0q0 − p3q3, p⊥ · q⊥ =

−p1q1 − p2q2, and so on.
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− 1

9q2

(

m2
h

(q2 −m2
h)

2
+

1

q2 −m2
h

)

ln

(

m2
l

m2
h

)

− 2

9q2

(

m2
h

(q2 −m2
h)

2
+

1

q2 −m2
h

)

ln

(

− m2
h

q2 −m2
h

)]

. (37)

In the above, electric charges and masses of light and
heavy quarks are denoted as Ql, Qh, ml and mh, respec-
tively. Note that QlQh = +4/9 for neutral D mesons
and QlQh = −2/9 for charged D mesons. The con-
stant κ is given by traces of the color matrices κ =
Tr[1lc]/Tr[t

ata] = 2Nc without summation over a, which
is introduced to compare the above expressions with the
results for the gluon condensates (see Appendix B).
A few comments are in order. (i) The Wilson coeffi-

cients (32)–(37) contain logarithmic and linear infrared
divergences in the chiral limit, ml → 0. They are the
terms proportional to 1/ml in Eq. (34) and to log(m2

l )
in Eq. (37), respectively. We will show in the next sec-
tion that they are exactly canceled by divergent terms
emerging from quark condensates. (ii) We find a sim-
ple correspondence between the above expressions and
those in Eqs. (C.16)–(C.21) in Ref. [38] computed for
the gluon condensates at finite density. This correspon-
dence discussed in Appendix B indicates consistency be-
tween their and our computations. However, the results
in Ref. [46] do not agree with ours and those given in
Ref. [38]. (iii) Based on the unique tensor decomposition
shown in Eqs. (29) and (30), we find that the Wilson
coefficients obtained above are valid for a general con-
figuration of a constant external field Fµν , although we
have performed the computation for a magnetic field ori-
ented in the third spatial direction assumed in Eqs. (B2)
and (B3).

B. Quark condensates

Next, we compute the Wilson coefficients correspond-
ing to the graphs shown in Fig. 5 which include light-

quark condensates. Since quark condensates themselves
are perturbatively IR divergent, we need to compute not
only the Wilson coefficients but also perturbative pieces
of the quark condensates to extract these divergences at
one-loop accuracy as shown in Appendix D.
The key technique involved in the perturbative com-

putation of the time-ordered current correlator is the
contraction of fields which are subsequently replaced
by Feynman propagators. While the residual normal-
ordered fields vanish when sandwiched between pertur-
bative vacuum states, they take finite expectation val-
ues in the nonperturbative QCD vacuum. Therefore, the
time-ordered two-point function contains not only a per-
turbative propagator S(x) but also normal-ordered ex-
pectation values of bilinear fields as 〈T [qaα(x)q̄bβ(0)]〉 =

δabSαβ(x) + 〈: qaα(x)q̄bβ(0) :〉, where superscripts a and
b are the color indices and subscripts α and β the
spinor indices. Substituting the nonperturbative piece
Sab
αβ(x) = 〈: qaα(x)q̄bβ(0) :〉 into the definition of the cur-

rent correlator (1), we compute the contributions of the
condensate terms as

Π(q2) = i

∫

d4p

(2π)4
Tr
[

S(p)γ5Sh(p− q)γ5
]

, (38)

where Sh(p) denotes the heavy-quark propagator with
possible insertions of external magnetic fields. With the
first three terms of the propagator, given in Eqs. (B1)–
(B3), which are ordered in powers of eB, we have Sh(p) =

S
(0)
h (p) + S

(1)
h (p) + S

(2)
h (p) + · · · .

To perform the computation, we first classify the con-
densates. By employing the Fock-Schwinger gauge, spec-
ified by xµAµ(x) = 0, the nonperturbative piece in the
light-quark propagator Sab

αβ(x) can be expanded as

Sab
αβ(x) = 〈: [ qaα(0) + xµDµq

a
α(0) +

1

2
xµxνDµDν q

a
α(0) + · · · ]q̄bβ(0) :〉

= 〈: qaα(0)q̄bβ(0) :〉+ xµ〈: Dµq
a
α(0)q̄

b
β(0) :〉+

1

2
xµxν〈: DµDνq

a
α(0)q̄

b
β(0) :〉+ · · · , (39)

where the covariant derivatives contain both QED and
QCD gauge fields. In the above expansion, we find three
types of condensates in the second line. The spinor in-
dices of these condensates can be decomposed by the
complete set 1, γ5, γµ, γ5γµ, and σµν = i/2 · [γµ, γν ]
as usual. Within this decomposition, to extract con-
tributions proportional to external fields, Lorentz in-
dices of nonvanishing components must be represented
by combinations of the field strength tensors Fµν , F̃µν =
2−1ǫµνσρFσρ, and FµσF ν

σ − gµνF σρFσρ/4. Picking up

those satisfying discrete symmetries, not vanishing in the
chiral limit, and being of second order in eB, we find the
condensates up to dimension 5 appearing in Eq. (39) as

〈: qaα(0)q̄bβ(0) :〉 = − 1

4Nc
δab〈: q̄(0)q(0) :〉 (40)

− 1

8Nc
δab〈: q̄(0)σµνq(0) :〉(σµν )αβ ,

xµ〈: Dµq
a
α(0)q̄

b
β(0) :〉
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= − 1

4Nc
δabxµ〈: q̄(0)γνDµq(0) :〉(γν)αβ , (41)

1

2
xµxν〈: DµDνq

a
α(0)q̄

b
β(0) :〉

= − 1

64Nc
δabx2eFµν〈: q̄(0)σµνq(0) :〉δαβ . (42)

Figure. 5 shows nonvanishing combinations of the light-
quark condensates and external magnetic fields emanat-
ing from the heavy-quark propagator.

The expectation values of the normal-ordered fields can
be related to the quark condensates defined with non-
normal-ordered fields. This computation is carried out
in Appendix D at the perturbative level so that we can
extract the infrared divergences of the quark condensates.
By using the “redefined” condensates shown in Eqs. (D5),
(D8), and (D13), we obtain the quark condensate contri-
butions to the OPE as

Π〈q̄q〉(q2) =〈q̄q〉 mh

q2 −m2
h

+
1

12
Q2

l

Nc(eB)2

π2

mh

ml

1

q2 −m2
h

, (43)

Π〈q̄σ12q〉(q2) =(eB)〈q̄σ12q〉
mh

(q2 −m2
h)

2

[

Qh +Ql
m2

h

q2 −m2
h

]

, (44)

Π〈q̄γµiDνq〉(q2) =−〈q̄γµiDνq〉
[

gµν
1

q2 −m2
h

− 2
qµqν

(q2 −m2
h)

2

]

− 1

12
Q2

l

Nc(eB)2

π2

[

1

q2 −m2
h

+ (q2 + 2q2⊥) log
( µ2

m2
l

) 1

(q2 −m2
h)

2

]

. (45)

One should observe that the IR-divergent pieces above
[

the terms proportional to 1/ml in Eq. (43) and to

log(m2
l ) in Eq. (45)

]

have exactly the same forms as those
in the Wilson coefficients (34) and (37). After the can-
cellation of these divergent pieces, we find an IR-finite
OPE of the current correlator. Note that to obtain a
finite result it is necessary to include the quark conden-
sate 〈q̄γµiDνq〉, which has not been done in Ref. [46].
Note also that the quark condensate 〈q̄σ12q〉 has nonva-
nishing Wilson coefficients as shown in Eq. (44). These
come from the second and third diagrams in Fig. 5, which
contain both an external field line as well as a quark con-
densate. Whereas the Wilson coefficient vanishes with-
out external field lines as mentioned in Ref. [46], one
should include these diagrams as well to consistently per-
form the OPE up to O

(

(eB)2
)

, since this condensate is
proportional to eB in the weak-field limit. Finally, one
should not explicitly include the heavy-quark condensate
〈Q̄HQH〉 because this contribution is infrared finite and
implicitly included as part of the Wilson coefficients for
the gluon condensate term in the heavy-quark limit [17].

In the next section, we show the mass spectra from
QCDSR analyses using the OPE obtained above up to
dimension-4 operators and second order in eB.

V. RESULTS AND DISCUSSIONS

In this section, we first show the mass formulas, and
then discuss results of the QCD sum rule analyses sepa-
rately for neutral and charged D mesons.

A. Mass formulas

We compute the mass spectra of the neutral and
chargedD mesons by combining the spectral Ansätze and
the OPE obtained in Secs. III and IV, respectively. With
these pieces, we derive the mass formula for the neutral
D mesons as

m2
D0 = − ∂

∂(1/M2)
ln[MOPE −Mcont −Mmix] , (46)

where MOPE, Mcont, and Mmix are the Borel-
transformed forms of the OPE, the continuum term, and
the mixing term, respectively. The last two terms are
from the phenomenological side. For the MOPE, the
Borel-transformed Wilson coefficients are summarized in
Appendix. F. The mixing term (15) on the phenomeno-
logical side is transformed to be

Mmix = f0(eB)2
g2PV

M4
−

(

e−
m2

V
M2 − e−

m2
P

M2 +
M2

−

M2
e−

m2
P

M2

)

,

(47)

where the terms in the above are shown in the same order
as in Eq. (15).
Due to the effects of the Landau levels for the charged

D mesons, the mass formula is changed according to
Eq. (27) as

m2
D± =− ∂

∂(1/M2)
ln[MOPE −Mcont −Mmix −MLL],

(48)

where MLL is the Borel-transformed form of the Landau
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level term:

MLL = −1

2
f0e

−m2
P/M

2 |eB|2
M4

. (49)

We have ignored the effects of the Landau levels on the
mixing terms as they are of higher order in |eB|. While
this term was also included in Ref. [46], our interpretation
for the role of this term, which we will propose below,
is different from what has been discussed there. The
summation of Landau levels was discussed in Sec. III B.
To be consistent with the second-order mixing terms of
Eq. (47), we have in Eq. (48) above retained only terms
up to second order in |eB|.
As input parameters, we use the charm-quark pole

mass mc = 1.6GeV, the strong coupling constant
αs = 0.3 and condensates up to dimension-5 in vacuum,
〈q̄q〉vac = (−0.27)3GeV3 [57], 〈απG2〉vac = 0.33GeV4 [16]

and 〈q̄gσGq〉vac = 0.63 · 〈q̄q〉vac GeV5 3. Here, mc, αs,
〈q̄q〉vac and 〈q̄gσGq〉vac are renormalized at µ = 2GeV
to match the renormalization points with those of the
lattice QCD observables. Furthermore, we employ the
following values of the condensates in a magnetic field:
For the B–dependence of 〈q̄q〉, we use a combination of
chiral perturbation theory [49] and lattice QCD results
[51]. For eB ≤ 0.1GeV2, the average value of 〈ūu〉 and
〈d̄d〉 obtained in Ref. [49] agrees with that of Ref. [51]
so that we can utilize the analytic representation of Ref.
[49]. On the other hand, for eB > 0.1GeV2, we make
use of the lattice QCD results [51], for which the mod-
ifications of 〈ūu〉 and 〈d̄d〉 in a magnetic field turn out
to be different. Furthermore, when the magnetic field is
weak enough, the 〈q̄σ12q〉 condensate increases linearly
with the magnetic field so that we can write

〈q̄σ12q〉B = Ql(eB)〈q̄lql〉χl ≡ Ql(eB)(−τl). (50)

Thus, the tensor quark condensate 〈q̄σ12q〉B depends on
the light-quark flavor. χl is called magnetic suscepti-
bility of the light-quark condensate and τl is the ten-
sor coefficient of the magnetic susceptibility. Here, we
use τu = −0.0407GeV and τd = −0.0394GeV calcu-
lated by lattice QCD [44] 4. Finally, 〈q̄γµiDνq〉B is esti-
mated using a simple constituent quark model in Ap-
pendix. E. On the phenomenological side, we employ
f0 ≡ f2

Dm
4
P/m

2
c = 0.2060GeV4, fD = 0.2046GeV,

mP = 1.884GeV, mV = 2.026GeV, where mP is the
value obtained from our sum rule and mV is rescaled by
mP and the ratio of the experimental values mD∗/mD.
The value of gPV is estimated in Appendix. A.

3 The charm-quark pole mass is mc = 1.67GeV at µ = mc [58].
The conventional value of the mixed condensate is 〈q̄gσGq〉vac =
0.8 · 〈q̄q〉vac GeV5 at µ = 1GeV as estimated in Ref. [59]. These
values are run to µ = 2GeV by using the renormalization group
equation. The anomalous dimension of 〈q̄gσGq〉vac at one-loop
level is given by Ref. [60]

4 In the work of Ref. [44], σµν = (1/2i)[γµ, γν ] was used instead
of our σµν = (i/2)[γµ, γν ]. Therefore, we have changed the sign
of τl obtained in [44] to be consistent with our conventions.

In general, hadron masses extracted from sum rules
have a Borel mass dependence. In order to obtain accu-
rate results, we determine an effective range of the Borel
mass, the so-called Borel window. The lower limit of the
Borel window can be chosen such that the absolute value
of the highest-order 〈q̄gσGq〉 term is less than 30% that
of 〈q̄q〉 term, which happens at about Mmin ≈ 0.87GeV.
The OPE above Mmin can then be assumed to be

sufficiently convergent because the contribution of the
dimension-5 condensate is reasonably smaller than that
of the dimension-3 condensate, which gives the largest
contribution to the OPE. On the other hand, the upper
limit is determined by requiring the lowest pole contribu-
tion to be more than 50% of the total OPE. This value
is estimated as Mmax ≈ 1.19GeV, and turns out to be
almost B independent. Once the Borel window is de-
termined, we fix the threshold parameter such that the
Borel mass dependence of Eqs. (46) and (48) becomes
minimal. A few typical Borel curves are shown in Fig. 6
for the vacuum and nonzero magnetic field.
It is seen in these figures that the Borel window is

wide and that the Borel mass dependence of the physical
masses is reasonably small. Finally, we take the average
values of the mass formulas within this Borel window.
These are plotted as a function of eB in Figs. 7 and 9,
together with the systematic errors. The error bars cor-
respond to the standard deviations estimated from aver-
aging the Borel curve within the Borel window.

B. Neutral D meson

We first discuss the results for the neutral D-meson
spectrum shown in Fig. 7. At the hadronic level, we antic-
ipate only mixing effects without Landau levels, because,
while quarks appearing on the OPE side are charged,
the total charge in the neutral D-meson system is zero.
Other effects, that cannot be described by hadronic de-
grees of freedom, if present, will be observed as deviations
from the spectrum with the mixing effect. For charmonia
[40, 41], effects of a weak magnetic field were found to be
almost saturated by mixing.
The final result for the neutral D meson is shown by

the green line in Fig. 7, which is compared to two different
analyses below. To get the green line, two poles should be
taken into account on the phenomenological side since an
additional D∗-meson pole is induced by the mixing effect
as sketched in Fig. 8. As shown in this figure, mixing
causes not only the appearance of the D∗-meson pole,
but also the reduction of the residue of the original D
meson and its shift due to level repulsion.
Let us discuss the roles of the terms implemented on

the phenomenological side of Eq. (46). Including the
D∗-meson pole shown in the first term in Eq. (47), we
subtract the corresponding information from the OPE
in Eq. (46). One should also include the second term in
Eq. (47) which takes care of the decrease of the residue of
the D-meson pole. Note that this is the reason why this
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FIG. 6. Dependences of the neutral and charged D-meson masses, mD0 and mD± , on the Borel mass M , calculated from
Eqs. (46) and (48) in the vacuum and for a nonzero magnetic field. Black arrows indicate the location of the Borel window
determined from OPE convergence and lowest pole dominance.
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FIG. 7. Mass shifts of neutral D mesons in a weak magnetic
field from QCD sum rules. The dashed line is estimated from
Eq. (13) and gPV = 3.6736.

FIG. 8. Sketch of the spectral function in the neutral pseu-
doscalar channel in the presence of the mixing effect. The
vacuum D-meson pole is denoted as a dotted line and marked
with P (see also Sec. IIIA). Mixing effects lead not only to
the appearance of the D∗-meson pole, but also to a reduction
of the D-meson pole residue and to its shift due to level re-
pulsion. These effects are indicated as gray and blue arrows,
respectively.

term has a minus sign. After the subtraction of the D∗-
meson pole and the modification of the D-meson residue,
theD-meson spectrum is properly extracted without con-
tamination of the D∗ pole. The green line is obtained by
including these two terms, without the last term which
will be discussed shortly. To illustrate the importance of
this subtraction and to estimate a magnitude of the con-
tamination, we compare the green line with the analysis
performed without including any term in Eq. (47). The
result of this analysis is shown by a red line. In this case,
we find a larger mass because this mass is, roughly speak-
ing, an average of the D- and D∗-meson masses. We find
that the deviation from the green line is significant.

Finally, we discuss the last term in Eq. (47). The
physical consequence of the double-pole structure of this
term, shown in Eq. (15), is the mass shift caused by the
level repulsion, which can be diagrammatically under-
stood as follows. In Fig. 2, the current excites an on-
shell D-meson state, which is then virtually excited to
an off-shell D∗-meson state by an interaction with the
magnetic field and comes back again to an on-shell D-
meson state. Therefore, these two on-shell states cor-
respond to the double pole, and the mixing with the
off-shell state gives rise to a mass shift. Including the
last term in Eq. (47), the level repulsion effect, which is
implicitly encoded in the OPE at the quark level, is can-
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celed by the corresponding term explicitly implemented
at the hadronic level. This is clearly seen as a subtraction
in Eq. (46). Thus, including all terms in Eq. (47), one
would expect to obtain the D-meson vacuum mass if ef-
fects of the magnetic field would be saturated by mixing
effects. The analysis result taking into account all three
terms is shown by the blue line. A significant and in-
creasing deviation from the vacuum mass is observed for
eB values larger than about 0.1GeV2. We can therefore
conclude that some other effect that cannot be expressed
by hadronic degrees of freedom, which leads to a pos-
itive mass shift, must exist. This is not surprising, as
at eB = 0.1GeV2, we are already at scales comparable
to ΛQCD, which means that the magnetic field is strong
enough to probe and modify the internal structure of
hadrons, governed by QCD. Our OPE should still work
in this regime since the Borel mass, serving as the sepa-
ration scale, is roughly 1 GeV or larger as seen in Fig. 6.
The detailed mechanisms of the above-mentioned non-
hadronic effect will have to be clarified in the future.

C. Charged D meson

Next, we show results for the spectrum of the charged
D meson in Fig. 9. As for D0, the charged D-meson
spectrum is also modified by the mixing effect in mag-
netic fields. Therefore, we include the mixing terms in
Eq. (47) whose roles have been already discussed above.
The mixing strength for the charged D meson is esti-
mated in Appendix A.
In Fig. 9, a green line shows the mass spectrum ob-

tained with the subtraction of the chargedD∗-meson pole
as in the previous subsection. Again, the difference be-
tween the green and blue lines shows the magnitude of
the mixing effect. The magnitude is found to be smaller
than that for the neutral D meson. This can be under-
stood from the fact that the electric charge of the d quark
is 2 times smaller than that of the u quark, so that we
naively expect the mixing effect to be reduced by a fac-
tor of 4 at second order in eB. It should be mentioned
here that the uncertainty of the mixing strength for the
chargedD meson is smaller than that for its neutral coun-
terpart, because the experimental data for the radiative
decay width of charged D mesons is available.
While the green line shows the mass in the presence

of the Landau levels, one should note that this mass can
not be interpreted as the spectrum of the ground state,
i.e., the lowest Landau level. The reason is that an infi-
nite number of Landau levels appear in the spectral den-
sity of the charged pseudoscalar channel as discussed in
Sec. III B, and the intervals between the adjacent Lan-
dau levels are too narrow to be resolved in the weak-field
limit [cf. the dispersion relation (16)]. Therefore, while
it would be possible to extract the ground state in the
strong-field limit where the lowest Landau level is isolated
from all the higher ones, the same strategy does not work
in the weak-field limit. This fact has been overlooked in
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FIG. 9. Mass shifts of charged D mesons in a weak magnetic
field from QCD sum rules.

Ref. [61].
As we work here in the weak-field limit, we do not

try to extract the lowest Landau level, but instead sum
up all of them on the phenomenological side as given in
Eq. (49). This term subtracts the effects of the Landau
levels from the OPE, so that the result with this subtrac-
tion will not include them. We will hence interpret our
results as follows. If the mass spectrum with the above
subtraction agrees with the vacuum mass, one concludes
that effects of the magnetic field are saturated by the
mixing effect and the Landau levels. Otherwise, i.e., if
it does not agree with the vacuum mass, one would ob-
serve residual effects not described by hadronic degrees
of freedom. On this point, we differ fundamentally from
the interpretation put forward in Ref. [46], where Lan-
dau levels were claimed to be observed even though the
same term as ours was subtracted on the phenomenolog-
ical side.
The gray line in Fig. 9 shows the result with the sub-

tractions of both Landau levels and mixing effects, so
that this line is expected to be flat if there is no residual
effect. As can be seen in the figure, we find that the gray
line is flat within the error bars, and conclude that, in
contrast to the neutral case, effects of the magnetic field
are consistent with the hadronic picture—that is, mixing
and Landau levels—in the weak-field limit.

VI. SUMMARY

We investigated neutral and charged D-meson spec-
tra in the presence of external magnetic fields by using
QCD sum rules, and have established a basic framework
for investigating hadrons containing light quarks. On
the phenomenological side, we carefully examined the
spectral Ansatz so that the magnetically induced mix-
ing effects and Landau levels, expected at the hadronic
level, are properly taken into account. Summation of
the Landau levels for the spectral function of charged D
mesons was performed with the help of the Borel trans-
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form. These treatments are crucial for consistent QCD
sum rule analyses in magnetic fields, since magnetic fields
act on charged mesons on the phenomenological side as
well as quarks on the OPE side. On the OPE side, we
implemented magnetic field effects up to the dimension-4
operators and terms up to |eB|2. We also compared our
result with those in Refs. [38, 46] and explicitly demon-
strated the cancellation of infrared singularities. Val-
ues of the condensates in magnetic fields were estimated
by means of lattice QCD results where available (〈q̄q〉,
〈q̄σµνq〉), and otherwise by a simple model on the basis
of constituent quarks (〈q̄γµiDνq〉).
By using the framework constructed in this work, we

discussed the mass spectra of neutral and charged D
mesons. For neutral D mesons, we found that besides
mixing, there must be an additional effect of nonhadronic
origin, which leads to a positive mass shift for sufficiently
strong, yet perturbative, magnetic fields. On the other
hand, the mass spectra of charged D mesons turned out
to be saturated by mixing and Landau level effects within
the precision of the present calculation. The uncertain-
ties of our approach mainly come from the estimate of
the mixing strengths, and the not-well-constrained con-
densates of dimension 5 and higher.
To look for more pronounced effects originating from,

e.g., modification of the vacuum structure in the pres-
ence of magnetic fields, we need more precise calculations
and/or should proceed to the strong-field limit, where
the vacuum structure and the internal structure inside
mesons are more strongly modified. Also, the coupling
strengths in the heavy-light systems are known to be en-
hanced by the Kondo effect emerging under certain envi-
ronments. Indeed in QCD, recent renormalization group
studies have shown the strong coupling nature of the mu-
tual heavy-light interactions at high density [62] and in
strong magnetic fields [63]. Whether and how effects of
the enhanced coupling strengths reveal themselves in the
form of D-meson properties needs future investigations.
We plan to consider these topics in the future.
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Appendix A: Estimates of mixing strengths

1. Mixing strengths extracted from measured

radiative decay widths

a. Mixing between charged mesons

By using the effective Lagrangian of Eq. (11), we ob-
tain an expression for the radiative decay width given by
[41]

Γ[V → P + γ] =
1

12

e2g2
PV
p̃3

πm2
0

, (A1)

where m0 = (mP + mV)/2 and p̃ = (m2
V −m2

P)/(2mV).
From the measured radiative decay widths, we can esti-
mate the mixing strength gPV between the pseudoscalar
and vector states as

g
PV

=
√

12πe−2p̃−3m2
0 Γ[V → P + γ] . (A2)

By inserting the measured decay width for the charged
D mesons Γ[D∗± → D± + γ] = 1.536 keV, we obtain the
mixing strength between the charged D∗ and D mesons
to be

g
PV

[D∗± → D± + γ] = 0.9366. (A3)

b. Mixing between neutral mesons

For the neutral D mesons, the total decay width has
not been measured. Nevertheless, the branching ratios
in the radiative and hadronic decay modes are known to
be Γ[D∗0 → D0 + γ] : Γ[D∗0 → D0 + π0] = 38.1 : 61.9
[58]. Therefore, we can obtain the coupling constant in-
volved in the radiative decay mode if we know the cou-
pling constant of the hadronic decay D∗0 → D0 + π0.
From the isospin symmetry, this coupling constant may
be related to the corresponding hadronic decay modes of
the charged D∗±:

g[D∗0 → D0 + π0] = g[D∗± → D± + π0], (A4)

g[D∗0 → D0 + π0] =
1√
2
g[D∗± → D0 + π±] . (A5)

By using the hadronic effective Lagrangian

L = g π(∂µD)D∗
µ, (A6)



13

we next compute the imaginary part of the D–π loop,
and obtain the expression of the hadronic decay width

Γ[D∗ → D + π] =
g2

192πm5
D∗

{(m2
D∗ − µ2

+)(m
2
D∗ − µ2

−)}
3
2 ,

(A7)

where µ± = mD ± mπ. Inserting the measured data
Γ[D∗± → D± + π0] = 0.307× 83.4 × 10−3MeV, mπ0 =
134.9766MeV, mD∗± = 2010.26MeV, and mD± =
1869.61MeV into Eq. (A7), we find

g[D∗± → D± + π0] = 11.8592, (A8)

and, by substituting another decay channel Γ[D∗± →
D0 + π±] = 0.677 × 83.4 × 10−3MeV, and mπ± =
139.57018MeV, we obtain

g[D∗± → D0 + π±] = 16.8172. (A9)

Therefore, by utilizing the measured branching ratio
mentioned in the paragraph above Eq. (A4), we obtain
the coupling constant of the decay mode D∗0 → D0 +π0

consistently from the first and second decay mode, as

Γ[D∗0 → D0 + γ] = 22.4878 keV, (A10)

Γ[D∗0 → D0 + γ] = 22.6108 keV, (A11)

respectively. By using the formula for the radiative decay
width, given in Eq. (A2), we finally obtain the mixing
strength of the neutral D meson as

g[D∗0 → D0 + γ] = 3.66855, (A12)

g[D∗0 → D0 + γ] = 3.67857. (A13)

While the above mixing strengths are obtained on the ba-
sis of the effective Lagrangian (A6) in the leading deriva-
tive expansion, the higher-derivative terms could con-
tribute to the coupling among π, D, and D∗. To check
the uncertainty involved in the estimate of the mixing
strength of neutral mesons, we examine another method
below.

2. Mixing strength from the Bethe-Salpeter

amplitude

The mixing strength between ηc and J/ψ was cal-
culated by using the Bethe-Salpeter amplitude in the
heavy-quark limit in an earlier work by some of the
present authors [41]. Here, we apply the same method
to the estimate of the mixing strength between charged
D and D∗ mesons, assuming a constituent quark model
picture, in which the u and d quark can be considered to
be nonrelativistic, and the heavy-quark limit can be ap-
plied. Below, we follow the steps explained in Appendix
B1 of Ref. [41] and generalize them to the case of D and
D∗ mesons.
To study the mixing strength in this framework, we

need to consider the two diagrams depicted in Fig. 10.

FIG. 10. The diagrams needed for computing the mixing
strength between charged D and D∗ mesons from the Bethe-
Salpeter amplitude.

The shaded areas in this figure correspond to form factors
given by the Bethe-Salpeter amplitudes [64]:

Γ5(p, p− q) =
(

ǫ0 +
p
2

2µ

)√

mh+ml

Nc
Ψ1S(p)P+γ

5P−,

(A14)

Γµ(p, p− q) =
(

ǫ0 +
p
2

2µ

)√

mh+ml

Nc
Ψ1S(p)P+γ

µP−,

(A15)

where P± are the projection operators

P± =
1

2
(1± γ0). (A16)

We take q = (q0, 0, 0, 0), Ψ1S(p) is the S-wave ground-
state wave function, ǫ0 stands for the binding energy of
the system (q0 = ml + mh − ǫ0) and µ represents the
reduced mass of the two quarks: 1/µ = 1/mh + 1/ml.
Also note that ml here should be interpreted as the con-
stituent rather than the current quark mass. The two
diagrams of Fig. 10 can be given as

iMµ
(a) =−eQl

∫

d4p

(2π)4
Tr
[

Γµ(p, p− q)S0(p− q)

×Γ†
5(p− q, p− k)S0(p− k)γνS0(p)

]

Aν(A17)

and

iMµ
(b) =−eQh

∫

d4p

(2π)4
Tr
[

Γ†
5(p+ k, p+ q)S0(p+ q)

×Γµ(p+ q, p)S0(p)γνS0(p+ k)
]

Aν . (A18)

Here, we shall shortly discuss the essential steps for eval-
uating iMµ

(a). It is convenient to compute first the inte-

gral over p0. Completing the contour on either the upper
or lower part of the complex p0 plane, one picks up two
poles. By looking at the respective residues, one finds
that one pole gives the dominant contribution, while the
other is suppressed in the heavy-quark mass limit. The
dominant pole is found at

p0 ≃ ml −
(

ǫ0 +
p
2

2mh

)

. (A19)

Retaining the contribution of this pole while keeping only
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terms up to first order in k, we get

iMµ
(a) =

mh +ml

ml
eQl

∫

d3p

(2π)3
|Ψ1S(p)|2ǫ0µανkαAν

=
mh +ml

ml
eQlF̃

0µ

∫

d3p

(2π)3
|Ψ1S(p)|2

=
mh +ml

ml
eQlF̃

0µ. (A20)

The last line is derived from the normalization of the
wave function. The second diagram of Fig. 10 can be
computed in a similar way. The final result reads

iMµ
(b) =

mh +ml

mh
eQhF̃

0µ. (A21)

Adding both terms, we obtain the full amplitude as

iMµ =iMµ
(a) + iMµ

(b)

=
(mh +ml

ml
Ql +

mh +ml

mh
Qh

)

eF̃ 0µ. (A22)

Note that for mh = ml this agrees with the results for
charmonium of Ref. [41]. From the above result, we can
read off the mixing strength between pseudoscalar and
vector D mesons:

gPV =
mh +ml

ml
Ql +

mh +ml

mh
Qh. (A23)

Examining this expression, it becomes clear that gPV will
be dominated by its ligth-quark component, because of
the large factor (mh + ml)/ml. Using Eq. (A23), we
can compute the ratio of g

PV
for neutral and charged

D mesons. From the above consideration, we expect the
absolute value of this ratio to be close to 2, corresponding
to the ratio of the absolute charge values of u and d
quarks. For realistic quark masses, the subleading term
can, however, not be ignored. Specifically, we get

∣

∣

∣

g
PV

(D0)

g
PV

(D±)

∣

∣

∣ = 3.5, (A24)

with ml = 0.3GeV and mh = 1.8GeV.
We will now use the above ratio to get an indepen-

dent estimate for the mixing strength of the neutral D
meson, which at present cannot be quantified directly
as the Γ[D∗0 → D0 + γ] decay width has not yet been
measured. Using Eqs. (A3) and (A24), we obtain

|g
PV

(D0)| = 3.278, (A25)

which agrees quite well with the estimates of Eqs. (A12)
and (A13), given in the previous subsection. We will
employ these previous estimates in our computations de-
scribed in the main text of the paper.

Appendix B: Dimension–4 (eB)2 terms

In this appendix, we briefly summarize the computa-
tion of the Wilson coefficients for the dimension-4 (eB)2

terms. One of the most important observations here is
the emergence of the infrared divergences when taking
the chiral limit for the light quarks. This is naturally ex-
pected due to the insertions of constant magnetic fields
as soft external lines.

To compute the Wilson coefficients corresponding to
the graphs shown in Fig. 4, we employ the Fock-
Schwinger gauge for the external magnetic field. In
this gauge, quark propagators with insertions of exter-
nal magnetic fields are found to be

S(0)(p) =
i

p2 −m2
(/p+m), (B1)

S(1)(p) = − QemeB

(p2 −m2)2
(/p‖ +m)γ1γ2, (B2)

S(2)(p) =
2iQ2

em(eB)2

(p2 −m2)4
{p2⊥(/p+m)− (p2 −m2)/p⊥},(B3)

where Qem denotes the electric charge of a quark in units
of “e”. We have furthermore assumed the magnetic field
to be oriented in the third spatial direction. The above
expressions can be obtained either by inserting external-
field lines between the free propagator of Eq. (B1) [17]
or expanding the full propagator given in the proper-
time representation with respect to eB [65–67]. With
Eqs. (B1) - (B3), the Wilson coefficients of the dimension-
4 (eB)2 terms represented in Fig. 4 are given by

Π
(a)
(eB)2(q) = iNc

∫

d4p

(2π)4
Tr[ γ5S

(1)
l (p)γ5S

(1)
h (q − p) ],(B4)

Π
(b)
(eB)2(q) = iNc

∫

d4p

(2π)4
Tr[ γ5S

(0)
l (p)γ5S

(2)
h (q − p) ],(B5)

Π
(c)
(eB)2(q) = iNc

∫

d4p

(2π)4
Tr[ γ5S

(2)
l (p)γ5S

(0)
h (q − p) ],(B6)

where the subscripts h and l on the propagators stand
for heavy and light quarks, respectively, and the number
of the color degrees of freedom Nc comes from the trace
of the unit color matrix Tr[1lc] = Nc.

As in a standard diagram computation, one can per-
form the loop integrals in Eqs. (B4)–(B6) with the help of
the Feynman parameters. Carrying out the momentum
integrals, we find

Π
(a)
(eB)2 =

4Nc

(4π)2
QlQh(eB)2

∫ 1

0

dxx(1 − x)
[

∆−1 + ( q2‖x(1 − x) +mlmh )∆
−2
]

, (B7)



15

Π
(b)
(eB)2 =

4Nc

3(4π)2
Q2

h(eB)2
∫ 1

0

dx
[

−3x2(1 − x)∆−1 + x3{ q2x(1 − x)− 2q2⊥(1− x)(3 − 2x) }∆−2

−2q2⊥q
2x4(1− x)3∆−3 +mlmhx

3{∆−2 − 2q2⊥(1− x)2∆−3}
]

, (B8)

Π
(c)
(eB)2 =

4Nc

3(4π)2
Q2

ℓ(eB)2
∫ 1

0

dx
[

−3x(1− x)2∆−1 + (1 − x)3{ q2(1− x)x − 2q2⊥x(1 + 2x) }∆−2

−2q2⊥q
2x4(1− x)3∆−3 +mlmhx

3{∆−2 − 2q2⊥(1− x)2∆−3}
]

, (B9)

where we define ∆ = xmh
2 + (1 − x)ml

2 − x(1 − x)q2.
Equations (B8) and (B9) are related to each other
through simultaneous interchanges of the charges Qh ↔
Ql and massesmh ↔ ml, which can easily be understood
from the diagrammatic representations in Fig. 4. Note,
however, that the masses in ∆ are also interchanged.
This has not been taken into account in the calcula-
tion of Eq. (B7) in Ref. [46]. By taking the chiral limit
in the above expressions and carrying out the Feynman
integrals, we obtain the Wilson coefficients (32)–(37).
These results can be compared with the Wilson coeffi-
cients for the gluon condensates at finite density given in
Eqs. (C.16)–(C.21) of Ref. [38]. We find that the Wil-
son coefficients agree with each other with appropriate
replacements of the operators and color matrices:

Tr[1lc]
αem

π
F 2 ↔ Tr[tatb]〈Ω| : αs

π
G2

ab : |Ω〉, (B10)

−3Tr[1lc]
αem

π
qµqν

(

FµαF
α

ν − gµν
4
FαβF

αβ
)

↔ Tr[tatb]

(

q2 − 4
(vq)2

v2

)

×〈Ω| :αs

π

(

(vG)2ab
v2

− G2
ab

4

)

: |Ω〉

where Tr[tatb] = δab/2, G2
ab = GaµνGb

µν , and (vG)2ab =

vµG
aµνGb

νσv
σ. The correspondence becomes clearer, if

one notes the following decomposition of the twist-2
gluon condensate,

〈Ω| : αs

π

(

Ga
µαG

b α
ν − gµν

4
Ga

αβG
bαβ
)

: |Ω〉 (B11)

= −1

3
〈Ω| : αs

π

(

(vG)2ab
v2

− G2
ab

4

)

: |Ω〉
(

gµν − 4
vµvν

v2

)

,

where vµ is the flow vector of the medium.

Appendix C: Nature of IR divergences of

perturbative terms

In this appendix, we will study some of the properties
of the IR-divergent terms (terms behaving as 1/ml or
logml in the chiral limit) and give arguments why they
are “soft” contributions and should therefore be consid-
ered to be part of the condensates and not the Wilson
coefficients.
For this purpose we will follow the method discussed

in Sec. 2.5 of Ref. [20] for studying the properties of
the loop integrals. Before considering the IR-divergent
terms, let us first work out the leading-order perturbative
diagram with no external magnetic field attached, which
will serve as a reference, with which the IR-divergent
terms will later be compared. It can easily be obtained by
replacing, for instance, the first-order propagators S(1)(p)
in Eq. (B4) with the free propagator S(0)(p), given in
Eq. (B1). After taking the traces and expressing the
integrand using a Feynman parameter x, we get

4iNc

∫ 1

0

dx

∫

d4p

(2π)4
p2 − x(1− x)q2 −mlmh

(p2 −∆)2
. (C1)

Next, we carry out the Borel transform with respect to q2

before computing the actual loop integral. Furthermore,
integrating over the angles of the four-dimensional inte-
gral and switching to Euclidean momenta p2, we obtain,

− Nc

2π2

1

M2

∫ ∞

0

dp

∫ 1

0

dx
p3

x(1− x)

[

1− 1

M2

(mlmh + 2p2

x(1− x)
+

m2
h

1− x
+
m2

l

x

)

]

e−
1

M2

(

p2

x(1−x)
+

m2
h

1−x
+

m2
l

x

)

≡
∫ ∞

0

dpf(p).

(C2)

Let us examine the above integrand f(p), of which the
ultraviolet divergence is regularized by the Borel trans-
form, for two different values of the Borel mass M . The
normalized forms, such that the integrated values give 1,
are shown in Fig. 11. Here and in what follows, we have

used mh = 1.67GeV and ml = 4.7MeV for the quark
masses. The curves of this figure clearly demonstrate
that the loop integral receives its most prominent contri-
bution from momenta of the order of p ∼M . Therefore,
if M is chosen to be large enough, the momenta run-
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FIG. 11. The function f(p) defined in Eq. (C2) for two values
of the Borel mass M . The curves are normalized such that
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FIG. 12. The function g(p) defined in Eq. (C4) for two values
of the Borel mass M . The curves are normalized such that
their integrals over p give 1.

ning though the perturbative loop will be dominated by
a “hard” scale, which allows us to treat them as Wilson
coefficients.
Let us now turn to the IR-divergent terms, which, as

we will see, have a rather different behavior. To keep the
discussion short, we will here focus on the term behaving
as 1/ml in the chiral limit. This term can be extracted
from Eq. (B6) and corresponds to the second-to-last term
in Eq. (B9). Restoring the momentum integral of this

term we have the following expression:

− 16iNc(eB)2mhml

∫ 1

0

dx

∫

d4p

(2π)4
1

x5(1− x)2
p2

(p2 −∆)5
.

(C3)

The Borel transform of this term with respect to q2 leads
to

Nc

12π2
(eB)2

mhml

M8

∫ ∞

0

dp

∫ 1

0

dx
p5

x5(1 − x)2
e−

1
M2

(

p2

x(1−x)
+

m2
h

1−x
+

m2
l

x

)

≡
∫ ∞

0

dpg(p). (C4)

As before, we show the integrand g(p) for two different
values of M in Fig. C4. The difference between Figs. 11
and 12 is apparent. While in Fig. 11, the integrand re-
ceived its largest contribution at a scale of the order of
M , it is in Fig. 12 determined by the light-quark mass
and does not much depend on M . This shows that the
momentum in the loop integral of the IR-divergent term
is “soft” and that it should therefore be considered to be
part of the condensates and not of the Wilson coefficients.

Appendix D: IR divergences from quark condensates

As discussed in Ref. [38] and the references cited
therein, it is more suitable to express the final OPE re-
sults in terms of quark condensates, which are defined as
expectation values of the non-normal-ordered operators
instead of the normal-ordered ones. The latter one ap-
pears naturally in computations based onWick’s theorem
and Feynman diagrams. Intuitively, the above redefini-
tion can be understood as subtracting the perturbative

parts of the condensates, which in principle should be in-
cluded in the Wilson coefficients of the OPE and which
can contain IR-divergent terms. Specifically, we can re-
late the non-normal-ordered condensates to the normal-
ordered ones by the following prescription [38, 68]:

〈: q̄O
[

i ~Dµ

]

q :〉 = 〈q̄O
[

i ~Dµ

]

q〉

+

∫

d4p

(2π)4
〈: TrC,D

(

O
[

pµ + Ãµ

]

S(p)

)

:〉. (D1)

Here, Ãµ is defined in analogy to Eqs. (B.11) and (B.12)
in Ref. [38] and can at leading order (which is sufficient

for our purposes) be given as Ãµ ≃ i/2eFµν∂
ν
p , in which

the partial derivative is understood to be operating with
respect to the momentum p and acts only on the propa-
gator S(p).
Below, we will discuss the redefinition for each of the

(light) quark condensates that appear in the OPE of
this work. Linearly and logarithmically divergent terms
shown below cancel the corresponding divergent terms
in the dimension (eB)2 terms computed in Appendix B.
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Throughout this appendix, we will use the MS scheme to
regularize infinite momentum integrals.

1. 〈q̄q〉

For this case, we can simply set O = 1 and hence get

〈: q̄q :〉 = 〈q̄q〉+
∫

d4p

(2π)4
TrC,D

[

S(p)
]

. (D2)

For the second term, we next substitute the propaga-
tor of Eqs. (B1)–(B3). Taking the trace, it is under-
stood that only the leading-order term

[

S(0)(p)
]

and the

second-order term in the magnetic field
[

S(2)(p)
]

survive.
Firstly, we consider the leading-order term, which gives

∫

d4p

(2π)4
TrC,D

[

S
(0)
l (p)

]

= 4iNcml

∫

d4p

(2π)4
1

p2 −m2
l

= − Nc

4π2
m3

l

[

log
( µ2

m2
l

)

+ 1

]

.

(D3)

As this term is of higher order in ml, it can be ignored
in the present discussion. Next, we calculate the term of
second order in the magnetic field:

∫

d4p

(2π)4
TrC,D

[

S
(2)
l (p)

]

= 8iNcmlQ
2
l (eB)2

∫

d4p

(2π)4
p2⊥

(p2 −m2
l )

4

=
1

12

NcQ
2
l (eB)2

π2

1

ml
. (D4)

This means that the quark condensate should be rede-
fined as

〈: q̄q :〉 = 〈q̄q〉+ 1

12

NcQ
2
l (eB)2

π2

1

ml
. (D5)

In the above expression, we find the linearly divergent
term 1/ml.

2. 〈q̄σ12q〉

Using again Eq. (D1) and setting O = σ12, we have

〈: q̄σ12q :〉 = 〈q̄σ12q〉+
∫

d4p

(2π)4
TrC,D

[

σ12S(p)
]

.

(D6)

Here, it is noted that, due to the Dirac trace, only the
term linear in eB gives a nonzero contribution to the
second term above. This second term is evaluated as

∫

d4p

(2π)4
TrC,D

[

S
(1)
l (p)σ12

]

= 4iNcmlQl(eB)

∫

d4p

(2π)4
1

(p2 −m2
l )

2

=
1

4

NcQl(eB)

π2
ml log

(m2
l

µ2

)

, (D7)

which means that the condensate should be redefined as

〈: q̄σ12q :〉 = 〈q̄σ12q〉+
1

4

NcQl(eB)

π2
ml log

(m2
l

µ2

)

.

(D8)

It is, however, seen that the second term contains a factor
ml log(m

2
l ), so that it vanishes in the chiral limit and we

can ignore it in the present calculation. If one needs to
consider terms that go beyond the chiral limit, this term
should of course be taken into account.

3. 〈q̄γµiDνq〉

Using once more Eq. (D1) with O now defined as O =
γµiDν , we can rewrite the condensate as shown below:

〈: q̄γµiDνq :〉 = 〈q̄γµiDνq〉 (D9)

+

∫

d4p

(2π)4
TrC,D

[

γµ(pν +
i

2
eF να∂α)S(p)

]

.

We will now consider the second term in more detail.
The part proportional to pν receives nonzero contribu-
tions from both S(0)(p) and S(2)(p), while the term with
S(1)(p) vanishes due to the Dirac trace. Moreover, the
contribution involving S(0)(p) only leads to a term of or-
der m4

l similar to Eq. (D3) and can therefore be safely
neglected. The remaining term gives,

∫

d4p

(2π)4
pνTrC,D

[

γµS
(2)
l (p)

]

= −Nc

3
Q2

l (eB)2
1

(4π)2

[

1

ǫ
+ log(4π)− γE − log(m2

l )

]

×
[

g⊥αβ(g
µνgαβ + gναgµβ + gνβgµα)− 6gµν⊥

]

= − 1

24
Q2

l

Nc(eB)2

π2

[

1

ǫ
+ log(4π)− γE − log(m2

l )

]

(

gµν‖ − gµν⊥
)

, (D10)
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where we have used g⊥αβg
αβ = 2 in the last line. Note that this follows from our implementation of the MS scheme,

which uses D‖ = D − 2 and D⊥ = 2 with D = 4 − 2ǫ. Furthermore, we have for later purposes not carried through
the whole regularization procedure at this stage and have hence kept the expression with the explicit 1/ǫ pole.
Next, we need to compute the term proportional to F να in Eq. (D9). An explicit calculation, however, shows that

this term exactly vanishes, partly because of the Dirac trace and partly as a result of the final integration over the
momentum p. We are thus left with Eq. (D10), which leads to the following redefinition of the condensate,

〈: q̄γµiDνq :〉 = 〈q̄γµiDνq〉 − 1

24
Q2

l

Nc(eB)2

π2

(

gµν‖ − gµν⊥
)

[

1

ǫ
+ log(4π)− γE − log(m2

l )

]

. (D11)

This is, however, not our final result, as we still need to decompose it into its scalar and symmetric-traceless parts. To
do this, let us define the second term on the right-hand side of this equation as Cµν and extract from it the relevant
Lorentz structures. First, the scalar part of Cµν (denoted as Cµν

S ) can be obtained as,

Cµν
S =

1

D
gµνCα

α =
1

48
Q2

l

Nc(eB)2

π2
gµν , (D12)

where we have taken the limit D → 4 after performing the contraction above. Making use of the Dirac equation, it
is easily recognized that this expression is equivalent to Eq. (D5). Next, the symmetric and traceless part of Cµν can
be obtained by subtracting from it the scalar part above as Cµν

ST = Cµν − Cµν
S . Therefore, we obtain

Cµν
ST = − 1

24
Q2

l

Nc(eB)2

π2

(

gµν‖ − gµν⊥
)

[

1

ǫ
+ log(4π)− γE − log(m2

l )

]

− 1

48
Q2

l

Nc(eB)2

π2
gµν , (D13)

which is regularized to

Cµν
ST =

1

24
Q2

l

Nc(eB)2

π2

(

gµν‖ − gµν⊥
)

log
(m2

l

µ2

)

− 1

48
Q2

l

Nc(eB)2

π2
gµν . (D14)

In the above expression, we find the logarithmically divergent term logml
2.
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FIG. 13. The behavior of the chiral condensate 〈qq〉B as a
function of the magnetic field eB. The red line stands for
Eq. (E3), while the green line shows the result obtained by
chiral perturbation theory [49].

Appendix E: A simple model for the quark

condensates in a magnetic field

In this appendix, we will discuss a simple model that
can qualitatively describe the behavior of the various
quark condensates in a constant magnetic field. For
〈qq〉B and 〈qσ12q〉B , we compare our model results with
the findings of chiral perturbation theory and lattice
QCD.

1. Method

We consider a model with quarks that have a con-
stituent quark mass ofm = 300 MeV. To study the mod-
ification of any quark condensate, we need to compute
the traced propagator in a background magnetic field.
For treating the possibly divergent loop diagrams, we in-
troduce a (Euclidean) cutoff: Λ = 1 GeV. Schematically,
our prescription can be summarized as

〈qOq〉B − 〈qOq〉0 = −
∫ Λ d4p

(2π)4
TrC,D[OS(p)B ], (E1)

where S(p)B stands for the quark propagator with one
or more magnetic field insertions. Furthermore, O rep-
resents a general operator, that can contain gamma ma-
trices or covariant derivatives.
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2. 〈qq〉B

For this most simple case, we can set O = 1 and hence
get the following expression for the leading nonzero term
in eB,

〈qq〉B − 〈qq〉0 = −4iNcmQ
2(eB)2

∫ Λ d4p

(2π)4
p2

(p2 −m2)4
.

(E2)

Here, Eqs. (B2) and (B3) together with the fact that
the term linear in eB vanishes were used. Evaluating
the above integral with the Euclidean cutoff Λ, the final
result reads

〈qq〉B − 〈qq〉0 = − Nc

12π2
mQ2(eB)2

1

m2

[

1− m2

Λ2(1 +m2/Λ2)3

(

3 + 3
m2

Λ2
+
m4

Λ4

)

]

. (E3)

In Fig. 13, we compare our result in Eq. (E3) with the finding of chiral perturbation theory [49], for which we have
taken the averaged condensate of u and d quarks. It is seen in this figure that even though the detailed behavior of
our model differs somewhat from that obtained with chiral perturbation theory, the overall trend of the two results is
in good agreement, as long as one stays below eB = 0.3GeV2.

3. 〈qσ12q〉B

Next, we study the condensate 〈qσ12q〉B, which vanishes at eB = 0. Setting O = σ12, we get at leading order in
eB,

〈qσ12q〉B =4iNcmQ(eB)

∫ Λ d4p

(2π)4
1

(p2 −m2)2

=− Nc

4π2
mQ(eB)

[

log
( Λ2

m2

)

− 1 + log
(

1 +
m2

Λ2

)

+
m2

Λ2(1 +m2/Λ2)

]

. (E4)

It is noted that the term of (eB)2 in fact vanishes, so that corrections to this can at most be of oder (eB)3. Translated
to the parameter τ

[

defined as 〈qσ12q〉B = Q(eB)τ
]

, the above result gives

τ =− Nc

4π2
m

[

log
( Λ2

m2

)

− 1 + log
(

1 +
m2

Λ2

)

+
m2

Λ2(1 +m2/Λ2)

]

=−0.0359GeV. (E5)

Let us now compare this result with the findings of lattice QCD [44]:

τu= −0.0407± 0.0013GeV, (E6)

τd= −0.0394± 0.0014GeV. (E7)

It is seen that our model reproduces the lattice results surprisingly well.

4. 〈qγµiDνq〉B

For this condensate, there are no results available from either chiral perturbation theory or lattice QCD. Therefore,
our model will provide a prediction for this case. Following the same method as above, we get

〈qγµiDνq〉B =−
∫ Λ d4p

(2π)4
Tr[γµ(pν + Ãν)S(p)B]

=
Nc

24π2
Q2(eB)2

(

gµν‖ − gµν⊥
)

[

log
( Λ2

m2

)

− 11

6
+ log

(

1 +
m2

Λ2

)

+3
m2

Λ2(1 +m2/Λ2)
− 3

2

m4

Λ4(1 +m2/Λ2)2
+

1

3

m6

Λ6(1 +m2/Λ2)3

]

− Nc

8π2
Q2(eB)2gµν⊥

(

1

3
− m2

Λ2(1 +m2/Λ2)
+

m4

Λ4(1 +m2/Λ2)2
− 1

3

m6

Λ6(1 +m2/Λ2)3

)

. (E8)
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This expression is, however, not traceless and therefore contains scalar contributions. We hence have to subtract the
trace part. Doing this, we obtain the final result:

〈qγµiDνq〉B =
Nc

24π2
Q2(eB)2

(

gµν‖ − gµν⊥
)

A, (E9)

where

A =

[

log
( Λ2

m2

)

− 4

3
+ log

(

1 +
m2

Λ2

)

+
3

2

m2

Λ2(1 +m2/Λ2)
− 1

6

m6

Λ6(1 +m2/Λ2)3

]

. (E10)
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Appendix F: Summary of the Borel transformation

In Tables I–III, we summarize the Borel transform of the Wilson coefficients computed in Sec. IV. Useful formulas
are available in Ref. [69].

LO+NLO

Mpert(M
2) =

1

π

∫ ∞

m2
h

dse−s/M2

ImΠpert(s)

ImΠpert(s) =
3

8π
s

(

1−
m2

h

s

)2

×

(

1 +
4

3

αs

π
R0(m

2
h/s)

)

R0(m
2
h/s = x) =

9

4
+ 2Li2(x) + ln x ln(1− x)−

3

2
ln

1− x

x
− ln(1− x) + x ln

1− x

x
−

x

1− x
ln x

〈q̄q〉vac M〈q̄q〉vac(M
2) = −mh〈q̄q〉vace

−m2
h/M2

〈α
π
G2〉vac M〈α

π
G2〉vac(M

2) = 1
12
〈α
π
G2〉vace

−m2
h/M2

〈q̄gσGq〉vac M〈q̄gσGq〉vac(M
2) = 1

2

(

m3
h

2M4 − mh

M2

)

〈q̄gσGq〉vace
−m2

h/M2

TABLE I. Borel-transformed OPE for D mesons in vacuum [38]. The NLO term contains the Spence function Li2(x) =
−
∫ x

0
t−1 ln(1− t)dt .

〈q̄q〉B(eB ≤ 0.1GeV2)

M〈q̄q〉B (M2) = −mh〈q̄q〉vace
−m2

h/M2

·
eB

16π2F 2
π

IH

(

m2
π

eB

)

IH(y) = ln(2π) + y ln
(y

2

)

− y − 2 ln Γ

(

1 + y

2

)

LO(eB)2

M
(0),D0

(eB)2
(M2) =

1

27

Nc

π2
(eB)2e−m2

h/M2

M
(2),D0

(eB)2
(M2) =

3Nc

4π2
(eB)2 e−m2

h/M2

×
4

81

[(

2 + ln
µ2m2

h

M4
+ 2γE

)(

1−
m2

h

M2

)

+
2m2

h

M2

]

〈q̄σ12q〉B MD0

〈q̄σ12q〉
(M2) = (−τu)(eB)2

(

4
9

mh

M2 − 2
9

m3
h

M4

)

e−m2
h/M2

〈q̄γµiDνq〉B MD0

〈q̄γµiDνq〉(M
2) = Nc

27π2 (eB)2A
(

−1 +
m2

h

M2

)

e−m2
h/M2

TABLE II. Magnetic-field dependent parts of the Borel-transformed OPE for neutral D mesons. 〈q̄q〉B(eB ≤ 0.1GeV2) is given
by Ref. [49]. Formulas or numerical values for the parameters τu and A are given in Eqs. (E6) and (E10), respectively.
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〈q̄q〉B(eB ≤ 0.1GeV2) Common to the OPE for neutral D mesons (see Table II).

LO(eB)2

M
(0),D±

(eB)2
(M2) = −

5

108

Nc

π2
(eB)2e−m2

h/M2

M
(2),D±

(eB)2
(M2) =

3Nc

4π2
(eB)2 e−m2

h/M2
[

1

27

(

1 +
4m2

h

M2

)

Ei

(

−
m2

h

M2

)

+
1

9
+

1

81

{(

2 + ln
µ2m2

h

M4
+ 2γE

)(

1−
m2

h

M2

)

+
2m2

h

M2

}]

〈q̄σ12q〉B MD±

〈q̄σ12q〉
(M2) = (−τd)(eB)2

(

− 2
9

mh

M2 − 1
18

m3
h

M4

)

e−m2
h/M2

〈q̄γµiDνq〉B MD±

〈q̄γµiDνq〉(M
2) = Nc

108π2 (eB)2A
(

−1 +
m2

h

M2

)

e−m2
h/M2

TABLE III. Magnetic-field dependent parts of the Borel-transformed OPE for charged D mesons. Formulas or numerical values
for the parameters τd and A are given in Eqs. (E7) and (E10), respectively.

[1] V. Skokov, A. Y. Illarionov, and V. Toneev, Int. J. Mod.
Phys. A 24, 5925 (2009); V. Voronyuk, V. D. Toneev, W.
Cassing, E. L. Bratkovskaya, V. P. Konchakovski, and S.
A. Voloshin, Phys. Rev. C 83, 054911 (2011); A. Bzdak
and V. Skokov, Phys. Lett. B 710, 171 (2012); W. T.
Deng and X. G. Huang, Phys. Rev. C 85, 044907 (2012);
W. T. Deng and X. G. Huang, Phys. Lett. B 742, 296
(2015).

[2] R. C. Duncan and C. Thompson, Astrophys. J. Lett. 392
L9 (1992); C. Thompson and R. C. Duncan, Mon. Not.
R. Astron. Soc. 275 255 (1995); Astrophys. J. 473, 322
(1996).

[3] A. K. Harding and D. Lai, Rept. Prog. Phys. 69, 2631
(2006).

[4] D. E. Kharzeev, L. D. McLerran, and H. J. Warringa,
Nucl. Phys. A803, 227 (2008); K. Fukushima, D. E.
Kharzeev, and H. J. Warringa, Phys. Rev. D 78, 074033
(2008); H. J. Warringa, Phys. Rev. D 86, 085029 (2012).

[5] V. P. Gusynin, V. A. Miransky and I. A. Shovkovy, Phys.
Rev. Lett. 73, 3499 (1994); Phys. Rev. D 52, 4718 (1995);
Phys. Rev. D 52, 4747 (1995); Phys. Lett. B 349, 477
(1995); Nucl. Phys. B462, 249 (1996).

[6] D. Kharzeev, K. Landsteiner, A. Schmitt and H. U. Yee
(eds.), Lect. Notes Phys. 871, 1 (2013).

[7] D. E. Kharzeev, Prog. Part. Nucl. Phys. 75, 133 (2014).
[8] K. Tuchin, Int. J. Mod. Phys. E 23, 1430001 (2014).
[9] J. O. Andersen, W. R. Naylor and A. Tranberg,

[arXiv:1411.7176 [hep-ph]].
[10] V. A. Miransky and I. A. Shovkovy, Phys. Rept. 576, 1

(2015).
[11] M. N. Chernodub, Phys. Rev. D 82, 085011 (2010); Phys.

Rev. Lett. 106, 142003 (2011); M. N. Chernodub, J.
Van Doorsselaere, and H. Verschelde, Phys. Rev. D 85,
045002 (2012).

[12] Y. Hidaka and A. Yamamoto, Phys. Rev. D 87, 094502
(2013).

[13] E. V. Luschevskaya, O. E. Solovjeva, O. A. Kochetkov
and O. V. Teryaev, Nucl. Phys. B898, 627 (2015).

[14] H. Taya, Phys. Rev. D 92, 014038 (2015).
[15] K. Hattori, T. Kojo, and N. Su, [arXiv:1512.07361 [hep-

ph]].
[16] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov,

Nucl. Phys. B147, 385 (1979); Nucl. Phys. B147 448
(1979).

[17] L. J. Reinders, H. Rubinstein, and S. Yazaki, Phys. Rep.
127, 1 (1985).

[18] M. A. Shifman, Prog. Theor. Phys. Suppl. 131, 1 (1998).
[19] S. Narison, QCD as a Theory of Hadrons (Cambridge

University Press, Cambridge, England, 2004).
[20] P. Colangelo and A. Khodjamirian, “At the Frontier of

Particle Physics/Handbook of QCD” (World Scientific,
Singapore, 2001), Volume 3, 1495.

[21] K. Wilson, Phys. Rev. 179, 1499 (1969).
[22] L. J. Reinders, H. R. Rubinstein, and S. Yazaki, Phys.

Lett B 94, 203 (1980); Phys. Lett B 95, 203 (1980).
[23] L. J. Reinders, H. R. Rubinstein, and S. Yazaki, Nucl.

Phys. B186, 109 (1981).
[24] A. I. Bochkarev and M. E. Shaposhnikov, Nucl. Phys.

B268, 220 (1986).
[25] R. J. Furnstahl, T. Hatsuda, and S. H. Lee, Phys. Rev.

D 42, 1744 (1990).
[26] T. Hatsuda and S. H. Lee, Phys. Rev. C 46, 34 (1992);

T. Hatsuda, Y. Koike and S. H. Lee, Phys. Rev. D 47,
1225 (1993); Nucl. Phys. B394, 221 (1993); T. Hatsuda,
S. H. Lee, and H. Shiomi, Phys. Rev. C 52, 3364 (1995).

[27] P. Gubler and K. Ohtani, Phys. Rev. D 90, 094002
(2014).

[28] P. Gubler and W. Weise, Phys. Lett. B 751, 396 (2015).
[29] F. Klingl, S. Kim, S. H. Lee, P. Morath, and W. Weise,

Phys. Rev. Lett. 82, 3396 (1999).
[30] K. Morita and S. H. Lee, Phys. Rev. Lett. 100, 022301

(2008); K. Morita and S. H. Lee, Phys. Rev. C 77, 064904
(2008); Y. H. Song, S. H. Lee, and K. Morita, Phys. Rev.
C 79, 014907 (2009); K. Morita and S. H. Lee, Phys. Rev.
D 82, 054008 (2010); Phys. Rev. C 85, 044917 (2012).



23

[31] P. Gubler, K. Morita, and M. Oka, Phys. Rev. Lett. 107,
092003 (2011).

[32] K. Suzuki, P. Gubler, K. Morita, and M. Oka, Nucl. Phys.
A897, 28 (2013).

[33] S. H. Lee, K. Morita, T. Song, and C. M. Ko, Phys. Rev.
D 89, 094015 (2014).

[34] T. Matsui and H. Satz, Phys. Lett. B 178, 416 (1986).
[35] T. Hashimoto, O. Miyamura, K. Hirose, and T. Kanki,

Phys. Rev. Lett. 57, 2123 (1986).
[36] L. J. Reinders, H. R. Rubinstein and S. Yazaki, Phys.

Lett. B 97, 257 (1980); Phys. Lett. B 100, 519 (1981);
L. J. Reinders, S. Yazaki and H. R. Rubinstein, Phys.
Lett. B 103, 63 (1981); Phys. Lett. B 104, 305 (1981).

[37] A. Hayashigaki, Phys. Lett. B 487, 96 (2000); T. Hilger,
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