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We study the inhomogeneous solitonic modulation of a chiralcondensate within the effective Nambu–Jona-
Lasinio model when a constant external magnetic field is present. The self-consistent Pauli-Villars regularization
scheme is adopted to manipulate the ultraviolet divergenceencountered in the thermodynamic quantities. In
order to determine the chiral restoration lines efficiently, a new kind of Ginzburg-Landau expansion approach is
proposed here. At zero temperature, we find that both the upper and lower boundaries of the solitonic modulation
oscillate with the magnetic field in theµ–B phase diagram which is actually the de Hass-van Alphan (dHvA)
oscillation. It is very interesting to find out how the tricritical Lifshitz point (TL, µL) evolves with the magnetic
field: There are also dHvA oscillations in theTL–B andµL–B curves, though the tricritical temperatureTL

increases monotonically with the magnetic field.

PACS numbers: 11.30.Qc, 05.30.Fk, 11.30.Hv, 12.20.Ds

I. INTRODUCTION

The inhomogeneous Larkin-Ovchinnikov-Fulde-Ferrell
(LOFF) state has attracted a lot of interests since its proposi-
tion in 1960s [1]. Though no direct evidence of LOFF state
has been discovered in experiments yet, recent developments
of ultracold atomic physics might provide a good opportunity
to pin down the exotic state because of its strong control-
lability [2–4]. In condensed matter physics, an external
magnetic field will split the single-particle dispersion of
electrons with spin-up and spin-down through Zeeman effect
and a large mismatch of the Fermi surfaces usually favors
the pairing with finite momentum [1]. While in quantum
chromodynamic (QCD) systems, baryon chemical potential
directly plays a mismatch between quark and anti-quark and
isospin chemical potential plays a mismatch between u and
d quarks; the sources of LOFF state are very rich in quark
matter and nuclear matter [5–19].

Specially, in the study of chiral symmetry breaking and
restoration, it was found that the original first-order transi-
tion line in theT–µ phase diagram [20] would be covered by
the inhomogeneous phase with the solitonic modulation (SM)
or dual chiral density wave (DCDW) modulation chiral con-
densate [7, 9]. But different models give different predictions
about which inhomogeneous phase is much more favored. A
recent study in the renormalizable quark-meson model sug-
gested that the solitonic modulation usually has lower freeen-
ergy and the phase boundaries are both of second order which
indicates the existence of a tricritical Lifshitz point [9]. On
the other hand, at the presence of a constant magnetic field,
the features of chiral symmetry breaking and restoration with
LOFF state alter a lot [21, 22]. Because of the asymmetry
between the particle and antiparticle dispersions at the low-
est Landau level (LLL), the DCDW modulation was found
to be much more favored at non-vanishing chemical poten-
tial [21] and the transition point was found to be a tricritical
point at vanishing chemical potential [22]. However, due to
the sensitivity of the inhomogeneous state to the choice of reg-
ularizations in the chiral effective Nambu–Jona-Lasinio (NJL)
model [21, 23] and the ambiguous ”intermediate regulariza-

tion” introduced in Ref. [21], the real situation is still unclear.
In this work, we explore the features of chiral symmetry

breaking and restoration in a constant external magnetic field
by taking the solitonic modulation chiral condensate into ac-
count. The main advantage is that this situation can be han-
dled self-consistently by adopting the Pauli-Villars (PV)reg-
ularization scheme. Besides, in recent years, inverse magnetic
catalysis (IMC) effect was found in QCD system [25] and
inspired a lot of discussions relevant to the effects of mag-
netic field [26–37]. Experts mainly attributed this anomalous
phenomenon to the asymptotic freedom or earlier deconfine-
ment transition [26, 32, 33, 37]. Nevertheless, at very large
magnetic field, it is possible that the deconfinement transition
might happen earlier than chiral symmetry restoration with
increasing temperature [37, 38]. In the case of finite chemi-
cal potential, it is usually thought that deconfinement and chi-
ral symmetry restoration transition separates with each other
which then gives rise to the quarkyonic matter [39]; thus, if
the IMC effect holds in this case is still unknown, especially
near the Lifshitz point. For simplicity, we still adopt the ini-
tial Nambu–Jona-Lasinio model and introduce the magnetic
field through covariant derivative. We’ll give some comments
whenever the IMC effect should be considered.

The paper is organized as following: In Sec.II, we give a
general theoretical framework for the study of chiral symme-
try breaking and restoration with Sec.II A presenting the for-
mulism for solitonic modulation in NJL model and Sec.II B
discussing a new kind of Ginzburg-Landau (GL) expansion
approach. The numerical results will be shown in Sec.III and
we finally summarize in Sec.IV.

II. THEORETICAL FRAMEWORK

A. Nambu–Jona-Lasinio model and solitonic modulation

The Lagrangian of Nambu–Jona-Lasinio model in a con-
stant external magnetic field is

L = ψ̄(i /D − m0 − µγ0)ψ +G
[

(ψ̄ψ)2
+ (ψ̄iγ5τψ)2

]

, (1)
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whereψ(x) = (u(x), d(x))T denotes the two-flavor quark field
with color degrees of freedomNc = 3 andDµ = ∂µ + iQAµ is
the covariant derivative with the subscriptsµ = 1, 2, 3 cor-
responding to the coordinates x, y, z and the charge matrix
Q = diag(qu, qd) = diag(2e/3,−e/3) in flavor space. With-
out loss of generality, we set the magnetic field to be along
z-direction and the vector potential to be expressed with Lan-
dau gauge, that is,Aµ = (0, 0,−Bx, 0) (B > 0) . Here,m0 is
the current mass of u and d quarks which we set to zero for
simplicity as it will not affect the qualitative results [7],µ is
quark chemical potential andτ = (τ1, τ2, τ3) are Pauli matri-
ces in flavor space. For the convenience of later discussions,
we’d like to choose the explicit forms ofγ-matrices in Weyl
representation [40]:

γ0
=

(

0 I
I 0

)

, γi
=

(

0 σi

−σi 0

)

, (2)

whereσ1, σ2, andσ3 are Pauli matrices andI is the 2× 2
identity matrix in Dirac spinor space. As well known, in chiral
limit m0 = 0, the Lagrangian has SUL(2)×SUR(2) chiral sym-
metry with the left-handed and right-handed transformations
ψ(x) → exp(i(1∓ γ5)τ · θ/2) ψ(x), respectively. If the expec-
tation value ofψ̄ψ or ψ̄iγ5τψ is nonvanishing, it is easy to see
that the symmetry of the Lagrangian will be spontaneously
broken. Thus,̄ψψ andψ̄iγ5τψ are both order parameters for
chiral symmetry breaking and restoration.

In order to study the expectation values of the order param-
eters, we introduce four auxiliary fieldsσ(x) andπ(x). Then
the original partition functionZ =

∫

[Dψ̄][Dψ]eiL can be
changed to the following form:

Z =
∫

[Dψ̄][Dψ][Dσ][Dπ] exp
{

i
∫

d4x
[

− 1
4G

(σ2
+ π2)

+ψ̄(i /D − σ − iγ5π · τ − µγ0)ψ
]}

, (3)

which is actually the Hubbard-Stratonovich transforma-
tion [41]. Then, by completing the functional integration over
the quark degrees of freedom, the model can be bosonized
with the partition function given as

Z =
∫

[Dσ][Dπ] exp
{

− i
[ 1
4G

∫

d4x(σ2
+ π2)

+iNcTr ln(i /D − σ − iγ5π · τ − µγ0)
]}

, (4)

where the trace is taken over the coordinate, spinor and flavor
spaces. In mean field approximation, let’s set〈σ(x)〉 = mr(x),
〈π3(x)〉 = mi(x), and〈π1(x)〉 = 〈π2(x)〉 = 0. This setting is
general when the magnetic field is absent because of the rota-
tional symmetry in the flavor space. However, when a finite
magnetic field is present, other cases with〈π1(x)〉 or 〈π2(x)〉
nonvanishing are quite different from this. In principal, these
cases are hard to evaluate precisely because of the electric
charges carried byπ1 andπ2. According to the lattice QCD
(LQCD) calculation [42] and the Ginzburg-Landau analysis
of our previous work [36],π1(π2) condensation is just like su-
perconductor and the magnetic field disfavors the pion super-
fluidity, so these cases can be safely neglected here. Then, the

thermodynamic potential for the chosen setting can be evalu-
ated as

Ω =
T
V

[ − NcTr ln
(

i /D − mr(x) − iγ5τ
3mi(x) − µγ0)

+
1

4G

∫

d4x
(

m2
r (x) + m2

i (x)
)]

=
T
V

[− NcTr ln
(

i /D− 1+γ5τ3

2
m(x)− 1−γ5τ3

2
m∗(x)−µγ0)

+
1

4G

∫

d4x|m(x)|2], (5)

where the mass gapm(x) = mr(x) + i mi(x), and we work in
Euclidean space with the integral of the imaginary timex4 =

ix0 in the region [0, 1/T ].
In order to obtain an explicit expression forΩ, it’s essential

to evaluate the contribution of quarks. Let’s suppose that the
inhomogeneous mass gap is one-dimensional and along the
magnetic field, that is,m(x) = m(z), as the Taylor expansion
analysis indicated that the inhomogeneity along other dimen-
sions is disfavored [21]. Then, the most important mission left
is to evaluate the eigenvalues of the following Hamiltonian:

Hf = −γ0[i /Df −
1+ γ5

2
m(z)− 1− γ5

2
m∗(z)

]

= −γ0[iγ1∂x + iγ2(∂y − iqf Bx) + iγ3∂z

−1+ γ5

2
m(z)− 1− γ5

2
m∗(z)

]

, (6)

where the subscript f stands for the flavoru or d. If we expand
the spinors with Ritus’s method by separating variables, the
first two terms in the square bracket give rise to a Landau level
termi

√

2n|qf B|γ2 [43, 44]. The left terms actually correspond
to a one-dimensional NJL model or Gross-Neveu (GN) model
with the following Hamiltonian:

HGN = −γ0[iγ3∂z −
1+ γ5

2
m(z)− 1− γ5

2
m∗(z)

]

=





























i∂z 0 m(z) 0
0 −i∂z 0 m(z)

m∗(z) 0 −i∂z 0
0 m∗(z) 0 i∂z





























. (7)

The Hamiltonian can be brought to a block diagonal form by
taking a similitude transformation, that is,

U−1HGNU =

(

Hz
(

m(z)
)

0
0 Hz

(

m∗(z)
)

)

, (8)

where the involved matrices are respectively:

Hz
(

m(z)
)

=

(

i∂z m∗(z)
m(z) −i∂z

)

,U =





























1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0





























. (9)

For a given inhomogeneous state, the explicit form of the
thermodynamic potential usually can be evaluated with the
help of the density of states. However, one should be cautious



3

whenm(z) is not real. In this case, the spinors are actually half
valid at the LLL and take the formsu(x) =

(

u1(x), 0, u3(x), 0
)T

andd(x) =
(

0, d2(x), 0, d4(x)
)T , respectively [44]. Then the

spectra{ε} of HGN are not symmetric with{−ε}. Take the
DCDW modulation (m(z) = me2ikz) of u quark for example,
the spectra are{±

√

p2
z + m2+k}. As has been mentioned, these

sign asymmetric spectra make the regularization very difficult
at finit chemical potential due to the non-renormalizable na-
ture of NJL model [21, 23]. For the solitonic modulation,
m(z) is real and it can be checked that the LLL spectra are sign
symmetric. Thus, this case can be treated self-consistently.

For the solitonic modulation, the mass gap takes the follow-
ing form [45]:

M(m, ν, z) = m
(

ν sn(K (ν)|ν) sn(mz|ν) sn(mz+ K (ν)|ν)

+
cn(K (ν)|ν) dn(K (ν)|ν)

sn(K (ν)|ν)
)

, (10)

where sn, cn and dn are elliptic Jocobi functions with ellip-
tic modulus

√
ν. And the thermodynamic potential can be

derived straightforwardly from the case with vanishing mag-
netic field [7] because the transversal degrees of freedom are
irrelevant to the longitudinal one. By replacing the transverse
momenta with the Landau Levels, the thermodynamic poten-
tial can be expressed explicitly as

Ω(T, µ, B; m, ν) =
1

4GL

∫ L

0
M2(m, ν, z)dz−

∑

q=qu,qd

Nc
|qB|
2π

∑

n=0

αn

∫ ∞

0
dε ρ(ε; m, ν) f (T, µ, n, q, B, ε), (11)

whereL = 2K (ν)/m is the period ofM(m, ν, z), αn = 2− δn,0

stands for the degeneracy of then-th Landau level, and the
integrand is

f (T, µ, n, q, B, ε) = ǫ(n, q, B, ε)+ T ln(1+ e−(ǫ(n,q,B,ε)−µ)/T )

+T ln(1+ e−(ǫ(n,q,B,ε)+µ)/T ), (12)

with the excitation energyǫ(n, q, B, ε) =
(

2n|qB|+ ε2)1/2. The
corresponding density of states for solitonic modulation is
given by [46]

ρ(ε; m, ν) =
1
π

ε2 − m2E(ν)/K (ν)
√

(ε2 − m2)
(

ε2 − (1− ν)m2
)

[

θ(ε2 − m2) − θ( − ε2
+ (1− ν)m2)], (13)

whereK (ν) is the quarter period,E(ν) is the incomplete ellip-
tic integral andθ(x) is the step function. For the convenience
of numerical calculations, the integral in the first part ofΩ can
be worked out presicely to give [45]

M2(m, ν) = m2
( 1
sn2(K (ν)|ν) −

2E(ν)
K (ν)

+ 1− ν
)

. (14)

The second part is divergent and we refer to PV regularization
scheme as it is much softer than others and can avoid artifacts

when magnetic field is present [36]. Then the convergent form
of the thermodynamic potential is

Ω(T, µ, B; m, ν) =
M2(m, ν)

4G
−

∑

q=qu,qd

Nc
|qB|
2π

∑

n=0

αn

∫ ∞

0
dε ρ(ε; m, ν) fPV(T, µ, n, q, B, ε),(15)

where fPV(T, µ, n, q, B, ε) =
∑3

i=0 ci f (T, µ, n, q, B,
√
ε2 + iΛ2)

with c0 = −c3 = 1, c1 = −c2 = −3. The advantages of the PV
regularization scheme are ready to see: In the limitν → 0 or
m→ 0, we can reproduce the PV regularized thermodynamic
potential for the chiral symmetry restoration phase (χS R) as it
should be. In the limitν → 1, the PV regularized thermody-
namic potential for the homogeneous chiral symmetry break-
ing phase (χS B) can also be reproduced. Thus, the PV regu-
larization scheme guarantees the self-consistency of solitonic
modulation in several limits. Finally, the ground state should
be determined by minimizingΩ(T, µ, B; m, ν) with respect to
m andν for given parametersT, µ andB. And phase transi-
tion happens with the change of parameters: Whenν changes
from 1 to a smaller one, the system transits fromχS B phase
to SM phase; when it changes from 0< ν < 1 to 0, the system
transits from SM phase toχS R phase.

B. Ginzburg-Landau expansion with smallν

In order to evaluate the chiral symmetry restoration transi-
tion and the Lifshitz point more efficiently, we’d like to in-
troduce a different Ginzburg-Landau expansion scheme com-
pared to that of Ref. [7], that is, expand the thermodynamic
potentialΩ(T, µ, B; m, ν) with respect to the elliptic modulus
ν. The Taylor expansions ofM2(m, ν) andρ(ε; m, ν) around
smallν are respectively

M2(m, ν) = m2(√ν − 7ν
8
+ o(ν3/2)

)

, (16)

ρ(ε; m, ν) =
1
π
+

m2√ν
2π(ε2 − m2)

− 7m2ν

16π(ε2 − m2)

−mν
2π
δ(ε − m) + o(ν3/2), (17)

whereo(ν3/2) is the Peano form of the remainder and the third
term in Eq.(17) is from the step functions. Thus, the thermo-
dynamic potential has the following form

Ω(T, µ, B; m, ν) = Ω(T, µ, B; m, 0)+ m2β(T, µ, B; m)
√
ν

+

(

− 7
8

m2β(T, µ, B; m) + γ(T, µ, B; m)
)

ν

+o(ν3/2), (18)

β(T, µ, B; m) =
1

4G
−

∑

q=qu,qd

Nc
|qB|
2π

∑

n=0

αn

∫ ∞

0
dε

1
2π(ε2 − m2)

fPV(T, µ, n, q, B, ε), (19)

γ(T, µ, B; m) = m
∑

q=qu,qd

Nc
|qB|
(2π)2

∑

n=0

αn fPV(T, µ, n, q, B,m).(20)
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Note thatΩ(T, µ, B; m, 0) is just the thermodynamic poten-
tial for χS R phase which doesn’t depend onm. However,
m2β(T, µ, B; m) is mass dependent and the value ofm should
be determined by minimizing this coefficient for given pa-
rameters which gives the lowest free energy aroundν ∼ 0.
The integral overε should be understood as Cauchy Princi-
pal value integration and thenβ(T, µ, B; m) is real and con-
vergent. The minimum ofβ(T, µ, B; m) directly determines
which phase is the system in: If the minimum is negative, the
χS B phase or SM phase is more favored; if positive, theχS R
phase is more favored; and min

(

β(T, µ, B; m)
)

= 0 just deter-
mines the chiral symmetry restoration point. At the transition
point, the next-order coefficient reduces toγ(T, µ, B; m) which
is semi-positive definite (only equals to zero whenm = 0) and
this means that the phase transition is always of second or-
der. It should be clarified that a nonzero expectation value of
m aroundν ∼ 0 doesn’t necessarily mean the transition can-
not be second order, because what really matters isM(m, ν, z)
which of course vanishes atν = 0.

Furthermore, this kind of GL expansion approach is also ca-
pable to find the Lifshitz point where the solution withν = 0 is
consistent with the solutionν = 1. This can happen only when
the expectation value ofm is zero and the Lifshitz point is in
fact the critical point betweenm = 0 andm , 0. Neverthe-
less, there is a small defect with this approach: The derivative
of the coefficientβ(T, µ, B; m) with respect tom is divergent
around the integral regionε ∼ m as can be seen from the fol-
lowing

∂β(T, µ, B; m)
m ∂m

= −
∑

q=qu,qd

Nc
|qB|
2π

∑

n=0

αn

∫ ∞

0
dε

fPV(T, µ, n, q, B, ε)
π(ε2 − m2)2

.

(21)

Therefore, the minimum can only be evaluated by direct scan-
ning of β(T, µ, B; m) over m instead of a new kind of ”gap
equation”.

III. THE PHASE DIAGRAMS AND LIFSHITZ POINT

As had already been illuminated in the quark-meson (QM)
model [7], the expectation value ofm in vacuum affects the
qualitative results quite much about the existence of the soli-
tonic modulation. In order to show the results explicitly, we
choosem = 330 MeV as a moderate choice and keep the pion
decay constantfπ to the experimental value 93 MeV. Then,
according to the following relations [47]:

〈ψ̄ψ〉 ≡ − m
2G
= − 6m

4π2

3
∑

i=0

ci(m
2
+ iΛ2) ln

m2
+ iΛ2

m2
, (22)

f 2
π =

Ncm2

4π2

3
∑

i=0

ci ln
m2
+ iΛ2

m2
, (23)

the parameters of the PV regularized NJL model can be fixed
asΛ = 0.786 GeV andGΛ2

= 6.24. This corresponds to
a chiral condensate〈ūu〉 = 〈d̄d〉 = 〈ψ̄ψ〉/2 = −(0.20 GeV)3

in the vacuum which is a little smaller than the LQCD result
〈ūu〉 = 〈d̄d〉 = −(0.25 GeV)3.

Both the NJL model and QM model predicted that the tran-
sitions fromχS B phase to SM phase and from SM phase to
χS R phase are both of second order in the absence of mag-
netic field [7, 9]. We carefully check the case with a con-
stant magnetic field and find it remains the same: As there is
only one minimum ofΩ(T, µ, B; m, ν) with respect toν which
alone determines the transition points for given parameters
and nonzerom and the conventional first-order transition from
χS B phase toχS R phase lies between these two, the transi-
tions must both be of second order.

In order to explore the effect of magnetic field, we’d like
to start firstly at zero temperature. In this case, the integrand
becomes

f (0, µ, n, q, B, ε) =
1
2

∑

s=±
|ǫ(n, q, B, ε)− sµ|, (24)

and the numerical results for the upper and lower boundaries
of SM phase are shown in Fig.1. It is interesting to find that
the critical chemical potentialµ oscillates with the magnetic
field B at both boundaries which is actually an illumination
of the dHvA effect [48]. This is consistent with that found
in the study of homogeneous chiral condensate [35, 36, 49].
Because the oscillations are not strictly coincident with each
other, the size of the existing region for the SM phase also os-
cillates withB and is the smallest around

√
eB = 0.33 GeV

which is accidently the same as the mass in vacuum. For
larger B, the region for the SM phase increases withB due
to the catalysis effect.

ΧSB SM

ΧSR

0.0 0.2 0.4 0.6 0.8
0.24

0.26

0.28

0.30

0.32

0.34

eB �GeV

Μ
�G

eV

FIG. 1: Theµ–B phase diagram at zero temperature. The upper and
lower boundaries correspond to the transition from solitonic modula-
tion phase to chiral symmetry restoration phase and from chiral sym-
metry breaking phase to solitonic modulation phase, respectively.

Then, we’d like to turn on the temperature and check how
would the magnetic field affect theT–µ phase diagram. To
show the effect obviously, we choose a strong magnetic field√

eB = 0.6 GeV which is near the minima of the boundaries
and compare it with the case in the absence of magnetic field.
The results are illuminated in Fig.2. As can be seen, the re-
sult for B = 0 is qualitatively consistent with that obtained
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eB = 0

0.6 GeV

IMC

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0.00

0.05

0.10

0.15

0.20

0.25

Μ�GeV

T
�G

eV

FIG. 2: (color online) The phase transition lines for the cases with
B = 0 (black dashed lines) and

√
eB = 0.6 GeV (red dotted lines).

The solitonic modulation phase is in the small closed regions at large
chemical potential and the bullets are the Lifshitz points.The inverse
magnetic catalysis effect to the case with

√
eB = 0.6 GeV is also

illuminated (blue dot-dashed line).

in Ref. [7]. However, one should notice here that a most re-
cent study of a more general form of inhomogeneous order
parameter by using finite-mode approach gives a very differ-
ent result: the homogeneous-inhomogeneous phase transition
becomes of first order and the inhomogeneous region is en-
larged a lot even for a moderate constitute quark mass [24].
Due to the dHvA effect at zero temperature, the second-order
transition lines fromχS B phase toχS R phase intersect with
each other. It might not be the case in real QCD system: Be-
cause of the IMC effect [25], it is much more probable that
the transition line would be substituted by another one for√

eB = 0.6 GeV (see the blue dot-dashed line) and the transi-
tion lines are covered by those ofB = 0. However, for larger
magnetic field (

√
eB ≥ 0.8 GeV), the transition lines would

start to intersect with those ofB = 0 due to the dHvA oscil-
lation at low temperature. There are two tricritical Lifshitz
points where three second-order transition lines intersect with
each other in the plot and the point is found to shift to upper
left by the magnetic field.

Finally, the evolution of the Lifshitz point with the mag-
netic field is evaluated as illuminated in Fig.3. The dHvA
oscillation shows up in both curves: The oscillation is much
more obvious in theµL–B curve with the minimum at around√

eB = 0.7 GeV. On the other hand, the temperatureTL in-
creases monotonically with the magnetic fieldB and the flat
oscillation in the region

√
eB ∈ [0.2 GeV, 0.5 GeV] is mainly

due to the fast decreasing ofµL.

IV. SUMMARY

In this work, we explore the magnetic field effect to the
phase transitions among the homogeneous chiral symme-
try breaking, inhomogeneous solitonic modulation and chiral
symmetry restoration phases. The thermodynamic potential
can be obtained directly by generalizing from the case without

0.06

0.08

0.10

0.12

0.14

T
L
�G

eV

0.0 0.2 0.4 0.6 0.8
0.20

0.22

0.24

0.26

0.28

0.30

eB �GeV

Μ
L
�G

eV

FIG. 3: The evolutions of the temperatureTL and the chemical po-
tentialµL at the Lifshitz point with the magnetic fieldB.

magnetic field due to the sign symmetry of the quark spectra.
And in order to evaluate the chiral symmetry restoration tran-
sition more efficiently, we develop a new kind of Ginzburg-
Landau expansion approach around smallν.

The transitions fromχS B phase to SM phase and from SM
phase toχS R phase are both of second order in the presence of
magnetic field. At zero temperature, both the upper and lower
boundaries of the SM phase oscillate with the magnetic field
and so does the size of the SM region which are illuminations
of the dHvA effect. At finite temperature, the tricritical Lif-
shitz point is also found to oscillate with the magnetic field.
Generally, only one minimum is found for eachµ–B phase
diagram which is consistent with previous works [35, 36, 49].

Our recent study is very preliminary. How’s the fate of the
SM phase when the fluctuations of collective modes are in-
cluded either through Gaussian expansion (though very diffi-
cult) or quark-meson model [7, 9, 50] is an important question.
As it is impossible to check which one is much more favored
between the DCDW modulation and the solitonic modulation
phases by the first principal LQCD calculation at finite chem-
ical potential [51], it is very important to find a method that
can consistently treat both cases at finite magnetic field. The
Dyson-Schwinger equation and the functional renormaliza-
tion group approach may serve as possible candidates. Still,
when taking a more general form of inhomogeneous order
parameter into account [24], how would the phase diagram
change at finite magnetic field deserves further study. Finally,
though the dHvA oscillation surely exists at low temperature,
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how would the IMC effect affect theT–µ phase diagram at
finite magnetic field still need further check.
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