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Abstract

The RHIC Beam Energy Scan focuses on mapping the QCD phase diagram and pinpointing the loca-
tion of a possible critical end point. Bose-Einstein correlations and event-by-event fluctuations of conserved
quantities, measured as a function of centrality and collision energy, are promising tools in these studies.
Recent lattice QCD and statistical thermal model calculations predict that higher-order cumulants of the
fluctuations are sensitive indicators of the phase transition. Products of these cumulants can be used to
extract the freeze-out parameters [1] and to locate the critical point [2]. Two-pion interferometry measure-
ments are predicted to be sensitive to potential softening of the equation of state and prolonged emission
duration close to the critical point [3]. We present recent PHENIX results on fluctuations of net-charge using
high-order cumulants and their products in Au+Au collisions at

√
sNN = 7.7 - 200 GeV, and measurement of

two-pion correlation functions and emission-source radiiin Cu+Cu and Au+Au collisions at several beam
energies. The extracted source radii are compared to previous measurements at RHIC and LHC in order to
study energy dependence of the specific quantities sensitive to expansion velocity and emission duration.
Implications for the search of a critical point and baryon chemical potentials at various collision energies
are discussed.
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1. Introduction

Quantum chromodynamics (QCD) predicts a phase transition from a hadron gas (HG) phase
to a quark gluon plasma (QGP) phase with variations of thermodynamic parameters such as
temperature (T) and/or baryon density (µB) [4]. Lattice QCD calculations indicate that the chiral

1For the full PHENIX Collaboration author list and acknowledgments, see Appendix “Collaboration” of this volume.
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and de-confinement phase transitions are a smooth crossoveralong the temperature axis, i.e. with
µB = 0, while various other models predict that the phase transition becomes first order at high
baryon density [5]. The existence of the QCD critical point is thus expected as the first order
phase transition line should end somewhere at finiteµB andT. In order to study the properties of
QGP in these experiments, it is important to choose an observable which is sensitive enough to
the medium property in the early stage.

It has been proposed that the shapes of the event-by-event net-charge distributions are sensi-
tive to the presence of the critical point, as they are related to the conserved number susceptibil-
ities of the system and hence to the correlation length [6]. Additionally, the shape of the emis-
sion source function can also provide signals for a second-order phase transition or proximity
to the QCD critical point [7]. Two-pion correlation measurements provide important informa-
tion about the space-time evolution of the particle emitting source in the collision. An emitting
system which undergoes a strong first order phase transitionis expected to demonstrate a much
larger space-time extent than would be expected if the system had remained in the hadronic phase
throughout the collision process.

The PHENIX detector at RHIC has explored the above possibilities in the recent Beam En-
ergy Scan (BES) program of RHIC. During 2010 and 2011, RHIC provided Au+Au collisions
to PHENIX at

√
sNN = 200 GeV, 62.4 GeV, 39 GeV, 27 GeV, 19.6 GeV, and 7.7 GeV. PHENIX

recorded Cu+Cu collisions at
√

sNN = 200 GeV during 2005. Results from PHENIX covering
net-charge fluctuations and two-pion interferometry measurements, are discussed here.

2. Net-charge Fluctuations

PHENIX has measured the distributions of net-charge multiplicity (N = N+ - N−) and their

various moments (mean (µ) =< N >, variance (σ2) = < (N − µ)2 >, skewness (S)= <(N−µ)3>

σ3 and

kurtosis (κ) =<(N−µ)4>

σ4 − 3 ) at several beam energies [8]. The charged hadrons selected for this
analysis cover transverse momentum (pT) between 0.3 and 2.0 GeV/c and pseudorapidity range
spanning|η| ≤ 0.35. Figure 1 shows the efficiency correctedµ/σ2, Sσ, κσ2, andSσ3/µ as a
function of

√
sNN for the most central (0-5%) Au+Au collisions. In Fig. 1, triangles represent
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Fig. 1. (Color online) The ratios of cumulants of net-chargedistributions (a)µ/σ2 (b) Sσ (c) κσ2, and (d) Sσ3/µ, after
efficiency corrections for most central (0-5%) Au+Au collisions. The statistical and systematic errors are shown by bars
and caps, respectively. Triangles represent the efficiency corrected cumulant ratios extracted from NBD fits to positively
and negatively charged particles distributions [8].
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the efficiency corrected cumulants ratios extracted from NBD fits topositively and negatively
charged particles distributions. Theκσ2 values are positive and constant at all the collision
energies within the statistical and systematic uncertainties as is shown in Fig. 1.

Comparing these measurements with the lattice calculations, freeze-out temperature (T f ) and
baryon chemical potentials (µB) are also extracted at freeze-out. Figure 2 shows the variation
of µB as a function of

√
sNN. The extractedµB values are found comparable to theµB values

extracted from particle ratio analysis given in Ref. [9].
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Fig. 2. (Color online) Chemical freeze-out parameter (µB), extracted from PHENIX higher-moments analysis, as a
function of center of mass energy (

√
sNN) are shown in red solid points [8]. The dashed line shows the parametrization

given in Ref. [9] and the other experimental data are from Ref. [9] and references therein.

3. Two-pion interferometry

PHENIX has performed measurements of two-pion correlations in Cu+Cu collisions at
√

sNN

= 200 GeV and Au+Au collisions at
√

sNN = 39, 62.4 and 200 GeV [10]. Figure 3 shows the two-
pion correlation functions as a function of the components of the momentum difference (q) be-
tween particles in the pair for several

√
sNN. These correlation functions are fitted with a function

which incorporates Bose-Einstein enhancement and the Coulomb interaction between the pairs,
to extract the HBT radii (Rside, Rout andRlong ). The quantities,R2

out−R2
sideand (Rside−

√
2R̄)/Rlong

(see reference [11] for̄R), which are related to emission duration and medium expansion veloc-
ity, respectively, are shown (Fig. 4) for pair transverse massmT = 0.26 GeV/c2 to reduce the
effect of position momentum correlation. Also, the PHENIX results are compared with STAR
results for

√
sNN = 7-200 GeV and ALICE results at LHC for

√
sNN = 2.76 TeV. A maximum

is observed as a function of
√

sNN in R2
out − R2

side (Fig. 4(a)) with complimentary minimum in

(Rside−
√

2R̄)/Rlong(Fig. 4 (b)). Non-monotonic behavior over a small range in
√

sNN may point
to a softening of equation of state that may coincide with theQCD critical point.

4. Summary

PHENIX results for net-charge fluctuations and two-pion interferometry as a function of
beam energy are presented. The net-charge fluctuation measurements do not give a clear indica-
tion of the presence of the QCD critical point, though theµB extracted with lattice calculations
and PHENIX data are found to be consistent with previously extracted baryon chemical po-
tentials. A non-monotonic behavior in the quantities related to emission duration and medium
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Fig. 3. (Color online) Correlation functions of two-pion pairs (π+π+ andπ−π−) for 0-10% central Au+Au (left) and
Cu+Cu (right) collisions for pion pair transverse momenta (〈kT 〉) = 0.53 GeV/c and for several

√
sNN . The curves

represent fits to the correlation function [10].
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Fig. 4. (Color online) The
√

sNN dependence of (a) (R2
out−R2

side), (b) [(Rside -
√

2R̄)/Rlong]. The PHENIX and STAR data
points represent the results from fits to themT dependence of the combined data sets [10].

expansion velocity is observed, which hints the softening of equation of state. Further, more
detailed studies are required for a clear picture of QCD phase diagram.
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