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The elastic α-12C scattering at low energies is studied employing an effective field theory
in which the α and 12C states are treated as elementary-like fields. We discuss scales of
the theory at stellar energy region that the 12C(α, γ)16O process occurs, and then obtain
an expression of the elastic scattering amplitudes in terms of effective range parameters.
Using experimental data of the phase shifts for l = 0, 1, 2 channels at low energies, for
which the resonance regions are avoided, we fix values of the parameters and find that
the phase shifts at the low energies are well reproduced by using three effective range
parameters for each channel. Furthermore, we discuss problems and uncertainties of the
present approach when the amplitudes are extrapolated to the stellar energy region.
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1. Introduction

The radiative alpha capture on carbon-12, 12C(α, γ)16O, is one of the fundamental
reactions in nuclear astrophysics, which determines the ratio 12C/16O produced in helium
burning [1]. The reaction rate, equivalently the astrophysical S-factor, of the process at
the Gamow peak energy, TG = 0.3 MeV, however, cannot experimentally be determined
due to the Coulomb barrier. It is necessary to employ a theoretical model and extrapolate
the cross section down to TG by fitting the model parameters to available experimental
data measured at a few MeV or larger. During a last half century, a lot of experimental
and theoretical studies for the process have been carried out. For reviews, see, e.g.,
Refs. [2, 3] and references therein.

In constructing a model for the process, one needs to take account of excited states
of 16O [2], particularly, two excited bound states for lπn-th = 1−1 and 2+1 just below the
α-12C breakup threshold at T = −0.045 and −0.24 MeV 2, respectively, as well as 1−2 and
2+2 resonant (second excited) states at T = 2.42 and 2.68 MeV, respectively. Thus the
capture reaction to the ground state of 16O at TG is expected to be E1 and E2 transition
dominant due to the subthreshold 1−1 and 2+1 states. While the resonant 1−2 and 2+2
states play a dominant role in the available experimental data at low energies, typically
1 ≤ T ≤ 3 MeV. Experimental data pertaining to processes for nuclear astrophysics are
compiled, known as NACRE-II compilation [4], in which the S-factor of the 12C(α,γ)16O
reaction is estimated employing a potential model and reported uncertainty of the process
is less than 20 %. While conflicting sets of experimental data for the process at very low
energies still persist [5, 6], and thus one may need to wait for new measurements at very
low energies, T ≤ 1.5 MeV [3].

In the present study, we would like to discuss an alternative theoretical approach
constructing an effective field theory (EFT) for the process, and apply the theory to the
study of elastic α-12C scattering at low energies. EFTs provide us a model independent
and systematic method for theoretical calculations. An EFT for a system in question
can be built by introducing a scale which separates relevant degrees of freedom at low
energies from irrelevant degrees of freedom at high energies. An effective Lagrangian is
written down in terms of the relevant degrees of freedom, and is perturbatively expanded
order by order, by counting the number of derivatives. The irrelevant degrees of freedom
are integrated out and their effect is embedded in coefficients appearing in the effective
Lagrangian. Thus a transition amplitude is systematically calculated by writing down
Feynman diagrams, whereas the coefficients appearing in the effective Lagrangian should
be determined by experiments. For reviews, one may refer to, e.g., Refs. [7, 8, 9]. Various
processes being essential in nuclear astrophysics have been investigated by constructing
EFTs, for example, p(n, γ)d at BBN energies [10, 11] and pp fusion [12, 13, 14, 15] and
7Be(p,γ)7B [16, 17] in the Sun.

An unique feature of those studies in EFTs is that the theories allow us to estimate
theoretical uncertainties, based on the model-independent and perturbative expansion
scheme of the theories, in the extrapolated reaction rates. For example, less than 1 %

2The energy T denotes that of the α-12C system in center of mass frame.
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accuracy in the estimate of the reaction rates of p(n, γ)d at BBN energies and the pp
fusion in the Sun were obtained in the previous studies [11, 14]. Thus our main aim in
future studies for the 12C(α,γ)16O reaction is to estimate the S factors with about 5 %
uncertainty in theory.

We treat the α and 12C states as elementary-like fields, and the scales involving in the
theory are to be discussed in the next section. Then an effective Lagrangian is written
down, an expression of the scattering amplitudes is obtained, and phase shifts for l = 0, 1, 2
channels of the elastic α-12C scattering at low energies are studied. The main assumption
of the present study, suggested by Teichmann [18], is that we may choose the energies of
the resonant states the large energy scale of the theory so that, in the limited low energy
regions, the Breit-Wigner type pole structure for the resonant states in the scattering
amplitudes can be expanded in terms of the energy and the expression of the energy
dependence of the amplitudes can be reduced to that of the effective range expansion.
Thus our large energy scales of the theory for the elastic scattering for l = 0, 1, and 2
channels are the resonance energies, T = 4.89, 2.42, and 2.68 MeV for the 0+2 , 1

−
2 , 2

+
2 states,

respectively. In addition, we do not introduce explicate degrees of freedom for the 1−1 and
2+1 states. Because, as to be discussed in detail later, the expression of the scattering
amplitudes in terms of the effective range parameters have a restrictive condition in zero
momentum limit, we find that it is not easy to incorporate the subthreshold states in the
present study.

This article is organized in the following. In section 2, we discuss the scales of the theory
and write down an effective Lagrangian for the elementary-like α and 12C fields. In section
3, the expression of the amplitudes for the elastic α-12C scattering for l = 0, 1, 2 channels in
terms of the effective range parameters is obtained. In section 4, the parameters are fitted
by using the experimental phase shifts, and for a qualitative study of the extrapolation the
real part of the denominator of the scattering amplitudes is extrapolated to TG. Finally,
conclusions and discussion of the present work are presented in section 6.

2. Scales and effective Lagrangian for the system

As mentioned above, we treat the α and 12C states as elementary-like cluster fields.
This treatment would be reasonable when a typical momentum scale is smaller than a scale
at which a mechanism at high energy becomes relevant. For the α particle, excited states
of the α particle should be treated as irrelevant degrees of freedom [19, 20]. First excited
energy of the α particle is E(4) ≃ 20 MeV, and thus a corresponding large momentum scale

is ΛH ∼
√

2µ4E(4) ≃ 170 MeV where µ4 is the reduced mass for one and three nucleon

systems, µ4 ≃ 3
4
mN . mN is the nucleon mass. For the 12C state, on the other hand, first

excited energy of 12C is E(12) ≃ 4.439 MeV, and thus the large momentum scale due to

E(12) is ΛH ∼
√

2µ12E(12) ≃ 150 MeV where µ12 is the reduced mass for four and eight

nucleon systems, µ12 ≃ 8
3
mN . In addition, we need to introduce another large scale due

to the Coulomb interaction. The inverse of the Bohr radius is κ = αEZαZCµ ≃ 247 MeV
where αE is the fine structure constant, Zα and ZC are the number of protons in α and
12C, respectively, and µ is the reduced mass for α and 12C, µ ≃ 3mN . Thus we may
choose the large momentum scale of the theory ΛH ∼ 150 MeV.
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A typical momentum scale Q for the 12C(α,γ)16O process in the starts is estimated
from the Gamow peak energy, TG ≃ 0.3 MeV, and thus the typical momentum scale is
Q ∼ k =

√
2µTG ≃ 41 MeV. Thus we shall have the expansion parameter for the process

at TG as Q/ΛH ∼ 1/3, and the about 5 % theoretical uncertainty mentioned above can
be achieved by considering perturbative corrections up to next-to-next-to leading order.

A typical momentum scale, Q ∼ k, for the elastic α-12C scattering differs from that at
TG. We employ the phase shift data from Plaga et al. [21] and Tischhauser et al. [22] to
fix the effective range parameters. The reported energies of the α particle for the phase
shift data in lab frame are Tα ≃ 1.5-6.6 MeV and 2.6-6.6 MeV3, respectively, whereas, as
mentioned above, we introduced the resonance energies as the large scales of the process.
Thus we have the lowest momenta in the center of mass frame, klow ≃ 80 and 105 MeV
for Ref. [21] and [22], respectively, whereas the highest momenta, khigh ≃ 166, 117, and
123 MeV for l = 0, 1, and 2 channels, respectively. Because the large momentum scale of
the theory is ΛH ∼ 150 MeV, though in the higher momentum region the series expansion
would not converge, it may do in the relatively low momentum region. The convergence
of the effective range expansion for each channel is to be studied below.

An effective Lagrangian for the present study may be written as [19, 23, 24]

L = φ†α



iD0 +
~D2

2mα

+ · · ·


φα + φ†C



iD0 +
~D2

2mC

+ · · ·


φC

+
∑

l,n

C(l)
n d
†
(l)



iD0 +
~D2

2(mα +mC)





n

d(l)

−
∑

l

y(l)
[

(φαOlφC)
†d(l) + d†(l)(φαOlφC)

]

+ · · · , (1)

where φα (mα) and φC (mC) are point-like fields (masses) of α and 12C, respectively. Dµ

is a covariant derivative, and the dots denote higher order terms. d(l) represent α and 12C
composite fields of angular momentum l. Thus d(0) for l = 0, d(1)i for l = 1 where the
subscript i represents a state in l = 1, and d(2)ij for l = 2 where d(2)ij = d(2)ji and the
subscripts ij represent a state in l = 2. C(l)

n are coupling constants for the propagation
of the α-12C composite fields for the l channels, and can be related to effective range
parameters along with common multiplicative factors 1/y2(l). For the present exploratory
study, three effective range parameters, the terms of n = 0, 1, 2, are retained for each
partial wave. For the l = 0 state, for example, C

(0)
0 is related to the scattering length,

C
(0)
1 the effective range, and C

(0)
2 the shape parameter. In addition, y(l) are coupling

constants of the α-12C-d(l) vertices, and Ol are projection operators by which the α-12C
system is projected to the l-th partial wave states. Thus one has

O0 = 1 , O1,i =
i
↔

Di

M
≡ i





→

DC

mC

−
←

Dα

mα





i

, O2,ij =
1

M2

(

−
↔

Di

↔

Dj +
1

3
δij
↔

D
2
)

. (2)

3The energies Tα and T for the α-12C system in lab and center of mass frames are related by Tα ≃ 4

3
T .
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Figure 1: Diagrams for propagator of dressed composite fields. Double dashed line denotes
bare composite (16O) field consisting of α and 12C fields, thin (thick) dashed line denotes
point-like α (12C) field, and shaded blob denotes off-shell Coulomb T-matrix.

3. Scattering amplitudes and phase shifts

The differential cross section of the elastic α-12C scattering (for two spin-0 charged
particles) in terms of the phase shifts are given by (see, e.g., Ref. [25])

σ(θ) =
dσ

dΩ
= |f(θ)|2

=
1

k2

∣

∣

∣

∣

∣

− η

2 sin2 1
2
θ
exp

(

−2iη ln sin
1

2
θ
)

+
1

2
i
∞
∑

l=0

(2l + 1) [exp (2iωl)− Ul]Pl(cos θ)

∣

∣

∣

∣

∣

2

, (3)

where f(θ) is the scattering amplitude including both pure Coulomb part and Coulomb
modified strong interaction part, θ is a scattering angle, k is the relative absolute mo-
mentum, and η = κ/k. In addition, ωl is the Coulomb scattering phase, ωl(= σl − σ0) =
∑

arctan(η/s) for s = 1 to l,4 and

Ul = exp [2i(δl + ωl)] . (4)

δl are real scattering phase shifts.
The elastic scattering amplitudes for the Coulomb modified strong interaction part

for l = 0, 1, 2 channels are calculated from the effective Lagrangian presented above. In
Fig. 1 Feynman diagrams for dressed composite 16O propagators consisting of the α and
12C elementary-like fields including the Coulomb interaction between the two charged
fields are depicted. In Fig. 2, a Feynman diagram for a scattering amplitude for elastic
α-12C scattering for each partial wave state including the initial and final state Coulomb
interactions is depicted. For derivation of the amplitudes from the diagrams in detail the
reader may referee to, e.g., Refs. [26, 27] and we do not repeat the detailed calculation.

Thus we have the scattering amplitudes, Al, for l = 0, 1, 2 states in terms of the effective
range parameters as [19, 28]

A0 =
2π

µ

C2
ηe

2iσ0

−γ0 + 1
2
r0k2 − 1

4
P0k4 − 2κH(η)

, (5)

A1 =
6π

µ

e2iσ1k2(1 + η2)C2
η cos θ

−γ1 + 1
2
r1k2 − 1

4
P1k4 − 2κk2(1 + η2)H(η)

, (6)

4σ0 is the Coulomb phase shift, σ0 = argΓ(1 + iη).
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Figure 2: Diagram for scattering amplitudes. See the caption in Fig. 1 as well.

A2 =
10π

µ

e2iσ2k4(4 + η2)(1 + η2)C2
η
1
2
(3 cos θ − 1)

−γ2 + 1
2
r2k2 − 1

4
P2k4 − 2κk4(4 + η2)(1 + η2)H(η)

, (7)

with

C2
η =

2πη

e2πη − 1
, H(η) = ψ(iη) +

1

2iη
− ln(iη) , (8)

where ψ(x) is the digamma function. γl, rl, Pl are the three effective range parameters
for l = 0, 1, 2. While the amplitudes, Al, can be represented in terms of the phase shifts
δl as

A0 =
2π

µ

e2iσ0

k cot δ0 − ik
, A1 =

6π

µ

e2iσ1 sin θ

k cot δ1 − ik
, A2 =

10π

µ

e2iσ2 1
2
(3 cos θ − 1)

k cot δ2 − ik
. (9)

Thus one has the relations between the phase shifts and the effective range parameters as

C2
ηk cot δ0 + 2κh(η) = −γ0 +

1

2
r0k

2 − 1

4
P0k

4 + · · · , (10)

k2(1 + η2)
[

C2
ηk cot δ1 + 2κh(η)

]

= −γ1 +
1

2
r1k

2 − 1

4
P1k

4 + · · · , (11)

k4(4 + η2)(1 + η2)
[

C2
ηk cot δ2 + 2κh(η)

]

= −γ2 +
1

2
r2k

2 − 1

4
P2k

4 + · · · , (12)

where h(η) = ReH(η).

4. Fixing the parameters

Before fixing values of the effective range parameters, we discuss some features of the
equations obtained in Eqs. (10,11,12). At low energies the function h(η) appearing in the
equations can be expanded in terms of 1/η(= k/κ) as

h(η) =
1

12η2
+

1

120η4
+

1

252η6
+ · · · . (13)

One may see that the series expansion converges in the energy region which we consider
below and there is no constant term appearing from the h(η) function. In addition, the
factor C2

η being multiplied to the cotangent terms in Eqs. (10,11,12) becomes vanishingly
small at the very low energies. Thus the left hand side of the equations vanishes in zero

6



S0 S1 S2 S3
γ0 (MeV) 0.058± 0.058 0.034± 0.003 0.015± 0.001 −0.008± 0.001
r0 (fm) 0.270± 0.002 0.2693± 0.0001 0.2685± 0.0001 0.2674± 0.0000
P0 (fm3) −0.037± 0.005 −0.0372± 0.0002 −0.0390± 0.0001 −0.0416± 0.0000

Table 1: Fitted values of s-wave effective range parameters using four sets of the experi-
mental data labeled by S0, S1, S2, and S3. See the text for details.

momentum limit, k → 0, and the parameters γ0, γ1, and γ2 in the right hand side of
Eqs. (10), (11), and (12) are required to vanish as well in the limit. On the other hand,
experimental data do not exist at such very low energies, and values of the parameters are
fixed by using existing experimental data at some higher energies. As mentioned above,
the experimental data from Plaga et al. [21] and Tischhauser et al.[22] where the lowest
energies the data are Tα ≃ 1.5 and 2.6 MeV, respectively are employed up to the energies
of the resonant states, Tα ≃ 6.5, 3.2, and 3.6 MeV for l = 0, 1, and 2, respectively.5

We note that we have to choose γ2 = 0 in fitting the parameters because the phase
shift for the l = 2 channel is very small, less than two degrees, in the fitting energy range
and it is not easy to have a non-vanishing contribution to γ2. In addition, due to the
feature in the zero momentum limit mentioned above, it is not easy to incorporate the
pole structure of the subthreshold states in the amplitudes either because it makes the
γl terms significantly large. Therefore, we fix the parameters, without including the pole
structure of the subthreshold states, from data sets which we arbitrarily choose for each
of the partial wave states, l = 0, 1, 2, below.

4.1. l = 0 channel

Four sets of the experimental data for the s-wave phase shift are chosen in order to
qualitatively study the dependence from the choice of the data sets for the extrapolation
to TG. The four sets of the data are labeled as S0, S1, S2, and S3. S0 denotes a data
set of the s-wave phase shift at energies Tα = 1.5-6.5 MeV from Table 2 in the Plaga
et al.’s paper [21], and S1, S2, and S3 do those at energies Tα = 2.6-6.5, 2.6-6.0, and
2.6-5.0 MeV, respectively, from the Tischhauser et al.’s paper [22].

In Table 1 fitted values of the s-wave effective range parameters by using the four
data sets, S0, S1, S2, and S3 are displayed.6 One can see that the fitted values of γ0
are sensitive to the choice of the data sets, those of r0 are not, and those of P0 are in
between the two cases. We find that almost exact cancellations between the r0 term
and the coefficient of the term proportional to k2, 1/(3κ) ≃ 0.2687 fm, from 2κh(η)
term in Eq. (10) and significant cancellations between the P0 term and that of the term
proportional to k4 term, −1/(15κ3) ≃ −0.0210 fm3, from the 2κh(η) term. As discussed

5Thus the momentum of the α-12C system in the center of mass frame for the data becomes k =
80(105)-166 MeV for l = 0, 80(105)-117 MeV for l = 1, and 80(105)-123 MeV for l = 2.

6We employ a scipy module, curve fit, in optimization package to fit the effective range parameters
to the phase shift data.
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in the introduction, we find that the expansion series in terms of the effective range
parameters well converges in the energy regions for the fitting. Those coefficients of the
k2n power series after including the corrections from the 2κh(η) term become significantly
small, e.g., the γ0 values being a few hundredth MeV, compared to the scale of the system.
This may be due to the suppression factor from the C2

η term in Eq. (10), which becomes
C2

η ∼ 10−6-10−4 in the range of the energy, Tα ≃ 2.0-6.0 MeV.
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Figure 3: Phase shift of elastic α-12C scattering for l = 0, δ0 (deg.), as functions of Tα
(MeV). Three curves are plotted by using three sets of fitted effective range parameters
(labeled by S0, S1, S3) obtained in Table 1. Experimental data labeled by Exp. (I) from
Plaga et al. [21] and Exp. (II) from Tischhauser et al. [22] are also displayed.

In Fig. 3, curves of the s-wave phase shift are plotted by using the effective range
parameters obtained in Table 1. The experimental data are also included in the figure.
We find that the curves are well reproduced the data in the energy ranges where the
effective range parameters have been fitted.

In Fig. 4, in order to qualitatively study the extrapolation to the Gamow energy,
TG = 0.3 MeV in the center of mass frame, which corresponds to Tα ≃ 0.4 MeV in the
lab frame, we plot curves of the real part of the denominator of the s-wave scattering
amplitude in Eq. (5),

fs(k) = −2κh(η)− γ0 +
1

2
r0k

2 − 1

4
P0k

4 , (14)

by using the values of the effective range parameters obtained in Table 1, as functions of Tα
where k =

√
1.5µTα. One can see that the fitted curves almost overlap at Tα ≃ 3-5 MeV,
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Figure 4: Function fs(k) defined in Eq. (14) as functions of Tα (MeV). Curves are plotted
by using four sets of values of effective range parameters (labeled by S0, S1, S2, S3)
obtained in Table 1. A vertical line at Tα = 0.4 MeV is also included.

except for the curve of S0, and when one extrapolates the curves to the lower energies,
they are scattered. The curves of fs(k) decreases, is almost the same, and increases at
Tα ≃ 0.4 MeV, compared to the values of the function at Tα ≃ 3 MeV, depending on the
choice of the data sets, S1, S2, and S3, respectively. Thus we find a significant uncertainty
in the extrapolation to the energy, Tα ≃ 0.4 MeV, corresponding to TG. We note that the
curve of S3 vanishes at a small value of Tα. That indicates the presence of the resonant
state at the very low energy and thus the parameter set S3 should be excluded.

4.2. l = 1 channel

Three sets of the experimental data for the p-wave phase shift to fit the effective range
parameters are chosen, and labeled as P0, P1, and P2. P0 denotes a data set of the
p-wave phase shift at Tα ≃ 1.5-3.1 MeV from Table 2 in the Plaga et al.’s paper [21],
and P1 and P2 do those at Tα = 2.6-3.0 MeV and 2.6-3.1 MeV, respectively, from the
Tischhauser et al.’s paper [22]. We note that, as mentioned above, we chose the largest
energies of the data sets less than the resonance energy, Tα ≃ 3.23 MeV.

In Table 2 fitted values of the p-wave effective range parameters by using the three
sets of the data labeled by P0, P1, and P2 are displayed. We find in Table 2 the similar
tendency to what we found in the fitted values of the s-wave effective range parameters in
Table 1. The fitted values of γ1 are quite sensitive to the choice of the data sets, whereas
those of r1 and P1 do not. We can see that the significant cancellations between the r1

9



P0 P1 P2
γ1 (103 MeV3) −2.53± 1.09 −3.84± 1.27 −4.57± 0.38
r1 (fm−1) 0.406± 0.002 0.405± 0.002 0.404± 0.000
P1 (fm) −0.641± 0.006 −0.645± 0.007 −0.649± 0.002

Table 2: Fitted values of p-wave effective range parameters using three sets of the exper-
imental data labeled by P0, P1, and P2. See the text for details.

(P1) term and the term proportional to k2 (k4) obtained from the 2κk2(1 + η2)h(η) term
in Eq. (11) where we have 1

3
κ ≃ 0.413 fm−1 corresponding to the r1 term and −11/15κ ≃

−0.591 fm corresponding to the P1 term. We also find that the series expansion of the
effective range parameters converges at very low energies, up to about Tα ≃ 1.5 MeV, and
the significant cancellations occur between the terms being proportional to k2 and k4 in
the energy range, Tα ≃ 2-3 MeV.

In Fig. 5, curves of the phase shift of the elastic p-wave α-12C scattering are plotted
by using the fitted effective range parameters in Table 2. The experimental data are also
included in the figure. We find that the curves well reproduce the data in the energy
ranges where the effective range parameters have been fitted.

In Fig. 6 we plot the real part of the denominator of the p-wave scattering amplitude
in Eq. (6),

fp(k) = −2κk2(1 + η2)h(η)− γ1 +
1

2
r1k

2 − 1

4
P1k

4 , (15)

by using the values of the effective range parameters obtained in Table 2 as functions
of Tα. One can see that the values of the function fp(k) are small at the energy range,
Tα = 2.6-3.0 MeV. In that energy region, as mentioned above, a significant cancelation
among the terms of the effective range expansion occurs. While the values of the fp(k)
function become large when it is extrapolated to Tα = 0.4 MeV, due to the relatively
large contribution from the γ1 term compared to the other effective range terms of r1 and
P1 when the corrections from the 2κk2(1 + η2)h(η) term are included. This implies that
because the function fp(k) appears in the denominator of the scattering amplitude the
scattering amplitude is rather suppressed at TG. Thus we cannot qualitatively reproduce
the enhancement of the S-factor for the E1 channel, reported, e.g., in Ref. [29], in the
extrapolation of the p-wave scattering amplitude to TG.

4.3. l = 2 channel

Three sets of the experimental data for the d-wave phase shift to fit the effective range
parameters are chosen, and labeled as D0, D1, and D2. D0 denotes a data set of the d-
wave phase shift at Tα ≃ 1.47-3.57 MeV from Table 2 in the Plaga et al.’s paper [21], and
D1 and D2 do those at Tα = 2.6-3.0 and 2.6-3.4 MeV, respectively, from the Tischhauser
et al.’s paper [22]. We note that the maximum energies of the data sets are chosen as less
than the resonance energy, Tα ≃ 3.57 MeV.
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Figure 5: Phase shift of elastic α-12C scattering for l = 1, δ1 (deg.), as functions of Tα
(MeV). Three curves are plotted by using three sets of fitted effective range parameters
(labeled by P0, P1, P2) obtained in Table 2. Experimental data, Exp. (I) from Plaga et

al. [21] and Exp. (II) from Tischhauser et al. [22], are also displayed.

In Table 3 fitted values of the d-wave effective range parameters by using the three data
sets introduced above are displayed. As mentioned before we have chosen γ2 = 0 due to
the small values of the phase shift in those data sets. We find that large error bars of the
fitted parameters from the data set D0 compared to those from the data sets, D1 and D2.
We also find the common tendency that the significant cancellations between the r2 (P2)
term and the term proportional to k2 (k4) obtained from the 2κk4(4+η2)(1+η2)h(η) term
in Eq. (12) where we have 1

3
κ3 ≃ 0.6361 fm−3 and −51

15
κ ≃ −4.217 fm−1 corresponding to

r2 and P2, respectively. For the convergence of the effective range expansion, we find that
there is no convergence for the terms. There are large cancellations between the terms
proportional to k2 and k4 at the energies Tα ≃ 1.5-2 MeV. At the larger energies, the k4

term becomes dominant and is significantly cancelled with the other terms.
In Fig. 7, curves of the d-wave phase shift are plotted by using the fitted values of the

effective range parameters obtained in Table 3. The experimental data are also included in
the figure. We can see that the curves plotted in the figure well reproduce the experimental
data in the energy range below the resonance energy, Tα ≃ 3.57 MeV, and the error bars
of the Tischhauser et al.’s data are significantly smaller than those of the Plaga et al.’s
data.

In Fig. 8 we plot curves of the real part of the denominator of the d-wave scattering
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Figure 6: Function fp(k) defined in Eq. (15) as functions of Tα (MeV). Curves are plotted
by using three sets of values of effective range parameters (labeled by P0, P1, P2) obtained
in Table 2. A vertical line at Tα = 0.4 MeV is also included.

amplitude in Eq. (7),

fd(k) = −2κk4(4 + η2)(1 + η2)h(η)− γ2 +
1

2
r2k

2 − 1

4
P2k

4 , (16)

by using the values of the effective range parameters in Table 3 as functions of Tα. One
can see that the curves vanish in the limit where k → 0 because of the assumption of
γ2 = 0. In addition, the tracks of the extrapolation for the data sets of D1 and D2 are
quite different from that of D0, whereas as mentioned before, the curve from the D0 data
set should have a large uncertainty due to the large error bars of the fitted parameters.
Furthermore, we find that the curves of D1 and D2 are almost flat from Tα ≃ 2 MeV to
Tα ≃ 0.4 MeV, so the extrapolated cross section would be almost the same except for the
common factor C2

η at TG and T ≃ 2 MeV. Thus we cannot qualitatively reproduce the
enhancement of the S-factor for the E2 channel either, reported, e.g., in Ref. [30], in the
extrapolation of the d-wave scattering amplitude to TG.

5. Discussion and conclusions

In this work we introduce an EFT for the 12C(α,γ)16O at TG where the α and 12C
states are treated as the elementary-like cluster fields, and apply the theory to the study
of the phase sifts of the elastic α-12C scattering for l = 0, 1, 2 channels at the low energies.
The expression of the scattering amplitudes for l = 0, 1, 2 channels is obtained in terms of
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D0 D1 D2
r2 (fm−3) 0.37± 0.79 0.536± 0.001 0.533± 0.001
P2 (fm−1) −6.2± 4.3 −5.505± 0.008 −5.526± 0.004

Table 3: Fitted values of d-wave effective range parameters using three sets of the exper-
imental data labeled by D0, D1, and D2. See the text for details.

the three effective range parameters. The effective range parameters are fitted by using
the sets of the experimental data in the energy ranges below the resonance energies in
which the phase shifts are smoothly varying. In the parameter fitting we find that it
is difficult to incorporate the pole structure for the subthreshold 1−1 and 2+1 states in
the amplitudes. Nevertheless we find that the experimental data at the low energies
are well reproduced by the curves plotted using the fitted effective range parameters.
To qualitatively study the uncertainty of the extrapolation to TG due to the fitting of
the parameters to the experimental phase shift data, we extrapolate the real part of the
denominator of the scattering amplitudes to TG, and find that there are the significant
uncertainties. Because parameters deduced from the scattering phase shifts for l = 1 and
2 channels may play important roles in the extrapolation of the S-factors of the radiative
capture reaction for the E1 and E2 transitions, we discuss our results in the parameter
fitting and the extrapolation of the scattering amplitudes to TG in some details below.

In the parameter fitting for the l = 1 channel, the phase shift data entirely appear
as the low energy tail of the 1−2 resonant state, and the tail from the 1−1 bound state at
T = −0.045 MeV can be scarcely seen in the data. As we have found above, to reproduce
the data it is not necessary to include the subthreshold bound state. In addition, the
amplitude extrapolated to TG is largely suppressed. Those observations in fact have
repeatedly been pointed out in the literatures [31, 32, 33]. Indeed, to estimate the radiative
capture E1 transition cross section at TG, it would be essential to include an explicit degree
of freedom for the 1−1 state in the theory, possibly along with the 1−2 state [34]. Although
the tail of the the 1−1 state is not clearly seen in the elastic scattering data, the significance
of the 1−1 bound state may be seen in the other experimental data such as the β-delayed α
decay from 16N, 16N(β−)16O(α)12C [35, 36, 37], whose minimum energy is T = 0.6 MeV,
and the radiative E1 capture cross section whose minimum energy now becomes less than
T = 1 MeV, see, e.g., Refs. [38, 39, 40].

In the parameter fitting for the l = 2 channel, the phase shift data at Tα = 1.5-
3.5 MeV show a down slope up to the 2+2 resonant state appearing at Tα = 3.57 MeV. As
demonstrated above, it is not difficult to fit the restricted data by using the three effective
range parameters, but it appears not easy to precisely decompose it into three ingredients,
the tail of the subthreshold state, that of the resonant state, and a background. Moreover,
as discussed, it is not easy to include the 2+1 subthreshold state at T = −0.24 MeV because
of the feature of the scattering amplitudes (represented in terms of the effective range
parameters) in the present study. In the extrapolation, as seen above, we find that almost
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Figure 7: Phase shift of elastic α-12C scattering for l = 2, δ2 (deg.), as functions of Tα
(MeV). Three curves are plotted by using three sets of fitted effective range parameters
(labeled by D0, D1, D2) obtained in Table 3. Experimental data, Exp. (I) from Plaga
et al. [21] and Exp. (II) from Tischhauser et al. [22], are also displayed.

the similar magnitude of the denominator of the scatter amplitude at TG and Tα ≃ 2 MeV.
This observation can be questionable because the series of the effective range expansion
we obtained does not converge. Thus to extrapolate the radiative E2 capture cross section
to TG in the present theory, it would be essential to include an explicit degree of freedom
for the subthreshold 2+1 state as well. Moreover, as pointed out by Sparenberg [41],
asymptotic normalization constant (ANC) for the 2+1 state is not possible to determine
from single channel scattering phase shift data, it may be necessary to fix couplings for
the 2+1 state from model calculations, such as a supersymmetric potential model assuming
rotational band for the 0+2 , 2

+
1 , 4

+
1 , and 6+1 states for 16O [41], or a microscopic cluster

model [42]. It may also be possible to estimate the parameters from other experimental
data, such as a cascade transition to the 2+1 state [43, 44] or γ distribution of the radiative
capture rate at the very low energies [38, 39, 40].
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