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Roberge-Weiss endpoint at the physical point of Nf = 2 + 1 QCD
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We study the phase diagram of Nf = 2+ 1 QCD in the T − µB plane and investigate the critical
point corresponding to the onset of the Roberge-Weiss transition, which is found for imaginary
values of µB . We make use of stout improved staggered fermions and of the tree level Symanzik
gauge action, and explore four different sets of lattice spacings, corresponding to Nt = 4, 6, 8, 10, and
different spatial sizes, in order to assess the universality class of the critical point. The continuum
extrapolated value of the endpoint temperature is found to be TRW = 208(5) MeV, i.e. TRW/Tc ∼
1.34(7), where Tc is the chiral pseudocritical temperature at zero chemical potential, while our finite
size scaling analysis, performed on Nt = 4 and Nt = 6 lattices, provides evidence for a critical point
in the 3d Ising universality class.

PACS numbers: 12.38.Aw, 11.15.Ha,12.38.Gc,12.38.Mh

I. INTRODUCTION

The remarkable changes expected for the properties of
strongly interacting matter when it is put under extreme
conditions are the subject of intense ongoing theoretical
and experimental research. Various parameters of phe-
nomenological interest enter the description of such ex-
treme conditions, like temperature, chemical potentials
or external background fields. Part of this research con-
sists in the study of the QCD phase diagram, i.e. in map-
ping the various phases of strongly interacting matter in
equilibrium conditions, and the associated phase transi-
tions and critical points, as a function of those parame-
ters.

At high temperature confinement and chiral symme-
try breaking are expected to disappear, and QCD is ex-
pected to be described in terms of quark and gluon effec-
tive degrees of freedom (Quark-Gluon Plasma). Lattice
QCD simulations show that, indeed, a rapid change of
properties takes place around a well defined temperature
Tc. There is no compelling reason for expecting a true
phase transition, since no exact symmetry of QCD, which
could possibly change its realization at Tc, is known: chi-
ral symmetry is exact only for vanishing quark masses,
while the Z3 center symmetry is exact only in the pure
gauge theory, where its spontaneous breaking is associ-
ated to deconfinement. In fact, lattice simulations have
shown that only a smooth crossover is present in the case
of physical quark masses, at a temperature Tc ∼ 155
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MeV [1–5].
The situation could be different in the presence of other

external parameters. In particular, the crossover could
turn into a real transition for large enough baryon chem-
ical potential µB, starting from a critical endpoint in the
T − µB plane. Such a critical point, and the associated
critical behavior around it, could have a huge impact on
strong interactions phenomenology, so that large theo-
retical and experimental efforts are being dedicated to
prove its existence and locate it. Unfortunately, numer-
ical progress by lattice QCD simulations is strongly hin-
dered by the sign problem affecting the path integral for-
mulation at non-zero baryon chemical potential.
There are, however, well defined locations, in an ex-

tended QCD phase diagram, where exact symmetries are
known for any value of the quark masses. Critical points
associated with their spontaneous symmetry breaking are
predicted to exist and can be investigated by standard
lattice simulations. This is the case of QCD with a purely
imaginary baryon chemical potential [6–9], the partition
function of which is

Z(T, θB) = Tr
(

e−
H
T eiθBB

)

(1)

whereH is the QCD Hamiltonian, B is the baryon charge
and θB = Im(µB)/T . All physical states of the theory,
over which the trace is taken, are globally color neutral
and carry an integer valued baryon charge B, hence Z
is 2π-periodic in θB, or alternatively 2π/Nc-periodic in
θq = Im(µq)/T , where µq = µB/Nc is the quark chemical
potential and Nc is the number of colors. That can also
be proven by making use of center transformations in the
path-integral formulation of the partition function, as we
review in Section II.
On the other hand, in the high-T phase, quarks, which

carry a baryon charge 1/Nc, become the effective degrees
of freedom propagating through the thermal medium:
modes which are 2π-periodic in θq, hence 2πNc periodic
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in θB, appear in the functional dependence of the parti-
tion function. As a consequence, the 2π periodicity in θB
is possible only through the appearance of a non-analytic
behavior in Z(T, θB), associated with first order phase
transition lines present for θB = π or odd multiples of it,
which are known as Roberge-Weiss (RW) transitions [10]
and have been widely studied by lattice QCD simula-
tions [8, 9, 11–25].

In correspondence with such points, analogously to
what happens when θB is a multiple of 2π, the theory
is invariant under charge conjugation, but contrary to
that case charge conjugation is spontaneously broken at
high T , where the system develops a non-zero expectation
value for the imaginary part of the baryon number den-
sity: the temperature TRW where the spontaneous break-
ing takes place is precisely the endpoint of the Roberge-
Weiss first order transition lines. An alternative point of
view about the same transition is to look at it as a quan-
tum (i.e. zero temperature) transition, with an associ-
ated spontaneous breaking of charge conjugation, driven
by the compactification of one of the spatial directions
beyond a critical size LC = 1/TRW (finite size transition
[26, 27]). Since charge conjugation is a Z2 symmetry,
one expects a 3d-Ising universality class if the transition
is second order, or alternatively a first order transition
with the development of a latent heat.

The temperature TRW and the critical behavior to
which it is related represent universal properties of strong
interactions, directly related to the change in the effective
degrees of freedom propagating in the thermal medium,
hence to deconfinement. They can be carefully studied by
lattice QCD simulations, since the path integral measure
is real and positive for imaginary chemical potentials.
Despite being related to a critical point located in an
unphysical region of the QCD phase diagram, their im-
portance and relevance to a full understanding of strong
interactions stems from various considerations:

i) The RW endpoint may influence physics in a critical
region around it. Moreover, if at the RW endpoint a
first order transition is present, the endpoint is actually
a triple point, with further departing first order lines,
the endpoints of which may be even closer to the µB = 0
axis, with more interesting consequences.

ii) Early studies have shown that the RW endpoint tran-
sition is first order for small quark masses, second order
for intermediate masses, and again first order for large
masses; the three regions are separated by two tricritical
points [13–15]. The emergence of this interesting struc-
ture has induced many further studies in effective models
[28–40] which try to reproduce the essential features of
QCD. Moreover, interesting proposals have been made on
the connection of this phase structure with that present
at µB = 0 (the so-called Columbia plot) and on the pos-
sibility to exploit the whole phase structure at imaginary
chemical potential in order to clarify currently open is-
sues on the phase structure at µB = 0, like the order of
the chiral transition for Nf = 2 [21, 24].

iii) Once the RW endpoint has been precisely located,

it can be taken as a test ground to compare the lattice
techniques presently used to locate the critical point at
real µB, so as to assess their reliability and guide future
research on the subject.
iv) The relation of the RW endpoint to the other symme-
tries of QCD, which are present at least in well defined
limits of strong interactions, is an interesting issue by
itself, which can help elucidate some fundamental non-
perturbative properties of the theory.
In this paper we study the properties of the RW end-

point by lattice simulations of QCD with physical quark
masses. Its location TRW is determined for various lat-
tice spacings, corresponding to temporal extensions Nt =
4, 6, 8, 10, and then extrapolated to the continuum limit.
Moreover we are able to determine its universality class,
through a finite size scaling analysis, at two different lat-
tice spacings, namely Nt = 4, 6. Finally, in order to
approach the issue of the interconnection between chiral
symmetry and the RW endpoint, we consider the relation
of the endpoint location to the analytic continuation of
the pseudocritical chiral transition temperature Tc(µB)
to imaginary chemical potentials.
The paper is organized as follows. In Section II we

review the general framework regarding the RW endpoint
in a path-integral approach and present details about our
numerical setup and the observables used to investigate
the critical behavior. In Section III we report on our
numerical results regarding the universality class of the
endpoint, the continuum extrapolated value of TRW and
its relation with Tc(µB). Finally, in Section IV we draw
our conclusions.

II. GENERAL FRAMEWORK AND

NUMERICAL SETUP

We consider a staggered discretization of the Nf =
2+1 QCD partition function in the presence of imaginary
quark chemical potentials:

Z =

∫

DU e−SYM

∏

f=u, d, s

det
(

Mf
st[U, µf,I ]

)1/4

,(2)

SYM = −
β

3

∑

i,µ6=ν

(

5

6
W 1×1

i; µν −
1

12
W 1×2

i; µν

)

, (3)

(Mf
st)i, j = amfδi, j +

4
∑

ν=1

ηi; ν
2

[

eiaµf,Iδν,4U
(2)
i; νδi,j−ν̂

− e−iaµf,Iδν,4U
(2)†
i−ν̂; νδi,j+ν̂

]

. (4)

The gauge link variables U are used to construct the tree
level improved Symanzik pure gauge action [41, 42], SYM ,
where Wn×m

i; µν is the trace of the n × m rectangular loop
constructed along the directions µ, ν departing from the

i site. The staggered Dirac operator (Mf
st)i, j , instead,

is built up in terms of the two times stout-smeared [43]

links U
(2)
i; ν , in order to reduce taste symmetry violations,
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with an isotropic smearing parameter ρ = 0.15. As usual,
the rooting procedure is adopted to remove the residual
degeneracy of the staggered Dirac operator.
When thermal boundary conditions (periodic/anti-

periodic for boson/fermion fields) are taken in the tem-
poral direction, the temperature of the system is given by
T = 1/(Nta), where Nt is the number of temporal lattice
sites and a is the lattice spacing, related to the bare pa-
rameters of the theory. For a given number of lattice sites
in the temporal direction, we can choose the simulated
temperature by tuning the value of the bare coupling con-
stant β and the quark masses ms and mu = md ≡ ml,
in order to change the lattice spacing while remaining
on a line of constant physics, where mπ ≃ 135MeV and
ms/ml = 28.15; this line has been determined by a spline
interpolation of the results reported in Refs. [44–46].
Let us now sketch the structure of the phase diagram

at imaginary µB. This has already been done in the
introduction, by considering the effective degrees of free-
dom at work in the different regimes; now we will pro-
ceed through an analysis of the properties of the path
integral. In the presence of a purely baryonic chem-
ical potential (i.e. µQ = 0 and µS = 0), one has
µu = µd = µs ≡ µq = µB/3. When µq is purely imag-
inary, its introduction is equivalent to a global rotation
of fermionic boundary conditions in the temporal direc-
tion by an angle θq = Im(µq)/T , therefore one expects
at least a 2π-periodicity in θq (2πNc in θB). However,
the actual periodicity is 2π/Nc, since a rotation of the
fermionic boundary conditions by that angle is equiva-
lent to a center transformation on the gauge fields, hence
it can be reabsorbed without modifying the path integral
[10].
Numerical simulations show that such a periodicity is

smoothly realized at low temperatures [8, 9]. At high T ,
instead, since the Polyakov loop L (trace of the temporal
Wilson line normalized by Nc) enters the fermionic deter-
minant expansion multiplied by exp(iθq), the value of θq
selects the true vacuum among the three different minima
of the Polyakov loop effective potential, which are related
to each other by center transformations. Hence, phase
transitions occur as θq crosses the boundary between two
different center sectors, i.e. for θq = (2k + 1)π/Nc and k
integer (in which case θB is an odd multiple of π), where
〈L〉 jumps from one center sector to the other [10]; the
phase of L can serve as a possible order parameter in this
case. The T -θq phase diagram then consists of a periodic
repetition of first order lines (RW lines) in the high-T
regime, which disappear at low T . Therefore they have
an endpoint at some temperature TRW, where an exact
Z2 symmetry breaks spontaneously. A schematic view of
the diagram is reported in Fig. 1.
An alternative order parameter is represented by any

of the quark number densities (where q = u, d, s)

〈nq〉 ≡
1

V4

∂ logZ

∂µq
(5)

where V4 is the four dimensional lattice volume. Since Z

0 1 2 3 4
θ

B
/π = µ

B,I
/(πT)

 T
 

T
RW

Tc

FIG. 1: Phase diagram of QCD in the presence of an imag-
inary baryon chemical potential. The vertical lines repre-
sent the Roberge-Weiss transitions taking place in the high-T
regime, while the dashed lines represent the analytic contin-
uation of the pseudocritical line.

is an even function of µB, each 〈nq〉 is odd and, for purely
imaginary µB, it is purely imaginary as well. Invariance
under charge conjugation, or alternatively oddness and
the required 2π periodicity in θB, implies that 〈nq〉 van-
ishes for θB = π or integer multiples of it, unless a discon-
tinuity takes place at such points, in correspondence of
a spontaneous breaking of charge conjugation invariance.
This is exactly what happens at the RW lines, so that a
non-zero 〈nq〉 signals the onset of the RW transition.
In the following, it will be convenient to consider one

particular RW line, corresponding to θq = π, for which
the imaginary part of the Polyakov loop, together with
the imaginary part of the quark number density, can be
taken as an order parameter. The order parameter sus-
ceptibility is then defined as

χL ≡ NtN
3
s (〈(Im(L))2〉 − 〈|Im(L)|〉2) , (6)

where Ns (Nt) is the spatial (temporal) size in lattice
units. The susceptibility χL is expected to scale, moving
around the endpoint at fixed Nt and θq, as

χL = Nγ/ν
s φ(tN1/ν

s ) , (7)

where t = (T − TRW)/TRW is the reduced temperature,
which is proportional to (β − βRW) close enough to the

critical point. That means that the quantity χL/N
γ/ν
s ,

measured on different spatial sizes, should lie on the same

curve when plotted against (β − βRW )N
1/ν
s . Alterna-

tively, we will consider also the susceptibility of the imag-
inary part of the quark number density, which is defined,
for every flavor q, by

χq ≡ NtN
3
s

(

〈[Im(nq)]
2〉 − 〈|Im(nq)|〉

2
)

, (8)

and is expected to show a scaling behavior as in Eq. (7).
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FIG. 2: Monte Carlo histories of |ImL| for Nt = 4 and the
β values closest to the peak of χL, showing the peculiar fea-
tures expected near a second order transition: the increase
of the autocorrelation time and the absence of a double peak
structure in the histogram.

III. NUMERICAL RESULTS

In this Section we present our numerical results, start-
ing from an analysis of the critical behavior around the
RW endpoint transition, in order to assess its order and
universality class on lattices with Nt = 4, 6. Then we will
consider also lattices with Nt = 8, 10 in order to provide
a continuum extrapolated value for TRW.
Since we are interested in studying the behavior near

the phase transition, long time histories are required, to
cope with the critical slowing down (see Fig. 2); for the
couplings around the critical value, we used ∼ 40− 50K
trajectories for each run when performing the finite size
analysis.

A. Finite size scaling and universality class of the

transition

The effective theory associated with the spontaneous
breaking of the charge conjugation at finite temperature
is a three dimensional theory with Z2 symmetry, so the
transition can be either first order or second order in the
three-dimensional Ising universality class. A tricritical
scaling is in principle possible as well; however the tri-
critical point is just a single point at the boundary of
first and second order regions. As a consequence (apart
from the unlikely case of being exactly on it) tricritical
indices can be observed only as scaling corrections, the
ultimate large volume behavior being either first order or
Ising 3d [15, 47–49]. The critical indices that will be used
in the following are reported for convenience in Table I.
We will now present the finite size scaling analysis per-

formed to identify the nature of the transition on lattices
with temporal extent Nt = 4 and 6. As previously dis-
cussed, we adopt two different order parameters, namely
the imaginary part of the average Polyakov loop and the
quark number density; the former turned out to have

ν γ γ/ν 1/ν
3D Ising 0.6301(4) 1.2372(5) ∼ 1.963 ∼ 1.587
1st Order 1/3 1 3 3

TABLE I: The critical exponents relevant for this study (see
e.g. [50, 51]).

smaller correction to scaling, so we will start our anal-
ysis from the study of the susceptibility χL defined in
Eq. (6).
Fig. 3 shows χL obtained on Nt = 4 lattices and

rescaled according to Eq. (7), using alternatively the crit-
ical indices of the 3d Ising universality class or those cor-
responding to a first order transition (the values used for
the critical coupling are the ones reported in Table II).
Using 3d Ising indices the results on different volumes
collapse on top of each other, whereas this is not the case
using first order indices, which strongly indicates that the
transition is second order for Nt = 4. Note that, since we
are performing simulations on a line of constant physics,
the mass parameters change with β; it is thus not pos-
sible to use standard reweighting methods [52, 53]. In
Fig. 4 we repeat the same analysis using the Polyakov
loop measured on lattices with temporal extent Nt = 6.
Again, the 3d-Ising universality class appears to describe
the scaling of the susceptibility of the Polyakov loop sig-
nificantly better than a first order, although larger cor-
rections to scaling are present with respect to the Nt = 4
case.
A confirmation of the previous analysis comes from the

study of the fourth-order Binder ratio, which in our case
is defined as

B4 =
〈(ImL)4〉

〈(ImL)2〉2
. (9)

It is easy to show that, in the thermodynamical limit,
B4 → 3 in the absence of a phase transition, while
B4 → 1 if a first order transition is present. At second or-
der transitions B4 assumes non-trivial values, which are
characteristic of the universal critical behavior associated
with the transition [50, 54, 55]. For the particular case of
the three-dimensional Ising universality class the critical
value is B4 = 1.604(1), see Ref. [51]. From these general
properties the following simple procedure follows to lo-
cate the critical endpoint of a line of first order transition:
study the behavior of B4 as a function of the coupling for
different values of the lattice size; the endpoint coupling
value will correspond (up to scaling corrections) to the
crossing point of these curves.
In Fig. 5 we show the values of B4 in a neighborhood

of the critical coupling at three different volumes both on
Nt = 4 and Nt = 6 temporal extent. The behavior of the
Binder ratio as a function of β is clearly the one expected
at a critical endpoint and the value at the crossing point
is in reasonable agreement with that expected for a tran-
sition of the 3d Ising universality class, while a first order
is clearly excluded.
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FIG. 3: Susceptibility of the imaginary part of the Polyakov
loop on Nt = 4 lattices rescaled using the 3d Ising critical
indices (top) or the first order ones (bottom).

The same conclusions are obtained by studying the
susceptibility of the u quark number density defined in
Eq. (8), although in this case the scaling corrections ap-
pear to be larger. As an example in Fig. 6 we show the
behavior of χu on Nt = 4 lattices, rescaled according to
Eq. (7): again, the 3d-Ising critical indices are favored.
The case of the strange susceptibility χs is similar, as
well as the Nt = 6 case.

B. Critical temperature: continuum extrapolated

value

Having established that the RW-transition is second
order for lattices with temporal extent Nt = 4 and 6, we
now proceed to estimate the continuum value of TRW.
To this purpose, simulations have been performed also
on lattices with Nt = 8 and 10, considering a limited
number of spatial volumes (one or two) per simulation
setup.

The pseudocritical value of the coupling has been de-
termined for each lattice size by estimating the position
of the maximum of χL and χu. To this purpose, we have

-4 -2 0 2 4 6

(β-βc) Ns
1.587

0

1

2

3

4

10
3

χ L
 N

s1.
96

3

Ns=24
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-400 -200 0 200 400

(β-βc) Ns
3

0

0.5

1

1.5

10
4

χ L
 / 

N
s3

Ns=24
Ns=32
Ns=40

FIG. 4: Susceptibility of the imaginary part of the Polyakov
loop on Nt = 6 lattices rescaled using the 3d Ising critical
indices (top) or the first order ones (bottom).

fitted the peak with a Lorentzian function:

f(β) =
a

1 + (β − βpc)
2 /c2

. (10)

The results for the large volume limit of βpc, denoted
by βc, are reported in Table II; the error also takes into
account the systematics related to the choice of the fit
range. The volume dependence of the pseudocritical cou-
pling is very mild for lattice with aspect ratio 4 or larger,
with variations at the level of 0.1% in terms of β (which
become 0.5% in terms of temperature), as can be seen
in Fig. 7 for the case of the Nt = 4 lattices. The pseu-
docritical couplings determined by using χL or χu have
a priori to coincide only in the thermodynamical limit,
however in all the cases the differences between the two
determinations are well below 0.1% and, with the excep-
tion of the lattice 4× 163, they are compatible with each
other at one standard deviation.
In order to convert the critical temperatures to physi-

cal units we used the lattice spacings values reported in
Tab. II, which are obtained by a spline interpolation of
the results presented in [44–46]. The systematic uncer-
tainty on these lattice spacings is 2−3% [44–46] and this
is by far the largest source of error in the final tempera-



6

3.445 3.4475 3.45 3.4525 3.455 3.4575 3.46

β
1

1.5

2

2.5

3

B
4

Ns=16
Ns=24
Ns=32

3.615 3.62 3.625 3.63 3.635 3.64

β
1

1.5

2

2.5

3

3.5

4

B
4

Ns=24
Ns=32
Ns=40

FIG. 5: Binder fourth order ratio of the Polyakov loop imag-
inary part computed on Nt = 4 lattices (top) and Nt = 6
lattices (bottom). The horizontal line denotes the value ex-
pected for a second order transition of the 3d Ising universality
class.

Nt βc Ns a (fm)
4 3.4498(7) 16, 24, 32 0.2424(6)
6 3.6310(15) 24, 32, 40 0.1714(3)
8 3.7540(25) 32, 40 0.1233(3)
10 3.8600(25) 40 0.0968(2)

TABLE II: Critical values of the coupling for different Nt

values (estimated by using lattices of spatial extent Ns) and
corresponding values for the lattice spacing. Only the statis-
tical error of the lattice spacing is reported in the table, the
systematic error is about 2− 3% [44–46].

ture estimates. The results obtained at the different Nt

are plotted in Fig. 8 together with the linear fit in 1/N2
t ,

which describes well the approach to the continuum limit
and from which we extract the value 208(4)MeV for the
continuum limit of the RW endpoint temperature. Using
as systematical error the difference between this value
and the one obtained using just the three finer lattices,
we get our final estimate TRW = 208(5)MeV.
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FIG. 6: Disconnected susceptibility of the light baryon num-
ber computed on Nt = 4 lattices and rescaled with the critical
exponents of the 3d Ising universality class (top) or corre-
sponding to a first order transition (bottom).
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FIG. 7: Thermodynamical limit of the pseudocritical coupling
determined on Nt = 4 lattices from the maxima of χL and
χB.

C. Relation with the pseudocritical chiral

transition line

An interesting issue that remains to be investigated
is the relation between the RW endpoint and the chiral
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FIG. 8: Continuum extrapolation of the critical temperature.

transition. In particular, the question can be posed in the
following way: does the pseudocritical line really get to
the RW endpoint, as assumed in Fig. 1 and as suggested
by early studies on the subject?
A number of investigations appeared recently, repro-

ducing the pseudocritical line for imaginary chemical po-
tentials at or close to the physical point and with the
setup of chemical potentials relevant to the RW endpoint,
i.e. µs = µl = µB/3, see Refs. [56–59]. A possible way
to approach the question is to try extrapolating the loca-
tion of the pseudocritical line up to θB = π on the basis
of those determinations. To this aim we considered re-
sults for Tc(θB) obtained in Ref. [58] on Nt = 8 lattices
and adopting the same discretization used in the present
study. In Fig. 9, we present two different extrapolations
of such data, corresponding to the fit ansatz

Tc(θB) = Tc(1 + κ θ2B + b θ4B + c θ6B) (11)

with or without the sixth order term included (a simple
linear dependence on θ2B was excluded in Ref. [58]). In
both cases one gets reasonably close, within errors, to the
RW endpoint.
Of course, the issue can be checked also directly, by

determining the location of the pseudocritical line ex-
actly at θB = π. To that aim, in Fig. 10 we plot the
renormalized light chiral susceptibility (as defined, e.g.,
in Ref. [58]) for lattices with temporal extent Nt = 6, 8,
together with the positions of the RW endpoint as previ-
ously determined on the same lattices. It is clearly seen
that the location of the maxima of the chiral suscepti-
bility is compatible with the position of the RW end-
points. For instance for Nt = 8 and Ns = 32 we obtain,
by fitting the chiral susceptibility to a Lorentzian peak,
βc = 3.749(3), which is at just one standard deviation
from the RW endpoint coupling reported in Table II.
We can thus confirm, within present errors, evidence

that the RW endpoint is located at a point where the
analytic continuation of the pseudocritical line and the
RW first order line meet each other. To conclude, based
on this evidence, we have performed a final fit, including

terms up to the sixth order in θ2B, which includes the
RW endpoint as a part of the pseudocritical line. The
result is the dashed line reported in Fig. 9, which has
been continued also to the other center sectors, so as to
reproduce a realistic version (i.e. for Nf = 2 + 1 QCD
with physical quark masses, even if just for Nt = 8) of
the phase diagram sketched in Fig. 1.
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FIG. 9: Phase diagram of QCD in the presence of an imagi-
nary baryon chemical potential obtained from numerical sim-
ulations on Nt = 8 lattices alone. Bands denote fits to poly-
nomials in µ2

B: the orange (longer) band is obtained using
terms up to order µ4

B , the violet (shorter) one using up to µ6

B

terms.
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FIG. 10: Renormalized light chiral susceptibility on Nt =
6 and 8 lattices. The vertical bands denote the position of
the RW endpoint on lattices of the corresponding temporal
extent.

IV. CONCLUSIONS

We have investigated the properties of the RW end-
point by lattice simulations of Nf = 2 + 1 QCD with
physical quark masses and making use of two different
order parameters for the transition, namely the imagi-
nary part of the Polyakov line and the imaginary part of
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the quark number density, which have led to consistent
results.

The temperature of the endpoint, TRW, has been de-
termined at four different values of the lattice temporal
extent, Nt = 4, 6, 8, 10, from which we have obtained
a continuum extrapolated value TRW = 208(5)MeV,
where the error includes both statistical and system-
atic contributions, stemming mostly from the determi-
nation of the physical scale. That leads to the estimate
TRW/Tc = 1.34(7), where the error also takes into ac-
count the systematics involved in the determination of
Tc, originating both from the scale setting and from the
difficulties in defining a critical temperature when no real
transition is present. This ratio is significantly larger
than the ones obtained in previous studies; indeed, with
unimproved actions, unphysical quark masses and no ex-
trapolation to the continuum limit, TRW was typically
found to be only about 10% larger than Tc. The larger
value is partially due to the larger curvature κ, and par-
tially to the more significant contribution from non-linear
terms in µ2

B (see Eq. (11)) which are present in the case
µu = µd = µs (see Ref. [58]).

Regarding the order of the transition, our finite size
scaling analysis provides evidence that a second order
transition of the 3d-Ising universality class takes place,
rather than a first order one, at least for Nt = 4 and
Nt = 6 lattices. Our investigation has been performed
at a fixed value of the pion mass, corresponding to its
physical value mπ ≃ 135 MeV.

Previous studies on the subject, performed in the
Nf = 2 theory with both staggered and Wilson fermions,
have shown that the order of the transition changes as
a function of mπ; in particular, there are two tricritical
pion masses, mtric.light

π and mtric.heavy
π , and the transition

is second order for mtric.light
π < mπ < mtric.heavy

π and first
order for lighter or heavier pion masses. The value of
the heavy tricritical mass is typically well above the GeV
scale. The lighter critical pion mass has been found to
be mtric.light

π ∼ 400 MeV for standard staggered fermions
on Nt = 4 lattices [15], and around 930 and 680 MeV
for standard Wilson fermions on respectively Nt = 4 [19]
and Nt = 6 [25] lattices. Given these results, even if we
have studied just the physical value of the pion mass,
we can conclude the following: for stout improved stag-
gered fermions, one hasmtric.light

π < 135 MeV on both the
Nt = 4 and Nt = 6 lattices. When compared to previ-
ous results, that demonstrates the presence of significant
cut-off effects on the values of this tricritical mass, even
when working at fixed Nt but with a different action.
Moreover, based on the observed tendency of the tricrit-
ical mass to decrease with the increase of Nt, we suggest
that mtric.light

π should be smaller than mphys
π = 135 MeV

in the continuum limit, so that the RW endpoint should
be a second order transition in the continuum limit at
the physical pion mass.

We must however remark that the mechanism driving
the change of nature of RW endpoint transition, from
second to first order as the pion mass decreases, is still

unknown. If such a mechanism is related to the chiral
properties of quarks, unexpected behaviors could occur
as the continuum chiral symmetry group is fully recov-
ered. This is known to happen, at least for staggered
fermions, for lattice spacings well below those explored
in the present study (see Ref. [60] for a recent investiga-
tion about this issue).
Let us spend a few words about what, in our opinion,

future studies should clarify. First of all, one would like
to check the second order nature of the RW endpoint at
the physical point on finer lattices, i.e. for Nt > 6. Then,
our study with stout improved staggered fermions should
be extended to different values of the pion mass, in or-
der to locate the values of the tricritical masses mtric.light

π

and mtric.heavy
π and possibly extrapolate them to the con-

tinuum limit. Such a program, which goes beyond our
present computational capabilities, would clarify the uni-
versal properties of the only critical point of strong inter-
actions (in the presence of finite quark masses) that one
can predict a priori, based on the known symmetries of
QCD.
Finally, another open issue regards the relation of the

RW critical point to those predicted in well defined lim-
its of QCD. The relation to the deconfinement transition
present in the quenched case is obvious, since the two
transitions trivially coincide in this case and are both
related to center symmetry. The relation to the chiral
transition in the limit of massless quarks is far less triv-
ial. Suppose to move (varying the temperature) along
the line θB = π in the presence of massless quarks; in
principle one expects two different critical temperatures,
one at which chiral symmetry is restored, Tχ, and one
at which the Z2 charge conjugation symmetry sponta-
neously breaks, TRW. What is the relation between Tχ

and TRW? Our present results at finite quark masses
prove that the location of the peak of the renormalized
chiral susceptibility coincides, within errors, with TRW,
see Fig. 10, so that the analytic continuation of the pseud-
ocritical line meets the RW line at its endpoint. However,
in order to obtain a definite answer, the issue should be
explored while approaching the chiral limit: this is some-
thing which goes beyond the purpose of the present study
and is left to future investigations.
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