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We present an analytic description of numerical resultgtierghost propagatd®(p?) in minimal Landau
gauge on the lattice. The data were produced in the SU(2)sisg the largest lattice volumes to date, for
d = 2,3 and 4 space-time dimensions. Our proposed formGig?) is derived from the one-loop relation
between ghost and gluon propagators, considering a tveégbost-gluon vertex and our previously obtained
gluon-propagator results [1]. Although this one-loop egsion is not a good description of the data, it leads
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fitting forms used in the literature. At the same time, we enésa simple parametrization of the difference
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I. INTRODUCTION

An analytic description of propagators and vertices of ¥afilis theories —at the nonperturbative level, in a givenige—
is a possible starting point for understanding the relefeatures of these theories and, in particular, the phenomehcolor
confinement [2-5]. From this point of view, the first natuttelsis the study of the infrared (IR) behavior of the gluongargator
D(p?) and of the ghost propagat6( p?) as functions of the momentum In the last thirty years, many numerical and analytic
studies have addressed this issue in Landau gauge, in tige, @&hd four space-time dimensions (see, for example, dawe
[5-10] and references therein). All the numerical studissially done for pure SU(2) and SU(3) lattice gauge thepriew
agree that, in three and in four space-time dimensions {21}l the gluon propagator is IR-finite and the ghost propaga
free-like in the same limit. On the contrary, in thd @ase [1, 14, 15, 18, 22, 23], the gluon propagator goes toaesmall
momenta and the ghost propagator is IR-enhanced. In theefarase, the numerical data can be related to the so-callesivea
solution of the Dyson-Schwinger equations [24-31], whildhie latter case one should refer instead to the so-calkdihgc
solution of these equations [2, 32—-38]. The two differepety of solutions can also be related to the Gribov-ZwanZige)
[39-45] and Refined GZ (RGZ) [46-52] approaches, which epoad respectively to the scaling and to the massive betsavio
for the gluon and ghost propagators in the deep IR Hmit.

In Refs. [1, 18] we have presented an analytic descriptidatt€e data [12, 14] for the SU(2) Landau-gauge gluon pgagpar
D(p?) in two, three and four space-time dimensiahsFor the cased = 3 and 4, the numerical data can be well fitted using
tree-level predictions of the RGZ approach, i.e. consitgsums of propagators of the typég(p? + w?), wherea andw are
in general complex constartsOn the contrary, in the®case, no such predictions are available [48], and the dayabma
fitted using a noninteger power pfin the numerator ob(p?). These fitting forms have subsequently been used in Reft{64]
evaluate the one-loop-corrected ghost propagat@?) and to analyze the behavior of the so-called Gribov ghosh fiactor
a(p?), defined by

1 1
G(p%) = 2o’ 1)
ie.,
o(p?) = 1 [P?G(pD)] . )

Using these analytic results one can show that, considéniadare coupling constagt as a free parameter, the massive
solutionG(p?) ~ 1/p?, corresponding ta(0) < 1, is obtained for all values @f smaller than a “critical” valugZ. At g2, one
haso(0) = 1 and the ghost propagator is IR-enhanced. These findindisradhat, in the Dyson-Schwinger-equation approach,
the ghost propagator admits a one-parameter family of bets65-68], labeled by the coupling constapt

In this work we present the final step of our analysis, usiregahe-loop results foG(p?) of Ref. [64] as theoretical pre-
dictions for the analytic modeling of numerical data [12] s the ghost propagator in Landau gauge in two, three and fo
space-time dimensions. (Similar studies have been pregdéanRefs. [69—71] for the four-dimensional case.) We firat the
proposed analytic formgo notyield a good description of the ghost-propagator data. iBhis agreement with Refs. [69-71].
Nevertheless, by treatirgf as a free parameter in these forms, one obtains fi&( pf) with generally good values ¢f /dof,
comparable to other fitting forms used in the literature @ee [15, 27]). Finally, we attempt a simple parametrizati6 the
difference between the lattice data and the one-loop piedi; which turns out to be very similar for tlle= 2,3 and 4 cases.
This supports a possible interpretation of the physica&latffthat are missing in the one-loop results [69-72].

The paper is organized as follows. In the next section, wallrdze main results of Refs. [1, 18, 64] and, in particulbe t
formulae used in our analysis of the ghost propagator. TimeBection Ill, we present and discuss the fits to the lattiad
Lastly, in Section IV, we outline our conclusions.

1 The interested reader should see Refs. [53-63] for othepappes and points of view on the scaling and/or the massluéians.

2 Let us mention that this proposed behavior for the gluon agayor, i.e. a pole structure with complex-conjugate nsagsith comparable real and imaginary
parts), can be interpreted as describing an unstable leariibis is discussed in Ref. [1], where we also compute theltiag mass and decay width for the
gluon in the 4 case.



II. ONE-LOOP PREDICTIONS

As already explained in the Introduction, in Refs. [1, 18] 8U(2) gluon propagator has been fittedlia 3,4 and 2 using,
respectively, the functiods

(P*+9) (PP+1)

D(p?) =C 3
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and
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D(p)_Cp4—|—U2p2—|—t2. (5)

The first two propagators are tree-level expressions ofdaiimthe RGZ approach [46-52], while the last formula is apdm
generalization of the form in Eq. (4). Note that these thteefions can be expressed as linear combinations of propagH
the type ¥(p®+ w?), whereu? is in general a complex number. In particular, Egs. (3) an@é# be re-written respectively as

>« B Yy
BP) = Pt P P+ ©
and

The fits to the data [1, 18] suggest that, in tltkcise [see Eqg. (6)], one root is real, for example while the other two roots
are complex-conjugate, i.eco%)* = oo§ implying alsof3 = y*. Similarly, in the 4l case [see Eg. (7)] one finds, by fitting the
lattice data, that? are complex-conjugate roots, i®? = (w?)* anda_ = a*. On the other hand, in thedZase we need to
consider the more general forpi /(p? 4+ w?) with n > 0. Indeed, one can re-write Eq. (5) as

o, +icp?T o —icp"
P2+ W2 P24+ w?

D(p?) = ®
wherecisreal,a_ = o’ andw? = (uﬁ)*. Estimates for the fitting parameters of the functions @)€é&n be found, respectively,
in Tables IX, 11, XIII, XI, IV and XIV of Ref. [1].

Using the notation of Ref. [64], the one-loop-corrected daungauge ghost propagator can be evaluated [for th&S$U(
gauge group in thd-dimensional case] using the relation
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9)
whered® D(g?) Pw(q) stands for the gluon-propagator forms described abov@®atid) = (6w — quq\,/qz) is the usual projec-
tor onto the transverse sub-space. Here we have consideréee-level ghost-gluon vertag f24%p,, wherep is the outgoing
ghost momentum. The color indicagd, c refer, respectively, to the incoming ghost, to the gluon &ntthe outcoming ghost.
Then, using for the gluon propagator the expressions (Ppd8ve and writings(p?) as in Eqg. (1), one can show [64] that the
Gribov ghost form factoo(p?) is given in three, four and two space-time dimensions bydhaélae reported in the subsections
below.

3 Note that, here and in the following, we choose to presenitefor the 2l and 4l cases before thedXase.



A. Thethree-dimensional case

Assuming (see above) that anda are real and writing the remaining fitting parameters of Byjaé

B=a+ib, y=a—ib (10)
and
W =v+iw, w3 =v—iw, (11)
we obtain [64]
ow(p?) = 8 41T00%p3 + fr(p9) |, (12)
where
s(p?,w?) = —mip* + 2p* VR — 2p(w?)¥2 + 2(p? + w?)? arctan(\/%) , (13)
fr(p?) = f1(p?) + f2(p?) + fa(p?) + fa(p?) + fs(p?) (14)
with
R=vVV2+w?, (15)
> av+bw
(P =-P g (16)
bw) vR+v — (bv—aw)v/R—vVv
() = 25 17
%) V2mR2 ’ (17)
1 ayR+v—-byR-vVv
fa(p") = — 5 18
2 a2 PH(@av+ bw) + 2ap?R? + R? (av — bw)
fa(p®) = A(p7) ITRE DR , (19)
2 _ 2, p*(bv—aw) + 2bp?R? + R?(bv+ aw)
fs(p%) = —L(p°) ITRE P (20)
and
arcta \/1{7;*") it Rep?>0
A(pz) = , (21)
T+ arctan( ﬁRpj/F';T’) if R—p?<0
L(p?) = In VP +2p?v+ R2 ' 2
R+p (p+ \/Z/R—v)

B. Thefour-dimensional case

By working in theMS scheme, using dimensional regularization and writirgfitting parameters of Eq. (7) as. = a=+ib
andw?. = v=+iw, one finds [64]

o 2
oif (p%) = 39271—';'&2 [—p?ta(p?) + Rt2(p?) + p2ta(p®) — p *ta(p?)] (23)



with R defined in Eqg. (15),

t1(p?) = (av+bw)[la(p%) + £3(p?)] — (bv—aw)[a1(p?) — ax(p?)] , (24)
tao(p?) = @[5+ £1(p%) + £2(P?) + La(p?) — 4la(p?)] — blaa(p?) —ax(p®) — 4as(p)] , (25)
t3(p?) = [1— 3¢3(p?)](av® — bw? + vaw? — bw?) — 3ay(p?)(bv? + awv? + vbwf + aw?) (26)
ta(p?) = £3(p?) (aV* — 2wb\? — 2vbw? — aw?) + ap(p?)(bV* + 2awV? 4- 2vaw? — bwf) (27)
and
2 _in (P
(@) =n (). (28)
R
2(p?) =In (E) ; (29)
t3(p?) =1In <\/R2p4+§:+ 2VR2p2> ) (30)
(%) = n <—Vp4+§sz+R2> , (3D)
a(p?) = arctan(vvv) , (32)
ax(p?) = arctan(%) : (33)
a3z(p?) = arctan(vlvpz) . (34)

The above result fooﬁ(pz) cannot, however, be directly compared to the lattice datagstheMS scheme is defined only
at the perturbative level. Thus, in order to make this cofsparin the next section, we use a momentum-subtraction (JOM
renormalization scheme defined by
1
=2

B 1
p2:u2 l.l 2

DMOM pZ) L, =
( ’ p2=p2 I

G"(p%)| (35)

The MOM-scheme condition for the gluon propagator affeoty the global multiplicative facto€ in Eq. (4), or the parameters
a. in Eqg. (7). As a consequence [see Egs. (23)—(34)] the qyaift( p?) also gets modified by a global factor. At the same
time, we can transform the aboMsS result forG(p?) into the MOM scheme by writirfy

G (p?) = é [1- F(p?) + )] ", (36)

where the paramet&([?) is fixed by imposing the MOM-scheme condition (35), i.e.
Ol () = h(i?) . (37)
C. Thetwo-dimensional case

In the & case one finds [64]

024(p?) = g°Ne | F(p? ) + o f(p?,w?) +icf(p? 0f . n) —icf(p? w?,n) (38)

4 This corresponds to a one-loop (finite) shift in the renoizagibn factor of the ghost propagator.



with
11 p 1 o
and
S oo (A2 TP 4P W . on..n n, n
f(p,o?.n) = 4T[r]p2{ = B(p2+&)2,1—§,1+§)—5(1—5,1+§)]. (40)
Here,

B(x;a,b) = /0 " a1 (1—t)>1 (41)

is the incomplete Beta function, which is defined &b > 0 [73], implying 2> n in our case, an®(a,b) = B(1;a,b) is the
Beta function. Then, by writing = a+ib andw? = v+iw one gets for the first two terms of Eq. (38) above the exprassio

. f(F2.aE) + o (562 = oo { 2 ata(p?) + baels?)

+ % [(av+ bw)€5(p2) — (bv—aw)ag(pz)} } , (42)

where

€5(p2) —In <—Vp4+ZVp2+R2> (43)

p2
andR, /3(p?), ax(p?) andag(p?) have already been defined in Egs. (15), (30), (33) and (34)alg¢ehave
iC?(pzaooivn) - iC?(pza(’oz—vn) = —2c0 |: F(pzaooivn)} ) (44)

where we have indicated wiffi the imaginary part of the expression in square brackets.

I1l. FITSTO GHOST-PROPAGATOR DATA

The data for the ghost propagat@@?) in d = 3,4 and 2 have been evaluated for essentially the same seticé jparameters
considered for the gluon propaga®(p?) in Refs. [1, 18]. A summary of the various lattice setups &spnted in Table |. More
details about the numerical simulations can be found in Rgf.These simulations [12, 14, 15] have been done in 2007 si
in 3d and in 4, the 4.5 Tflops IBM supercomputer at LCCA-USP and, in tHec@se, a PC cluster at the IFSC-USP. In all
cases we set the lattice spacify relating the lattice string tensiayiGia to the physical valug/c ~ 0.44GeV, which is a
typical value for this quantity in theddSU(3) case. Fo{/Gian we used the results described in [74], [75] and [76], respelgt
ford = 3, 4 and 2. Note that all runs are in the scaling region andadl defer to the SU(2) case. Possible systematic effects
due to Gribov copies [17, 77—-82] or unquenching effects 83werenot considered.

Let us also recall that the Landau-gauge ghost propagto?) is obtained by inverting the lattice Faddeev-Popov matrix
M (b,x;c,y) and is given by

o 2mi p(x-y)/N

Gbc( pZ) — Z v

X!y

<M71(b7X;C7y)> = 6bCG(p2)7 (45)

whereb andc are color indices and ) stands for the path-integral average. The inversion of gxddEev-Popov matrix
is obtained by using a conjugate gradient method with ewlshfiveconditioning and point sources [88, 89]. For thedatti
Faddeev-Popov matrix we consider Eq. (22) in Ref. [90]. Atshme time, the momentum compongmisre given by

Pp =2 sin(nwp“) (46)
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FIG. 1. Plot of the average reduced chi-squared stajigjidof as a function of the parametefsee Eq. (47) and explanation in the text]. The
average is taken over all lattice volumésndf3 values considered.

and p, takes the values,@,...,N — 1. However, since the Faddeev-Popov matrix has a trividlgigénvalue corresponding to
a constant eigenvector, one cannot evaluate the ghostgatupait zero momentum, i.e. witl, = 0 for all directionsy. For
the nonzero momenta, we considereddsl momenta with component®, 0) and(p, p), plus all possible permutations of the
components. Similarly, in@and in 4 we present results for momenta of the tyge0,0), (p, p,0), (P, P, p) and of the type
(p,0,0,0), (P, P,0,0), (P, P, P,0) and(p, p, P, P), respectively.

Finally, we recall that the best fits for the gluon propagdtata, reported in Refs. [1, 18] and used here as theoratisats,

[V =NI] B [#confda(fermi)|L =Na(fermi|pmin(MeV)| r |

140 |30/ 626 | 0.268 375 33.0 [0.018
20C° | 3.0| 484 | 0.268 53.6 23.1 |0.006
24C° | 3.0| 343 | 0.268 64.3 19.2  |0.000
320 [3.0| 122 | 0.268 85.8 14.4 ]0.012
480 | 22| 99 0.210 10.1 122.7 ]0.017
56* |22] 100 | 0.210 11.8 105.2 |0.007
64* | 22| 100 | 0.210 134 92.1 {0.047
80* (22| 97 | 0.210 16.8 73.7 |0.021
128 | 22| 21 | 0.210 26.9 46.0 [0.012
80° [10.0/ 600 | 0.219 175 70.6 |0.006
12¢* [10.0| 600 | 0.219 26.3 47.1 |0.005
160 [10.0| 600 | 0.219 35.0 35.3 {0.008
20¢% [10.0| 600 | 0.219 438 28.3 |0.001
24¢% [10.0| 600 | 0.219 52.6 235 [0.015
28¢% [10.0| 600 | 0.219 61.3 20.2 |0.000
32¢% [10.0| 600 | 0.219 70.1 17.7 |0.008

TABLE I. For each lattice volum¥ and lattice coupling we indicate the number of configurations considered, theaval the lattice spacing
ain fermi, the lattice size. (also infermi), the value of the smallest nonzero momentpi, = 2sin(1/N) /a (in MeV) and the coefficient
that allows the largest reduction of the rotational-symmpbteaking effects [see Eq. (47) and explanation in thg.tex

5 Again, for each kinematic setup, we consider all possibknpéations of the momentum components. When permutatibtif'eanomentum components
were available, the average over different permutatiorstaken independently for each configuration.
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FIG. 2. Plot of the Gribov ghost form factar(p?) [see Eq. (2)] for the lattice volumié = 128" at B = 2.2, as a function of unimproved
momenta [see Eq. (48)] (left plot) and of improved momenge [Bq. (47)] withr = 1/12 (right plot). In both plots, red data points correspond
to momenta along the diagonal directiqu & p for p=1,...,4), while green data points correspond to off-diagonal nmaeneAll momenta
are in physical units. Error bars have been estimated usoppgation of errors.

were obtained by considering this propagator as a funcfitimeoimproved magnitude squared of the momentum [91]
PP=Spi+ry . (47)
H A

with r =1/12~ 0.083. This allows a better control of systematic effects -ate to the breaking of rotational symmetry
[91-93]— than the usual unimproved definition

p? = % P - (48)

On the other hand, for the ghost propagator, the data areajlgnemoother when using the above unimproved definifion,

a very small value of. In order to verify this, we have considered the momentunabien of the Gribov ghost form factor
o(p?) [defined in Eq. (2)] as a function of the improved magnitudessgd of the momenta (47) for 100 different values of the
parameter, i.e.r = 0,0.001,0.0020.003...,0.099. For each of these values, we used a cubic spline intipolto obtain a
description of the ghost-propagator data along the didgopanentum directior, i.e. for pu=Ppandu=1,...,d. Then, we
have evaluated the goodness of the fit, i.e. the reducedydiaired statisti?/dof, by comparing this interpolated curve with
ghost-propagator data off the diagonal-momentum diractie. with at least one momentum component equal to zertheln
last column of Table | we report, for each lattice volumhend lattice coupling, the value of the parameterthat yields the
smallest value for the reduced chi-squared statistic. Asaan clearly see, these valuesradre very small for most of the
cases considered. We also show in Fig. 1 the average valaedbvattice volume® andp values considered) of /dof as

a function of the parameter Again, we see that for small values othe x?/dof curve is almost flat, with a minimum value
aroundr = 0.01, and that for > 0.03 the average value of the reduced chi-squared increasestdinearly. The effect of using

a large value of the parametecan also be clearly visualized in the plots reported in FigvlZere we show the data fr= 2.2
and our largestd latticeV = 128" as a function of unimproved momenta (left plot) and as a fonatf “improved” momenté
with r = 1/12 (right plot). Indeed, the spread of the data points isriidarger in the second case. Thus, for simplicity’s sake,
we will consider below all the ghost-propagator data as atfan of the unimproved momenta [see Eq. (48)]. One shodld, o
course, try to reduce discretization effects in order t@ivbtesults closer to the continuum formulation of the tlyebut we

6 This is probably related to the fact that the ghost propagate?) [see Eq. (45)] does not depend explicitly on the Lorentzxnge
7 This direction is usually less affected by rotational-syetry+breaking effects [92, 93].
8 This value ofr is usually employed in fits of the gluon propagator (see @Jy. [
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FIG. 3. Plot of the ghost propagat@{p?) as a function of the magnitude of the (unimproved) momenthoth in physical units) for the
lattice volumesd/ = 140 (symbolx in blue),V = 240 (symbol x in green) and/ = 32C° (symbol+ in red) atp = 3.0. Here we show the
data corresponding to momenta with only one componentrdiftéfrom zero. The data are (multiplicatively) normalized. for p=1.0 GeV.
Notice the logarithmic scale on tlyeaxis.

1000 [~

100 F ©

G(p?)

10 |

0.1

! ! ! !
0 0.3 0.6 1.2 15 1.8

0.9
p (GeV)
FIG. 4. Plot of the ghost propagat@(p®) as a function of the magnitude of the (unimproved) momenthoth in physical units) for the
lattice volumes/ = 48* (symbolx in blue),V = 64* (symbol x in green) and/ = 128" (symbol+ in red) atp = 2.2. Here we show the data

corresponding to momenta with only one component diffefrh zero. The data are (multiplicatively) normalized toot p = 1.0 GeV.
Notice the logarithmic scale on tlyeaxis.

must note that different lattice quantities are subjectaneagal to different such effects. Thus, it is not surprighng gluon and
ghost propagator data require different definitions of #iede momenta when one tries to connect lattice data todhgmum
analysis carried out in Ref. [64].

In the next three subsections we present the modeling ofitheerical data foG(p?). In analogy with the presentation of the
one-loop calculations in Section II, we first give our resiidtr the 3l case, then for thedicase and, finally, for thed®?case. Let
us note that finite-size effects f@(p?) are generally negligible. This can be seen in Figs. 3, 4 anehBreG(p?) is plotted
for three different lattice sizes respectively b= 3,4 and 2. We also remark that the use of the point-source methiba:
evaluation ofG(p?) leads to the slight “wiggling” of the lattice data seen in theee plots above (see Ref. [89]). Thus, in the
following, we will always use the largest lattice volume idadale for each dimensiod. Also, in all cases we will show the data
(multiplicatively) normalized to 1p? for p=p= 2.5GeV.

The analytic expression proposed for the ghost propagalidnevcast in the form of Eq. (1), using in each dimenstbthe
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FIG. 5. Plot of the ghost propagat@{p?) as a function of the magnitude of the (unimproved) momegnthoth in physical units) for the
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corresponding one-loop results [64] for the Gribov ghostfdactora(p?) listed in Section Il above. The parametersifp?)
will be taken from the gluon-propagator results obtainedRéfs. [1, 18]. Then, the only parameter left is the bare dagpl
constanig?. As explained belowg? is set in the @ and 21 cases by considering its relation to the string tensj@n while in
the 4 case we adopt the value gf(?) at the scalg in the MOM scheme.

In order to normalize the analytic expressions@®gip?) consistently with the lattice data, we consider two poéitiés. In
the first case, we take

Fi(p?) = (49)

P?[1-o(p?)]
Alternatively, as already discussed above in Section I can normaliz&( p?) by adding a constant t( p?), i.e. considering

1
p? [1-0(p?) +o(@)]

Fa(p?) = (50)
Let us stress that, with the parameters fixed as above, thastidns are not fitting forms, but analytic predictions &(p?)
from previously obtained (gluon-propagator) results. Sehwill allow a good description of the lattice data in theaitolet
(UV) regime only. Nevertheless, by treatig§as a free parameter in the above formulae and keeping thémegaarameters
fixed, one obtains good-quality fits for the whole range o&dlatll cases. We indicate the corresponding fitting formgltﬁpz)

andR(p?).

A. Thethree-dimensional case

As discussed above, we now try to describe the ghost-propadata ind = 3 by considering the Gribov ghost form factor
a(p?) given byoy (p?) [see Egs. (12)—(22)]. We set the parameters;,a, b,v,w to the values obtained in Refs. [1, 18] by
fitting the gluon propagator. In particular, we use the valwgported in Table XI of Ref. [1] (from a Monte Carlo analysi.

a=02162) GeV, b=02713)GeV, v=02155)Ge\?,

w=0.580(6) GeV?, a=—0.024(5)GeV, «?=0.0464)Ge\?. (51)
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As for the bare coupling?, since in 3l it is a constant (mass) paramelavge use the SU(2) rati¢/c/g? = 0.3351(16) [see Eq.

(7) of Ref. [94]]. Then, with,/G ~ 0.44GeV we findg? ~ 1.313GeV. The corresponding plot Bf(p?) (see above) is shown

in Fig. 6 (left plot). Let us point out that for the momentunmga spanned by the data the functidhép®) and F»(p?) are
numerically indistinguishable (see Fig. 7). Note tbat(p?) ~ 0.0252 and that;, (p?) takes value¥ in [0.0247,0.1014 when
p€[0.014,2.553 GeV. Let us also mention that the one-loop exprespfdh (p?) does not change appreciably in the considered
momentum range. (It goes from about 1.0 in the UV to aboutri theé IR regimes.) Thus, the momentum dependence of the
analytic predictiorF1(p?) is almost entirely due to the factoy f°.

One can observe that, modulo a global fackt,p?) has the expected leading UV and IR behaviors. Indeed, asrshow
Fig. 6 (right plot), it agrees with the data in the IR limit ifexconsider 88353F1(p?). This implies that, in the deep IR limit,
G(p?) is enhanced by a finite multiplicative factor with respectrte UV behavior. As mentioned above, one can improve the
description of the ghost-propagator data in the whole maomemnange by fitting the values gf, instead of using a fixed value.

In this case, we find

g° = 10.08+0.01 GeV (53)

with x2/dof ~ 4.5 (with 480 data points). The corresponding ploﬁp(fpz) is shown in Fig. 8 (left plot). Let us stress that, with
this fitted value foig?, the analytic predictiop? ﬁl(pz) varies from about 1.0 at large momentum to about 3.6 in thémi, la
behavior that can be related to the global rescaling showdginé. An even better fit of the data can be obtained with thiadit
function [15]

z t+p*/S +log(1+p*/S)

R(P) = 3 T /2 : (54)
inspired by Ref. [27], which has/p? leading IR and UV behaviors. Indeed, with the fitting parareset to
z=0.958+0.004 (55)
t=3.81+0.02 (56)
s=10.207+0.003 GeV (57)

we find ax?/dof ~ 2.9 (again with 480 data points). The corresponding plot is\shin Fig. 8 (right plot). Note that the value
of the parametetris compatible with the multiplicative constant obtainedadwhen comparing the IR and UV behaviors of
F1(p?) (see Fig. 6).

One can try to estimate what is missing in the RGZ one-loojyaisafor G(p?), e.g. using the expression B5(p?) in Eq.
(50). More precisely, let us define a functidf( p?) by

1
P2 [1-0(p?) +o(F) —W(p?)]
and then use our numerical data @&(p?) [and the one-loop expression fofp?)] to get an estimate fa/(p?). To this end, we
carried out a Monte Carlo analysis (with 10000 samples) efjantity

1
W(p®) = [1—7}—01 p?) + ow (P, (59)
(P) o) (%) + ou ()
whereG(p?) represents the numerical (multiplicatively normalizedst propagator result at a given momentoiemdoy (p?)
is the one-loop estimate (12)—(22) with the parametersgiv&q. (51) and the value of set to 1313 GeV. The corresponding

plot is shown in Fig. 9. The estimated error ff( p?) includes the error in the data points 6(p?) and the errors in the

G(p%) (58)

9 Let us recall that, in the generdddimensional case, we have tligthas mass dimension-4d.
10 As shown in Ref. [64], from Eq. (9) one can write

Nepupy [ ddq 1
o(p?) = —cMH D(a?) P, 52
(p%) 02 29 (") Rw(a) P—q7 (52)
and prove thaba(p?)/dp? < 0 if the gluon propagatoBb(p?) is positive in momentum space, i.¢(p?) —evaluated at one loop— is monotonically
decreasing as the momentymincreases.
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FIG. 6. Plot of the ghost propagat6f p?) as a function of the magnitude of the (unimproved) momer{tzoth in physical units) for the lattice
volumeV = 320° at B = 3.0. The data are (multiplicatively) normalized tgif for p=fi=2.5GeV. We also show the functidf (p?) [see

Eq. (49)] (normalized in the same way) with the Gribov ghastif factora(p?) given by the one-loop results (12)—(22); the corresponding
parameters are reported in Eq. (51) and wegdet 1.313GeV. On the other hand, in the right plot, we fix the analfgim to match the
numerical result ap = pmin = 14MeV, the smallest nonzero (lattice) momentum for the pdjB) considered, yielding 38353 (p?).
Notice the logarithmic scale on both axes.
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FIG. 7. Plot ofFy(p?) [see Eq. (49), blue curve] arid(p?) [see Eq. (50), magenta curve] as functions of the momenmtionthe 3 case, with
a(p?) given byoy, (p?) [see Egs. (12)—(22) and (51)] wit)f = 1.313GeV. For both curves we consiger 2.5GeV. Notice the logarithmic

scale on both axes.

parameters. Note th&¥(p?) goes from approximately zero in the UV regime to about 0.haIR limit, which is consistent

with the small variation op? F1(p?) discussed above.
One can parametrize the functidh(p?) reasonably well by using the simple expression

- A
2\
W(p)—1+Bp2 (60)
with
A~ 064, B~ 3.4GeV?, (61)

yielding ax?/dof of 2.7 (with 480 data points). The corresponding plot (reve)is also shown in Fig. 9.
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FIG. 8. Plot of the ghost propagat@{p?) as a function of the magnitude of the (unimproved) momegnthoth in physical units) for the
lattice volumeV = 320° at§ = 3.0 together with the fitting forms discussed in the text. Theudae (multiplicatively) normalized to/f? for
p=n=25GeV. In the left plot we show the functidﬁ(pz) (normalized in the same way) with the Gribov ghost form facttp?) given
by the one-loop results (12)—(22); the corresponding patars are reported in Eq. (51) and we use the fitted valu@83@ GeV forg?. On
the other hand, in the right plot, we show the fitting functfeyip?) [see Eq. (54)] with the parameters given in Eqgs. (55)—(5®tide the
logarithmic scale on both axes.

w(p?)

-0.2 L L
0 0.5 1

15
p (GeV)

FIG. 9. Plot of the termiV(p?) [see Egs. (58) and (59)] as a function of the (unimproved) evuap (in physical units) for the lattice volume
V = 320 at B = 3.0 (data points). We also show (in red) the fitting funct\'ﬂt@pz) [see Eq. (60)] with the fitting parameters reported in Eq.

(61).

B. Thefour-dimensional case

For the 4l case we repeat the same type of analysis carried out in théopsesection for the @ case. In particular, as
explained in Section |1 B above, we consider the funcfie(p?) in Eq. (50) with the one-loop expression fofp?) given by
oﬁ(pz) [see Egs. (23)—(34)] and= 2.5GeV. Again, by using the (gluon-propagator) results preessin Refs. [1, 18], the
parametera,b,v,w are set to the values reported in Table IV of Ref. [1] and algtdiusing a Monte Carlo analysis, i.e.

a=03922), b=132(5), v=0.292) GeV?, w=0.66(1)GeV?. (62)
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FIG. 10. Plot of the ghost propagatG p?) as a function of the magnitude of the (unimproved) momengaoth in physical units) for the
lattice volumeV = 128" atp = 2.2. The data are (multiplicatively) normalized tgpf for p= = 2.5GeV. We also show the function
Fo(p?) [see Eq. (50)] (normalized in the same way) with the GribowsiHform factora(p?) given by the one-loop results (23)-(34); the
corresponding parameters are reported in Eq. (62) and vgg se7.794. On the other hand, in the right plot, we fix the analytitrfao match
the numerical result g0 = pmin = 46 MeV, the smallest nonzero (lattice) momentum for the P&iB) considered, yielding 21654 (p?).
Notice the logarithmic scale on both axes.

Here we can estimate the valuegsf at a given scal@ and in the MOM scheme, by considering the one-loop result
1
2/

Q(U)—m

MOM

(63)

with Bo = 11N/ (48r?), which is valid for any SU{) gauge group. Then, the values,, can be obtained by considering the
relation [95]

gzzg2(1+%gz+...> (64)
36
between the MOM-scheme couplig§and theMS couplingg?. This implies (see for example [960)on = Aus€692%4 which
is valid for any value of\; and withNs = 0, whereN; is the number of quark flavors. For the SU(2) case, i.eNfoe 2, one
can use the estimate ~ 0.752,/0 (see Ref. [97]), wherg/o is the string tension. Then, after settiggp ~ 0.44 GeV we
find Ags = 331 MeV andA\,, =~ 628 MeV. For the subtraction poipt= 2.5GeV, used here, this gives for the effective MOM
coupling a value o§?(i) ~ 7.794, which yieldis(1) = g?(1)/ (41) ~ 0.6202. The corresponding plot B#( p?) is shown in Fig.
10 (left plot). Also in this case, the functiofis(p?) in Eq. (49) and=(p?) in Eqg. (50) are numerically indistinguishable. Note
thato’f§ (#?) ~ 0.1419 and thatj§ (p?) takes values il0.06502 0.5081 whenp € [0.046,3.752 GeV, which is the momentum
interval for which we have numerically evaluated the ghasippgatorG(p?). Here, contrary to thed@case, the one-loop
expressiorp? F»(p?) is not flat with the momentur, i.e. it changes from about 0.9 in the UV to about 1.6 in thed§mes.
Qualitatively, the situation in theddcase is very similar to what we have seen above in thedse. In particular, one can
obtain a good description of the numerical data in the IRtlngirescaling the analytic predictidfa(p?) by the factor 2.01654
(see right plot of Fig. 10) and a good description of all theadsy fitting the values of?. Indeed, with

g° = 14.62+0.01 (65)
we obtain ax?/dof ~ 1.7 (with 256 data points). The corresponding p|OlF~Q(p2) is shown in Fig. 11 (left plot). An even
better fit (see right plot in Fig. 11) is obtained with the figfifunction (54) and the parameters set to

z=0.859+0.006 (66)
t=3.73+£0.02 (67)
s=0.407+0.005GeV, (68)
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FIG. 11. Plot of the ghost propagatG p?) as a function of the magnitude of the (unimproved) momengaoth in physical units) for the
lattice volumeV = 128" at = 2.2 together with the fitting forms discussed in the text. Theudae (multiplicatively) normalized to/f? for
p=H=25GeV. In the left plot we show the functidﬁ(pz) (normalized in the same way) with the Gribov ghost form fact?) given by
the one-loop results (23)—(34); the corresponding pammseire reported in Eq. (62) and we use the fitted valug1B% forg?. On the other
hand, in the right plot, we show the fitting functiég(p®) [see Eq. (54)] with the parameters given in Egs. (66)—(6&)tid¢ the logarithmic
scale on both axes.

0.4

w(p?)

T

FIG. 12. Plot of the terriV(p?) [see Egs. (58) and (59)] as a function of the (unimproved) ettap (in physical units) for the lattice volume
V = 128" at B = 2.2 (data points). We also show (in red) the fitting funct\'ﬂt@pz) [see Eqg. (60)] with the fitting parameters reported in Eq.
(69).

which yields ax?/dof ~ 0.75 (again with 256 data points). Here the value@dn be related to the global rescaling shown on the
rightin Fig. 10 (i.e. approximately a factor 2) and to theamentioned change pf F»(p?), yielding a factor 2 1.6/0.9~ 3.6.
The parametdrcan also be related to the variationpi’-ﬂfz(pz) from about 0.9 at large momentum to about 3.2 in the IR limit,
yielding a factor /0.9~ 3.6.

Finally, in Fig. 12 we present the numerical estimate —usiMonte Carlo analysis with 10000 samples— for the quantity
W(p?), defined in Eq. (59) and using the 4ne-loop expression far(p?), as well as the fitting functioW(pZ), defined in Eq.
(60). With the values

A=~ 033, B~ 1.7GeV? (69)

for the parameters we findyg /dof of 0.97 (with 256 data points). It is also interesting to ribiat, in this case, the magnitude
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FIG. 13. Plot of the Gribov ghost form factor p?) [see Eq. (2)] for the lattice volumas = 32(? at 8 = 10.0 (symbol+ in red),V = 32¢°
at B = 3.0 (symbol x in green) and/ = 128" atp = 2.2 (symbolx in blue), as a function of the unimproved momenta [see Eq],(4&
momenta with only one component different from zero. All nemta are in physical units and we show the data only in thertiR,li.e. for
p < 0.25 GeV. Error bars have been estimated using propagatiamasseOne clearly sees that in the &nd 4 casess(p?) becomes almost
constant at small momenta, with a valoé) < 1, implying a free-like behavior for the ghost propagatothia IR limit. On the contrary, in
the A casea(p?) is still clearly increasing for momenta of the order of 20 MeV

of what is missing in the one-loop calculationa(fp?) is about 50% smaller than the corresponding outcome olatairthe 31
case. This is expected since, as mentioned above, therarigex thange ip?F»(p?) over the momentum range in the dase.

C. Thetwo-dimensional case

Finally, we consider data for thedZase. As already stressed in the Introduction, in this dasehost propagator is IR-
enhanced (see also Fig. 13). Thus, the analysis of the ncahdeta will be done following the same ideas presenteddiviio
subsections above, but with a different fitting functiortéasl ofFs(p?) in Eq. (54). Nevertheless, as a first step, we consider
again the one-loop resufy (p?) [see Eq. (49)] witho(p?) given bya,y(p?) defined in Egs. (38)—(44) and wifh= 2.5GeV.

At the same time, the parameter$,v,w,c andn are set considering the outcomes presented in Refs. [1|rlBhrticular, we
used the values reported in Table XIV of Ref. [1] and obtaingidg a Monte Carlo analysis, i.e.

a=0.05505) GeV?, b= -0.0497)GeV?, v=0.1458)GeV?,
w=0.15(1) Ge\V?, c¢=0.07(1) GeV? ", n=0.91(5). (70)

Note that the bound < 2 (see Sec. I C) is respected by the fitted value. As for theolpling constang?, its value can be
estimated by employing the analytic evaluation of the gttémsion,/o. Indeed, for two-dimensional SU(2) lattice gauge theory
in the infinite volume limit, one has [98]
12(B)
= _|n| =2 71

Olatt n Ll(B) ) (71)
whereln(B) is the modified Bessel function [73]. For larfevalues (in our case we hape= 10), this yieldsoja =~ 3/(2).
Then, using the relatioff = 2NC/(gZa4*d), wherea is the lattice spacing and which is valid for the SlJ( gauge group ird
dimensions, we find in thedkcase

2 ANcOjat
3a?

(72)

ForN; = 2 and using the continuum valygoia: /a~ 0.44 GeV we obtaim? ~ 0.516 Ge\~.
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One can check that, in thel2ase, the functiong (p?) in Eq. (49) and=(p?) in Eq. (50) are again numerically indistinguish-
able. Note thatipg([?) ~ 0.00179 ando,y(p?) takes values i0.001730.0334 when p € [0.018 2.553 GeV, which is the
momentum interval for which we have numerically evaluatezlghost propagat@(p?). Thus, also in this case, the one-loop
expressiorp? F1(p?) does not change appreciably in the considered momenture rghigoes from 1.00 in the UV to 1.03 in
the IR regimes.) As a consequence, the momentum dependethesamalytic prediction is entirely due to the factoipt and
in this case we shouldotexpect a good description of the data in the IR region.

As in the 3l and 4 cases, the analytic prediction gives a good descriptioh®fdata in the UV limit (see left plot in Fig.
14). However, since the value obtained §gris smaller than the critical valugg —i.e. the one-loop result is free-like at small
momenta, while the numerical data are IR-enhanced— in ¢dhea®e one cannot indeed describe well the IR data by a simple
global rescaling of the functiofy (p?) (see right plot in Fig. 14). On the other hand, by fittgfg—i.e. considering the function
ﬁl(pz)— one finds that the valug? = 13.46(2) Ge\? allows a good description of the lattice data (see left pidtig. 15) with
x?/dof ~ 1.6 and 320 data points. Let us stress thatfer 2 choosing the fitted value faf over the fixed theoretical one has
a dramatic effect on the behavior p?lfl(pz). Indeed, this quantity goes from about 1.0 at the largest emdato about 9.0 in
the IR limit.

Also, a slightly better fit can be obtained with the funcfibn

t

o Z [(14p?/S
= - (X272 73
FZd(p ) p2 ( p2/52 ) ( )

Indeed, with the fitting parameters set to

z=0.963+0.002 (74)
t =0.188+0.002 (75)
$=1.084+0.04 GeV (76)

we findx?/dof ~ 1.2 (again with 320 data points). The corresponding plot iswhim Fig. 15 (right plot). Note that the factor
(s?/P2n)t ~ 4.7 is compatible with the multiplicative constant obtaindmbee when comparing the IR and UV behaviors of
F1(p?) (see right plot in Fig. 14).

As in the 3l and 4l cases, one can also estimate what is missing in the one-iualgsis, i.e. we can evalua#/(p?)
[see Egs. (58) and (59), using a Monte Carlo analysis witltDQG&amples] as a function of the (unimproved) momenta
The corresponding data (see Fig. 16) can be reasonablyilukxbdry the fitting functiorﬂ/(pz) [see Eg. (60)] with the fitting
parameters

A~ 068, B~ 120GeV?, (77)

which yields ax?/dof of 2.5 (with 320 data points). It is also interesting to ndtatt in this case, as faf = 3, the magnitude
of what is missing in the one-loop calculationa(fp?) is quite large, sincg?F1(p?) is essentially constant.

IV. CONCLUSIONS

We have presented the final step of our analysis of largedattandau-gauge propagators as compared to predictions of
the RGZ approach. Our data for the SU(2) ghost propadatpf) in d = 3,4 and 2 have been compared first to the “direct”
one-loop formulae, using the parameters from the gluopguyator fits reported in [1] and a fixed (theoretical) valuetfe
bare couplingg®. This comparison is shown in Figs. 6, 10 and 14 respectivalylf= 3,4 and 2. In all cases we show the
data (multiplicatively) normalized to/f for p = = 2.5GeV. The proposed (one-loop) behavior is shown with theesam
normalization on the left side of the figures and, in all casiesre is a good description in the UV limit. On the right safe
these figures, we have fixed the analytic form to match the nigaieesult at the smallest nonzero (lattice) momentunttier

11 This fitting function is inspired by the one considered in R#&5] for the A case, but with one less parameter. We have checked thatrtbioiu employed
in Ref. [15] allows only a modest improvement in the desiipbf the data when compared to the simpler fitting functigs( p?) considered here.
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FIG. 14. Plot of the ghost propagatG p?) as a function of the magnitude of the (unimproved) momengaoth in physical units) for the
lattice volumeV = 32¢7 at = 10.0. The data are (multiplicatively) normalized t¢ff for p == 2.5GeV. We also show the function
F1(p?) [see Eq. (49)] (normalized in the same way) with the GribowsiHform factora(p?) given by the one-loop results (38)-(44); the
corresponding parameters are reported in Eq. (70) and wg?set0.516 Ge\2. On the other hand, in the right plot, we fix the analytic
form to match the numerical result pt= pmin = 18 MeV, the smallest nonzero (lattice) momentum for the P&ip) considered, yielding
4.41862F; (p?). Notice the logarithmic scale on both axes.
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FIG. 15. Plot of the ghost propagat@l(pz) as a function of the magnitude of the (unimproved) momengboth in physical units) for the
lattice volumev = 3207 at§ = 10.0 together with the fitting forms discussed in the text. Thadae (multiplicatively) normalized to/fi? for
p=p=25GeV. In the left plot we show the functidﬁ(pz) (normalized in the same way) with the Gribov ghost form facttp?) given
by the one-loop results (38)—(44); the corresponding pafars are reported in Eq. (70) and we use the fitted valutb58 GeV for g2. On
the other hand, in the right plot, we show the fitting functfeq(p?) [see Eq. (73)] with the parameters given in Egs. (74)—(76)tid¢ the
logarithmic scale on both axes.

considered lattice volume affidvalue, i.e. we plot a global rescaling of the one-loop prigaiic We find that a good description
of the IR region is obtained ind3and 41, confirming that the IR behavior @(p?) in these cases is simply enhanced by a factor
with respect to the UV one. On the contrary, such a rescaligg ehot hold ird = 2, sinceG(p?) is IR-enhanced in this case.
This difference in IR behavior is clearly seen in Fig. 13, vehee show the Gribov ghost form facto(p?) [see Eq. (2)] for the
lattice volumed/ = 3207, 320° and 128 (respectively the largest volumes for each dimendiaas a function of the unimproved
momenta [see Eq. (48)]. In particular, one clearly seesithiie 31 and 4l cases the Gribov ghost form factor becomes almost

constant at small momenta.
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FIG. 16. Plot of the terriV(p?) [see Egs. (58) and (59)] as a function of the (unimproved) erttap (in physical units) for the lattice volume
V = 32(% at = 10.0 (data points). We also show (in red) the fitting funct‘@(lpz) [see Eq. (60)] with the fitting parameters reported in Eq.
7).

Next, we have shown the data as compared to the fitted onepledliction, i.e. we have used the same parameters as above,
but fitting the value of the bare coupling to the data. A good description is obtained, with reasonadlees ofx?/dof
(respectively 4.5, 1.7 and 1.6 fdr= 3,4 and 2), as seen in the left-hand side of Figs. 8, 11 and 1&ctgply ford = 3,4 and
2. We note that an even better description (respectivelyxfifdof of 2.9, 0.75 and 1.2 fad = 3,4 and 2) is obtained by fitting
the function in Eq. (54) fod = 3,4 and in Eq. (73) fod = 2, as can be seen in the plots on the right in the same figures. Th
fact that one can describe well the whole range of data bygubim analytic prediction fo&(p?) with a fitted value foig? is an
indication of the importance of having a one-parameter ffaofi solutions for the propagators in SNY) Yang-Mills theories
(see Section I). We remark that the ratio between the fittedevaf g2 and the fixed theoretical value is found to be quite l&fge
in all three cases considered, namely it is about 7.7, 1.2éndspectively fod = 3,4 and 2.

Finally, we have isolated the difference between the ndopeative data and the one-loop results, by defining thetionc
W(p?) in Eq. (58). As seen in Figs. 9, 12 and 16 respectivelydfer 3,4 and 2, this difference is small in the UV region and
grows in the IR region. Moreover, the behavionf p?) is very similar in the three cases and, indeed, it may be redsy
well parametrized by a simple function of the momentum [sge(E0)]. This supports a unified explanation for the inaacyr
of the one-loop predictions in the IR region for the threeesady considering the similar studies carried out in R&9-[1]
in d = 4, it is reasonable to assume that the use of a fully nongative gluon propagatdd(p?) in the one-loop analysis for
G(p?) is not sufficient if one does not also use an improved ghastgVertex. A detailed study of this vertex will be presented
elsewhere [100].
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the same results.
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