
Few-Body Systems manuscript No.
(will be inserted by the editor)

Joannis Papavassiliou

Hadron phenomenology from first-principle QCD
studies

Received: date / Accepted: date

Abstract The form of the kernel that controls the dynamics of the Bethe-Salpeter equations is es-
sential for obtaining quantitatively accurate predictions for the observable properties of hadrons. In
the present work we briefly review the basic physical concepts and field-theoretic techniques em-
ployed in a first-principle derivation of a universal (process-independent) component of this kernel.
This “top-down” approach combines nonperturbative ingredients obtained from lattice simulations
and Dyson-Schwinger equations, and furnishes a renormalization-group invariant quark-gluon inter-
action strength, which is in excellent agreement with the corresponding quantity obtained from a
systematic “bottom-up” treatment, where bound-state data are fitted within a well-defined truncation
scheme.

Keywords Bethe-Salpeter equations · Dyson-Schwinger equations · Gluon propagator · Pinch
Technique · Background Field Method

1 Introduction

The spectrum and various physical properties of the mesons are traditionally obtained in the continuum
by means of special integral equations, known as Bethe-Salpeter equations (BSEs) [1; 2; 3; 4; 5; 6; 7; 8;
9], whose general form is captured by the diagram in Fig.(1). In this particular eigenvalue equation, Γ
denotes the so-called Bethe-Salpeter amplitude, and K the fully-amputated quark-antiquark scattering
kernel. The details of the solutions obtained from BSEs depend crucially on the precise form of K, and
the nonperturbative information included in it. In fact, it is well-known that any self-consistent analysis
based on BSEs must be intimately connected with nonperturbative phenomena such as chiral symmetry
breaking, and quark and gluon mass generation, which are described by the dynamical equations
obeyed by the Green’s functions of the theory, namely the Dyson-Schwinger equations (DSEs) [10; 11].
In this presentation we briefly review recent work that aims at a first-principle derivation of a special
component of the BSE kernel [12], and compare the results obtained with phenomenologically successful
“bottom-up” versions of the same quantity.

2 Definitions and basic ingredients

In the Landau gauge the gluon propagator is given by

i∆µν(p) = −i
[
gµν − pµpν/p2

]
∆(p2) , (1)

while the ghost propagator, D(p2), and its dressing function, F (p2), are related by D(p2) = F (p2)/p2.
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Fig. 1 The meson BSE and the kernel K.

In addition, consider a special two-point function, denoted by Λµν(p), defined as

Λµν(p) = gµν − ig2CA
∫

k

H(0)
µρ D(k + p)∆ρσ(k)Hσν(−k − p, k, p),

= gµν [1 +G(p2)] +
pµpν
p2

L(p2); (2)

where CA is the Casimir eigenvalue of the adjoint representation, and
∫
k
≡ µ2ε(2π)−d

∫
ddk, with

d = 4 − ε the dimension of space-time. The quantity Hµν corresponds to the well-known ghost-gluon
kernel that enters in the Slavnov-Taylor identity satisfied by the full three-gluon vertex [13]. In addition,
Hµν is related to the full gluon-ghost vertex, Γµ, whose tensorial structure is given by

− Γµ = B1pµ +B2kµ, (3)

where Bi = Bi(−k − p, k, p), with k representing the momentum of the gluon and p the one of the
anti-ghost. Specifically,

pνHµν(−k − p, k, p) = −iΓµ(−k − p, k, p). (4)

At tree-level, H
(0)
µν = igµν , and Γ

(0)
µ = −pµ.

It turns out that the 1+G(p2) and L(p2) defined in Eq. (2) are related to F (p2) by an exact relation
(valid in Landau gauge only) [14]

F−1(p2) = 1 +G(p2) + L(p2). (5)

3 The universal and renormalization-group invariant part of the BS kernel

Let us consider the kernel appearing in a typical Bethe-Salpeter equation (BSE), shown in Fig.(1),
which is contained in the gray box. To make contact with earlier works, we will divide it by a factor of
4π, and will denote it by K. The kernel K receives a “universal” (process-independent) contribution,
whose origin is the pure gauge sector of the theory; in that sense, this contribution constitutes the
common ingredient of any such kernel, regardless of the nature of the particles between which it is
embedded.

The systematic diagrammatic identification of the precise pieces that constitute this particular
quantity may be carried out following the procedure known in the literature as pinch technique
(PT) [15]. In general, the upshot of this construction is the rearrangement of a physical amplitude
into sub-amplitudes with very special properties; in particular, one obtains vertices that satisfy QED-
like Ward identities and a gluon propagator that captures all the RG logarithms of the theory, see
Fig.(2). In fact, it turns out that these latter quantities coincide precisely with the corresponding
vertices and gluon propagator defined in the Background Field Method (BFM) [16]. This particular
identification persists both perturbatively, to all orders, as well as nonperturbative, at the level of the
corresponding DSEs.

In the case of the gluon propagator, the standard ∆(p2) defined in Eq. (1), and the scalar cofactor

of the PT-BFM gluon propagator, denoted by ∆̂(p2), are related by the exact relation [17]

∆(p2) = ∆̂(p2)[1 +G(p2)]2. (6)
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Fig. 2 The one-gluon exchange kernel before and after the pinch-technique rearrangement

At the one-loop level, and keeping only UV logarithms, one has [18]

1 +G(p2) = 1 +

(
9

4

)
αsCA
12π

ln

(
p2

µ2

)
; ∆−1(p2) = p2

[
1 +

(
13

2

)
αsCA
12π

ln

(
p2

µ2

)]
, (7)

and thus

∆̂−1(p2) = p2
[
1 + bαs ln

(
p2

µ2

)]
, (8)

where b = 11CA/12π is the first coefficient of the Yang-Mills β function, as it should [16].

Similarly, the PT-BFM quark-gluon vertex Γ̂ aµ = λa

2 Γ̂µ, which satisfies the QED-like Ward identity

qµΓ̂µ(q, p2,−p1) = S−1(p1)− S−1(p2), (9)

is related to the conventional Γµ by the BQI

[1 +G(q2)]Γµ(q, p2,−p1) = Γ̂µ(q, p2,−p1) + S−1(p1)Qµ(q, p2,−p1) +Qµ(−q, p1,−p2)S−1(p2), (10)

where S−1(p) is the inverse of the full quark propagator, with S−1(p) = A(p2) /p − B(p2), and the
quantities Qµ and Qµ are auxiliary three-point functions containing composite vertices. The important
point for what follows is that the last two terms on the rhs of Eq. (10) vanish when the external quarks
are on shell; otherwise, they cancel against other (process-dependent) contributions.

To see how these considerations apply to the case at hand, let us express K in terms of the basic
field-theoretic quantities that comprise it, namely (suppressing all spinor indices)

K(p, q+,−q−) = αsΓµ(p, q+,−p− q+)
(
λa

2

)
∆µν(p)

(
λa

2

)
Γν(−p,−q−, p+ q−), (11)

where αs = g2/4π, and g is the gauge coupling.
As a consequence of Eq. (10) and Eq. (6), Eq. (11) may be cast into the equivalent form

K(p, q+,−q−) = αsΓ̂µ(p, q+,−p− q+)
(
λa

2

)
∆̂µν(p)

(
λa

2

)
Γ̂ν(−p,−q−, p+ q−). (12)

In what follows we will focus only on the the part of Γ̂µ that is proportional to γµ, namely Γ̂µ = γµΓ̂1 + · · · ,
so that the corresponding contribution to the K of Eq. (12), to be denoted by C, is given by

C(p, q+,−q−) = αs∆̂(p2)︸ ︷︷ ︸
universal

[Γ̂1(p, q+,−p− q+)(γµ)
(
λa

2

)
Pµν(p)

(
λa

2

)
(γν)Γ̂1(−p,−q−, p+ q−)]︸ ︷︷ ︸

process−dependent

, (13)

Due to the special Ward identities satisfied by the PT-BFM Green’s functions [e.g., Eq. (9)], the
(dimensionful) universal combination [19]

d̂(p2) = αs∆̂(p2) =
αs∆(p2)

[1 +G(p2)]
2 , (14)
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introduced in Eq. (13), is also renormalization-group invariant (RGI). Indeed, since g(µ2) = Z−1
g (µ2)g0

and ∆̂(p2, µ2) = Ẑ−1
A (µ2)∆̂0(p2), where the “0” subscript indicates bare quantities, and the QED-like

relation Zg = Ẑ
−1/2
A is valid, we have that

d̂0(p2) = αs0∆̂0(p2) = αs(µ
2)∆̂(p2, µ2) = d̂(p2) (15)

maintains the same form before and after renormalization, i.e., it forms a RGI (µ-independent) quan-
tity.

4 Nonperturbative evaluation of d̂(p2)

In this section we use a combination of lattice results and dynamical equations to determine the

nonperturbative form of the fundamental quantity d̂(p2) given in Eq. (14). To that end, we will use for
∆(p2) the lattice data from [20], whilst for the quantities 1 +G(p2) and L(p2) we will use the following
set of (renormalized) equations

1 +G(p2)=Zc +
g2CA

d− 1

∫

k

[
(d− 2) +

(k · p)2

k2p2

]
B1(−k, 0, k)∆(k)D(k + p),

L(p2)=
g2CA

d− 1

∫

k

[
1− (k · p)2

k2p2

]
B1(−k, 0, k)∆(k)D(k + p), (16)

where the renormalization constant Zc is determined from the MOM condition F (µ2) = 1. The as-
sumptions and approximations employed in the derivation of the above set of equations have been
explained in detail elsewhere [14; 19]. In addition, the form factor B1 that enters in the three equations
of (16) has been computed from its own DSE, in the limit of vanishing ghost momentum [21]. Note
that even though only G(p2) enters into the definition of Eq. (14), from Eq. (16) we will determine
G(p2), L(p2), and F (p2); this in turn, will allow us to test numerically the validity of Eq. (5), which
constitutes a nontrivial check of the entire numerical procedure.

The results of the numerical solution of Eq. (16) are shown in the right panel of Fig. 3. It is clear
that the solutions obtained for 1 + G and L satisfy the fundamental relation (16) at a high level of
accuracy; this provides a non-trivial test for the integration routines used in solving the ghost DSE.
Note also that even though L(p2) vanishes at the origin, it has a non-vanishing support in the region
of physical interest (see the top right panel of Fig. 3).

The quantity d̂(p2) is RGI, as is evident from the bottom left panel of Fig. 3. There, d̂(p2) is shown
when evaluated at three different renormalization points: µ = 4.3, 3.0 and 2.5 GeV, for which the
corresponding coupling reads αs(µ

2) = 0.22, 0.30 and 0.36 respectively. As can be seen in the bottom
right panel, these values for the strong couplings are in very good agreement with those obtained from
detailed calculations of the gauge coupling, αMOM, in the momentum subtraction (MOM) scheme, for
values of ΛQCD between 250 and 320 MeV [22].

5 Comparison between “top-down” and “bottom-up” approaches

In order to make contact with the relevant literature on BSEs, we note that the quantity C appearing
in Eq. (13) has been traditionally cast in the form

C(p, q+,−q−) =
I(p2)

p2
⊗ (process− dependent), (17)

where I(p2) is a dimensionless quantity, which may be interpreted as the effective interaction strength
of the quark-gluon system. Evidently, in the PT-BFM case one must extract an analogous quantity

from the d̂(p2) of Eq. (14) through multiplication by p2, namely

I(p2) = p2d̂(p2). (18)



5

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0.001  0.01  0.1  1  10  100

µ=4.3 [GeV], β=5.70	 	V=64
4

V=72
4

V=80
4

Fit

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.001  0.01  0.1  1  10  100

µ=4.3 [GeV], β=5.70	 	V=64
4

V=80
4

SDE, α(µ)=0.22       	    F

(1+G)
-1

L

p2 [GeV2] p2 [GeV2]

∆
(p

2
)
[G

eV
−
2
]

F
(p

2
),
[1
+
G
(p

2
)]
−
1
,L

(p
2
)

 0

 2

 4

 6

 8

 10

 12

 14

 0.001  0.01  0.1  1  10  100

µ=4.3 GeV, α(µ
2
)=0.22

µ=3.0 GeV, α(µ
2
)=0.30

µ=2.5 GeV, α(µ
2
)=0.36

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 4  6  8  10  12  14  16  18  20

αMOM(q
2
) for ΛQCD=250-320 [MeV]

µ=4.3 GeV, α(µ
2
)=0.22

µ=3.0 GeV, α(µ
2
)=0.30

µ=2.5 GeV, α(µ
2
)=0.36

p2 [GeV2] p2 [GeV2]

d̂
(p

2
)
[G

eV
−
2
]

α
M

O
M
(p

2
)

Fig. 3 The Landau gauge gluon propagator (top left panel) used for the numerical evaluation of the DSEs in

(16) (top right panel) for the case µ = 4.3 GeV (lattice data are from of [20]). The RGI quantity d̂(p2) evaluated
at µ = 4.3, 3.0 and 2.5 GeV (bottom left panel). The resulting curves are then rescaled by αs(µ

2) = 0.22, 0.30
and 0.36, respectively, in compliance with values obtained for αMOM when ΛQCD varies between 250 and 320
MeV (yellow band on the bottom right panel) [22].

At this point, the I(p2) obtained from Eq. (18) can be compared with the corresponding quantities
defined in the bottom-up framework. As reviewed elsewhere (see, e.g., [23]), successful explanations
and predictions of numerous hadron observables can be obtained by choosing

I(p2) = p2G(p2); G(p2) =
8π2

ω4
De−p

2/ω2

+
8π2γm(1− e−p

2/4m2
t )

k2 ln[τ + (1 + p2/Λ2
QCD)2]

, (19)

where γm = 12/(33 − 2Nf ) [typically, Nf = 4], ΛQCD = 0.57 GeV (in the MOM scheme); τ = e2 − 1,
mt = 0.5 GeV. Note that D and ω are not independent, but must be related by Dω = (ςG)3 = const
and ω ∈ [0.4, 0.6] GeV; then, one can reproduce a large body of observable properties of ground-state
vector- and isospin-nonzero pesudoscalar mesons, as well as various properties of the nucleon and ∆
resonance [25]. The parameter ςG is fixed by requiring that the correct value of the pion decay constant
fπ is reproduced; its precise value depends on the vertex Ansatz employed.

In the case of the rainbow-ladder (RL) truncation [24], corresponding to Γ ν ∼ γν , one has ςRL = 0.87
GeV. Instead, the improved truncation scheme of [25], which incorporates dynamical chiral symmetry
breaking (DB) effects by using a more sophisticated representation for Γ ν , gives ςDB = 0.55 GeV.

The results of the top-down approach of [12] (denoted by DSE), and the two bottom-up approaches
(RL and DB) summarized above, are shown in Fig. (4). It is clear that while the RL interaction strength
is far larger than that of the DSE, the comparison between the DB and DSE results is very favorable.
Evidently, the DB approach captures corrections that are not included in the RL, and is therefore
much closer to the DSE result (see also [26]).
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Fig. 4 Comparison of the interaction strength I evaluated in the RL, IRL and DSE schemes. The shaded ares
represent phenomenologically acceptable ranges.

6 Conclusions

In this work we have reviewed recent developments towards a first-principle derivation of the BSE
kernel from the dynamical equations obtained from the QCD Lagrangian. This particular effort, in
turn, bridges to a large extent the gap between nonperturbative continuum QCD studies and bound-
state phenomenology.
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