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Abstract

We review the method of uniqueness which is a powerful technique for multi-loop calculations

in higher dimensional theories with conformal symmetry. We use the method in momentum space

and show that it allows a very transparent evaluation of a two-loop massless propagator Feynman

diagram with a non-integer index on the central line. The result is applied to the computation

of the optical conductivity of graphene at the infra-red Lorentz invariant fixed point. The effect

of counter-terms is analysed. A brief comparison with the non-relativistic case is included.
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I. INTRODUCTION

At the heart of perturbative quantum field theory is the exact computation of multi-loop

Feynman diagrams. The later are of crucial importance for the evaluation of renormal-

ization group functions, i.e., β-functions and anomalous dimensions of fields, with wide

applications ranging from particle physics, to statistical mechanics and condensed matter

physics. At the end of this paper we shall focus on an application concerning the optical

conductivity of graphene.

From the quantum field theory point of view, since the 1980’s, a number of powerful

covariant methods have been developed to achieve this task for dimensionally regularized

Feynman diagrams. One of the most widely used methods is integration by parts (IBP)

which has been introduced by Vasil’ev, Pis’mak and Khonkonen1 and Chetyrkin and Tka-

chov.2 It allows to reduce a complicated Feynman diagram in terms of a limited number of

so-called “master integrals”; such reduction is now automated via it’s implementation in

computer programs with the help of Laporta’s algorithm.3 In some simple cases, the master

integrals themselves can be computed from IBP alone. In general, however, other methods

have to be used often in combination with IBP. A well known method is the Gegenbauer

polynomial technique.4,5 Another very powerful but less popular method is the method of

uniqueness and we shall focus on this method in the following. This method owes its name

to the so-called uniqueness relation, otherwise known as the star-triangle or Yang-Baxter

relation, which is used in theories with conformal symmetry. Historically, such relation was

probably first used to compute three-dimensional integrals by D’Eramo, Peleti and Parisi.6

Within the framework of multi-loop calculations, the method has first been introduced by

Vasil’ev, Pis’mak and Khonkonen.1 It allows, in principle, the computation of complicated

Feynman diagrams using sequences of simple transformations (including integration by

parts) without performing any explicit integration. A diagram is straightforwardly inte-

grated once the appropriate sequence is found. In a sense, the method greatly simplifies

multi-loop calculations.1,7–9 As a matter of fact, the first analytical expression for the five-

loop β-function of the ϕ4-model was derived by Kazakov using this technique.8,9 For a given

diagram, the task of finding the sequence of transformations is, however, highly non-trivial.

In the following, we will present the method of uniqueness in momentum space in very

close analogy with the review of Ref. [10] where the method was presented in coordinate

2



�p
α1

α4

α2

α3

α5

FIG. 1: Two-loop massless propagator diagram.

space. We will then show that it allows a very transparent evaluation of a two-loop massless

propagator Feynman diagram with a non-integer index on the central line. The result will

then be applied to the computation of the optical conductivity of graphene at the infra-red

Lorentz invariant fixed point. In the following, except in Section V concerning applications,

we will work in Euclidean space and set ~ = c = 1.

II. THE TWO-LOOP MASSLESS PROPAGATOR-TYPE DIAGRAM

In what follows we shall use dimensional regularization and perform all calculations in

an Euclidean space-time of dimensionality D = 4− 2ε; alternatively, it will be of practical

use to write D = 2 + 2λ where λ and ε are related by: λ = 1− ε. Our main focus will be

on the two-loop massless propagator-type diagram (the so-called p-integral) in momentum

space, see Fig. 1. This diagram is one of the building blocks of multi-loop calculations. It

reads:

J(α1, α2, α3, α4, α5) =

∫ ∫
dDk1 dDk2

k2α1
1 k2α2

2 (k2 − p)2α3 (k1 − p)2α4 (k2 − k1)2α5
, (1)

with arbitrary indices αi and external momentum p. Dimensional analysis gives the de-

pendence of J on p via the dimension dF of the diagram where:

dF = 2(D −
5∑
i=1

αi) . (2)

One of the main goals of multi-loop calculations is to compute the (dimensionless) coeffi-

cient function of the diagram that we define as:

ID(α1, α2, α3, α4, α5) = CD

[
�
α1

α4

α2

α3

α5

]
=

pdF

πD
J(α1, α2, α3, α4, α5). (3)

In general, it takes the form of a Laurent series in ε.
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The 2-loop massless propagator-type diagram of Eq. (1) has a rather long history, see

Ref. [11] for a review. Generally speaking, when all indices are integers the diagram is

easily computed, e.g., with the help of IBP. On the other hand, for arbitrary (non-integer)

values of all the indices, it’s evaluation is highly non-trivial and peculiar cases have to be

considered, see, e.g., Refs. [1,2,4,5,8,9,12–21]. In the case where all the indices take the

form αi = 1 + aiε, the diagram is known only in the form of an ε-expansion; after two

decades of calculations,4,8,9,12,13,16 an expansion to order ε9 was achieved in Ref. [18]. The

expansion was automated in Ref. [19] by representing the diagram as a combination of

two-fold series; in principle, such numerical evaluation allows an expansion to arbitrary

order in ε, the only restrictions arising from hardware constraints. In some other cases, an

exact evaluation of the diagram could be found. In the case where two adjacent indices

are arbitrary (other indices being integers), the diagram was first computed exactly using

the Gegenbauer polynomial technique.4 Such results were soon after recovered in a more

simple way using IBP.1,2 A decade later, a new class of complicated diagrams where two

adjacent indices are integers and the three others are arbitrary could be computed exactly

on the basis of a new development of the Gegenbauer polynomial technique.5 For this

class of diagrams, similar results have been obtained in Ref. [16] using an Ansatz to solve

the recurrence relations arising from IBP for the 2-loop diagram. All these results are

expressed in terms of (combinations of) generalized hypergeometric functions, 3F2 with

argument 1.5,16,21 Actually, the simplest non-trivial diagram belonging to this class is the

one with an arbitrary index on the central line. It’s coefficient function reads:

I(α) = CD

[
�
1

1

1

1

α

]
=

p2(2−α)

πD
J(1, 1, 1, 1, α) . (4)

An expression of this diagram in terms of a one-fold series has first been given in Ref. [9].

Then, in Ref. [5], this function was shown to be expressed in terms of a single 3F2 function

of argument 1 with the result reading:

I(α) = −2 Γ(λ)Γ(λ− α)Γ(1− 2λ+ α)× (5)

×

[
Γ(λ)

Γ(2λ)Γ(3λ− α− 1)

∞∑
n=0

Γ(n+ 2λ)Γ(n+ 1)

n! Γ(n+ 1 + α)

1

n+ 1− λ+ α
+
π cotπ(2λ− α)

Γ(2λ)

]
.

In these Proceedings, we shall consider an even simpler case where the index α is related
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to the dimensionality of the system as follows: α = λ = D/2− 1. Graphically:

I(λ) = CD

[
�
1

1

1

1

λ

]
=

p2(2−λ)

πD
J(1, 1, 1, 1, λ) (λ = D/2− 1) . (6)

This diagram has already been calculated, see Ref. [1] and also discussions in Ref. [15], and

reads:

I(λ) = 3
Γ(λ)Γ(1− λ)

Γ(2λ)

[
ψ′(λ)− ψ′(1)

]
. (7)

The method used then was the uniqueness method in position space. In Ref. [20], a

seemingly simpler and more transparent derivation was proposed using the method of

uniqueness in momentum space.

III. THE METHOD OF UNIQUENESS

In what follows all diagrams will be analyzed in momentum space. We assume that

algebraic manipulations related to gamma matrices have been done, e.g., contraction of

Lorentz indices, calculations of traces, etc... The diagrams we shall consider therefore

involve only scalar propagators which are simple power laws of the form: 1/k2α where α is

the so-called index of the propagators. The latter can be represented graphically as a line:

�α ⇒ 1

k2α
. (8)

The index of a diagram is defined as the sum of the indices of its constituent lines. Ordinary

lines have index 1, while ordinary triangles and vertices have index 3. Of importance in

the following will be the notions of unique triangle and unique vertex. In momentum space

a triangle and a vertex are said to be unique if their indices are equal to D = 2 + 2λ and

D/2 = 1 + λ, respectively, see table I for a summary.

With these definitions and graphical notations, chains reduce to the product of propa-

gators:

�α β
= �α + β

. (9)

On the other hand simple loops involve an integration:

�
α

β

= πD/2A(α, β)�α + β −D/2
, (10)
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Line Triangle Vertex

Arbitrary α
∑3

i=1 αi
∑3

i=1 αi

Ordinary 1 3 3

Unique D/2 = 2− ε = 1 + λ D = 4− 2ε = 2 + 2λ D/2 = 2− ε = 1 + λ

TABLE I: Indices of lines, triangles and vertices in p-space (ε = 2−D/2, λ = D/2− 1)

where

A(α, β) =
a(α)a(β)

a(α + β −D/2)
, a(α) =

Γ(D/2− α)

Γ(α)
. (11)

Multi-loop diagrams can then be evaluated without further explicit integration by using

the above results in combination with some identities between diagrams. Central to this

paper is the uniqueness (or star-triangle) relation which relates a so-called unique triangle

to a unique vertex:

	
α3

α2

α1
=∑

i
αi=D

πD/2A(α1, α2)
α̃3

α̃2

α̃1

, (12)

where α̃i = D/2 − αi is the index dual to αi. Another important identity takes the form

of a recurrence relation and can be obtained from integration by parts1,2:

(D − α2 − α3 − 2α5)�
α1

α4

α2

α3

α5 = α2

[
�

+

− − 
− + ]

+ α3

[
�+

− − �− +

]
,(13)

where ± on the right-hand side of the equation denotes the increase or decrease of a line

index by 1 with respect to its value on the left-hand side. In the following, in order to

simply notations, we will assume that lines with no index are ordinary lines, that is lines

of index 1.

IV. CALCULATION OF THE DIAGRAM

With the help of the above notations and identities, I(λ) can be computed. We only

give the elementary four steps in what follows, see Ref. [20] for more details. The first step
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consists in replacing the central line by a loop, Eq. (10), in order to make the right triangle

unique. Then, the uniqueness relation, Eq. (12), can then be used. In graphical notations

these two steps read:

J(1, 1, 1, 1, λ) = �λ =
1

πD/2A(1, 2λ) �2λ = �
λ

λ

1

p2(1−λ)
.

(14)

The third step consists in using the integration by parts identity, Eq. (13), in order to

reduce the last diagram to sequences of chains and simple loops:

(−2δ)�
λ+ δ

λ+ δ

= 2(λ+ δ)

�
λ+ δ + 1

λ+ δ

− �
λ+ δ + 1

λ+ δ  ,(15)

The resulting diagrams can then be immediately integrated with the help of Eqs. (9) and

(10). Notice that in Eq. (15) an additional regularization parameter δ has been introduced

in order to make sense of the integration by parts identity. The fourth and last step then

consists in taking the limit δ → 0 which can be done by using the following product

expansion of the Gamma function:

Γ(x+ε) = Γ(x) exp
[ ∞∑

k=1

ψ(k−1)(x)
εk

k!

]
, ψ(x) = ψ(0)(x) =

Γ′(x)

Γ(x)
, ψ(k)(x) =

dk

dxk
ψ(x) ,

(16)

where ψ(k) is the polygamma function of order k. All calculations done, this yields:

�
λ

λ

=
πD

p2
3

Γ(λ)Γ(1− λ)

Γ(2λ)

[
ψ′(λ)− ψ′(1)

]
, (17)

where ψ′(x) is the trigamma function. Substituting this result in Eq. (14) and using

Eq. (6), we obtain the advertised result1,15 for the coefficient function, Eq. (7). In the

even-dimensional case (λ→ 1 or D → 4) the well-known result:

I(1) = 6 ζ(3) , (18)

is recovered. On the other hand, in the odd-dimensional case (λ→ 1/2 or D → 3), which

is one of the cases of interest to Ref. [15,20,22], the result is transcendentally more complex

(ζ(2) = π2/6) and reads:

I(1/2) = 6π ζ(2) . (19)
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V. APPLICATION

Going back to Minkowski space, we consider the following low-energy effective action

describing the coupling of a fermion field in de = De + 1-dimensions with a U(1) gauge

field in dγ = Dγ + 1-dimensions:

S =

NF∑
σ=1

∫
dt dDex

[
ψ̄σ

(
iγ0∂t + iv~γ · ~∇

)
ψσ − eψ̄σ γ0A0 ψσ + e

v

c
ψ̄σ ~γ · ~Aψσ

]
+

∫
dt dDγx

[
−1

4
F µν Fµν −

1

2a
(∂µA

µ)2
]
, (20)

where ψσ is a four component spinor of spin index σ which varies from 1 to NF (NF = 2

for graphene), v is the Fermi velocity, c is the velocity of light which is also implicitly

contained in the gauge field action through ∂µ = (1
c
∂t, ~∇ ), a is the gauge fixing param-

eter and γµ is a 4 × 4 Dirac matrix satisfying the usual algebra: {γµ, γν} = 2gµν where

gµν = diag(1,−1,−1, · · · ,−1) is the metric tensor in De + 1-dimensions. As we shall use

dimensional regularization, the following parametrisation will be useful:35

dγ = 4− 2εγ, de = 2 + 2λ− 2εγ . (21)

The case of graphene corresponds to: εγ → 0 and λ → 1/2, that is a fermion living in a

space of de = 2 + 1-dimensions interacting with a gauge field in dγ = 3 + 1-dimensions.

From the action of Eq. (20) and for arbitrary dγ and de, we have the following Feynman

rules. The fermion propagator reads:

S0(p) =
i/p

p2
, /p = γµpµ = γ0p0 − v~γ · ~p . (22)

The reduced photon propagator is given by:

D̃µν
0 (q̄) =

i

(4π)1−λ
Γ(λ)

(−q̄ 2)λ

(
gµν − ξ̃ q̄

µ q̄ ν

q̄ 2

)
, q̄ µ = (q0/c, ~q ) , (23)

where ξ̃ = λ ξ = λ (1 − a). It is a reduced propagator since it has been obtained from

the usual Dγ-dimensional photon propagator after integrating out all space coordinates

perpendicular to the De-dimensional membrane. Finally, the vertex function (j = 1, 2 is a

space index) reads:

Γ0
0 = −ieγ0 , Γj0 = −ie

v

c
γj . (24)
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The coupling of the fermion field to the gauge field is characterized by a dimensionless

coupling constant: αg = e2/(4πv). In graphene, a well known effect of interactions is to

renormalize the Fermi velocity which then flows to the velocity of light in the infra-red,

see Ref. [23]. Experimentally,24 the flow of the velocity is cut at values of the order of

v ≈ c/300. Hence, it is common practice to neglect all retardation effects. In this non-

relativistic limit there is no coupling of the fermion to the vector photon (Γj0 = 0) and the

rules (for arbitrary λ) simplify as:

S0(p) =
i/p

p2
, D̃00

0 (~q ) =
i

(4π)1−λ
Γ(λ)

(|~q |2)λ
, Γ0

0 = −ieγ0 (v � c) , (25)

where pµ = (p0, v~p ). In this limit, the coupling constant is of the order of unity: αg ≈

300/137 ≈ 2. Formally, we may let the velocity flow. Then, deep in the infra-red, a Lorentz

invariant fixed point is reached:23 v → c and αg → α ≈ 1/137. At the fixed point, the

rules (again for arbitrary λ) simplify and read:

S0(p) =
i/p

p2
, D̃µν

0 (q) =
i

(4π)1−λ
Γ(λ)

(−q2)1/2

(
gµν − ξ̃ q

µ qν

q 2

)
, Γµ = −ieγµ (v = c) ,

(26)

where momenta are of the form kµ = (k0, ~k ) as we may set v = c = 1 in this limit because

there is no further flow of the velocity. This relativistic model belongs to the class of the

so-called massless reduced quantum electrodynamics (reduced QED), [25], or pseudo QED,

Refs. [26], models. The Lorentz invariance allows a straightforward application of covariant

methods for computing massless Feynman diagrams. The square root branch cut in the

photon propagator leads to non trivial Feynman diagrams with non-integer indices of the

type considered in the previous sections.

Given the above rules, we now focus on the computation of radiative corrections to

the polarization operator Πµν(q). Power counting indicates that this function is free from

singularities in the limit εγ → 0 and λ → 1/2 that we are interested in. In the following,

we shall therefore perform all calculations for εγ → 0 keeping arbitrary λ. At the end, the

case λ = 1/2 will be considered. Similar computations valid for any εγ and λ can be found

in Ref. [22]. Once computed, the polarization operator can be related to an observable,

the so-called optical conductivity, with the help of the following relation:

σ(q0) = − lim
~q→0

iq0
|~q |2

Π00(q0, ~q ) . (27)
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a)�k + q

k

µ ν

b)�p+ k

k

p

c)�q
k + q

k

p− kµ

p

p′

FIG. 2: One-loop diagrams: a) vacuum polarization, b) fermion self-energy and c) fermion-gauge

field vertex.

Equivalently, from the parametrization Πµν(q) = Π(q2) (gµνq2 − qµqν) which follows from

current conservation, we may write σ(q0) = iq0 v
2 Π(q20,~0 ). In the non-relativistic limit,

the computation of Π00(q) is the most convenient while in the relativistic limit it is that of

Π(q2).

In the absence of electron-electron interactions, the polarization operator reduces to a

simple loop, see Fig. 2a, which is defined as:

iΠµν
1 (q) = −

∫
[ddek] Tr [(−ieγµ)S0(k + q)(−ieγν)S0(k)] , [ddek] =

ddek

(2π)de
. (28)

Focusing on the computation of Π1(q
2), straightforward calculations lead to (for εγ → 0):

Π1(q
2) = −4NF

e2 Γ(λ)

(4π)1+λ (−q2)1−λ
Γ(1 + λ)Γ(1− λ)

(1 + 2λ)Γ(2λ)
. (29)

In the case λ = 1/2 which is of interest to us, this yields: Π1(q
2) = −e2NF/(8

√
−q2).

Hence, we recover the minimal conductivity of graphene (NF = 2):27

σ0 = e2/(4~) . (30)

Because this is a free fermion result, it holds for any value of v/c. As we shall now see,

this is not so for higher order corrections.

In the last decade, there has been extensive work done in order to understand how

electron-electron interactions may affect the result of Eq. (30), see Refs. [28–32]. Experi-

ments33 seem to indicate that interaction effects are weak and lead only to 2% deviation

from the free fermion result, see also Ref. [34] for a review. Theoretically, it was shown that

there are no corrections to the optical conductivity from short-range interactions among

the fermions.31 No exact result is available in the case of long-range interactions that we are

10



a)�k + q

kk

q �k + q k + q

k

q

b)�k1 + q k2 + q

k2k1

k12
q

FIG. 3: Two-loop vacuum polarization diagrams.

interested in. In this case, the standard procedure is to use perturbation theory from which

one can compute the lowest order interaction correction coefficient, C, to the conductivity:

σ = σ0

(
1 + α C + O

(
α2
))
, (31)

which is related to the two-loop correction to the polarization operator, see the correspond-

ing diagrams in Fig. 3. The later is defined as:

Πµν
2 (q) = 2 Πµν

2a (q) + Πµν
2b (q) , (32a)

iΠµν
2a (q) = −

∫
[ddek] Tr [(−ieγν)S0(k + q)(−ieγµ)S0(k) (−iΣ1(k))S0(k)] , (32b)

iΠµν
2b (q) = −

∫
[ddek2] Tr [(−ieγν)S0(k2 + q)(−ieΛµ

1(k2, q))S0(k2)] ,

where Σ1(k) is the one-loop self-energy, Fig. 2b, and Λµ
1(k2, q) is the one-loop vertex part,

Fig. 2c, which are defined as:

−iΣ1(k) =

∫
[ddep] (−ieγµ)S0(k + p)(−ieγν)D̃µν

0 (p) , (33a)

−ieΛµ
1(k2, q) =

∫
[ddek1] D̃

αβ
0 (k1 − k2) (−ieγα)S0(k1 + q)(−ieγµ)S0(k1)(−ieγβ) .(33b)

We now review the computations of these diagrams and the corresponding optical conduc-

tivity in the non-relativistic and relativistic limits.

In the non-relativistic limit (v � c), most results obtained by computing these diagrams

seem to agree with the result first found by Mishchenko28:

C =
19− 6π

12
≈ 0.013 (v � c) . (34)

Interestingly, this result shows that αgC ≈ 0.02 in agreement with the small deviations seen

experimentally. Moreover, from Eq. (27), Mishchenko found that this result is decomposed

as: C = Ca+Cb where Ca = 1/4 is the contribution of diagrams Fig. 3a and Cb = (8−3π)/6

11



is the contribution of the diagram Fig. 3b. We therefore notice that the “complicated”

contribution, that is the one proportional to π in Eq. (34), arises from the “complicated”

diagram Fig. 3b.

Less relevant to experiments but still of academic interest is to compute the interaction

correction coefficient at the infra-red fixed point. Performing the trace algebra in Eqs. (32)

and after Wick rotation to go to euclidean space (q0 = iqE0) the diagrams reduce to a

combination of scalar integrals of the kind encountered in the previous sections. All of

these integrals reduce to simple loops and chains except for one, arising from diagram b

in Fig. 3, and which is precisely given by I(λ) defined in (6). All calculations done, the

two-loop correction to the polarization operator reads (for εγ → 0):

Π2(q
2) = 4NF

e4 Γ(λ)

(4π)3+λ (−q2)1−λ
16Γ(1 + λ)Γ(1− λ)

Γ(3 + 2λ)
C1(λ) , (35a)

C1(λ) = 2λ− 5

2
− 3

2λ
+

1

1 + λ
+

3

2
λ(1 + λ)

[
ψ′(λ)− ψ′(1)

]
. (35b)

where the result of Eq. (7) has been used. Adding the one-loop contribution yields:

Π(q2) = Π1(q
2)
(

1 + αC(λ) + O
(
α2
))
, (36a)

C(λ) = − 1

πλ(1 + λ)
C1(λ) = − 1

2π

(
3
[
ψ′(λ+ 2)− ψ′(1)

]
+

4

1 + λ
+

1

(1 + λ)2

)
.(36b)

In the case λ = 1/2, this leads to:20,22

C∗ = C(1/2) =
92− 9π2

18π
≈ 0.056 (v = c) . (37)

So in the relativistic limit, the overall correction to the conductivity is even smaller than in

the non-relativistic limit as: αC∗ ≈ 4.10−4. Interestingly, the “complicated” contribution

in Eq. (37) is precisely the same as in Eq. (34). The difference between these two results

seems to arise essentially from the simple diagrams of Fig. 3a. The latter contain the

sub-divergent one-loop fermion self-energy which is responsible for the flow of the Fermi

velocity.

In the case v � c, the result of Eq. (34) contains contributions from the counter-terms

of the diagrams in Fig. 3 (see discussions in Ref. [29,30]). We will now show that such

contributions are absent in the relativistic limit v = c. The counter-term diagrams are

represented graphically in Fig. 4 and include four contributions:

Π̃µν
2 (q) = 2Π̃µν

2a (q) + 2Π̃µν
2b (q) . (38)
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a)�q �
q

b)�q �q
FIG. 4: Counter-term diagrams to the two-loop vacuum polarization diagrams.

The first term, 2Π̃2a, comes from the singular part of the internal loops in the two first

diagrams in Fig. 3a, that is the one-loop fermion self-energy of Fig. 2b. The second term,

2Π̃2b, comes from the singular part of two internal triangles in the last diagram, that is the

one-loop vertex part of Fig. 2c. These one-loop graphs were computed in Ref. [22] and we

reproduce the results here for clarity:

Σ1V (k2) = −e
2 Γ(λ)(−k2)−εγ

(4π)dγ/2

[
2(λ− εγ)2

1 + λ− 2εγ
− ξ (λ− εγ)

]
A(1, λ) , (39a)

Λµ
1 =

e2 Γ(λ)m−2εγ

(4π)dγ/2
γµ
[

2(λ− εγ)2

1 + λ− εγ
− ξλ

]
Γ(εγ)

Γ(1 + λ)
, (39b)

where we have used the parametrization Σ1(k) = /kΣ1V (k2), A(α, β) was defined in Eq. (11)

and the mass m has been used as an infra-red regulator in the expression of the vertex

correction, Eq. (39b).

The results for Π̃2a and Π̃2b can then be represented as:

Π̃µν
2a (q) = −Sing

[
Σ1V (k2)

]
Πµν

1 (q) , Π̃µν
2b (q) = −Sing [Λµ/γµ] Πµν

1 (q) , (40)

where k is the internal momentum, Πµν
1 (q) is the one-loop contribution, Eq. (29)

and the renormalization of the one-loop vertex has been represented as: Sing [Λµ] ≡

γµ Sing [Λµ/γµ]. In the improved minimal subtraction scheme (MS), for any function

F (εγ), the Sing operator is defined as:

Sing [F (εγ)] ≡
1

εγ
F (εγ = 0), εγ = (4− dγ)/2 . (41)

With the help of this definition and from Eqs. (39) we obtain:

Sing
[
Σ1V (k2)

]
= − e2

(4π)2

[
2λ

1 + λ
− ξ
]

1

εγ
, (42a)

Sing [Λµ/γµ] = +
e2

(4π)2

[
2λ

1 + λ
− ξ
]

1

εγ
. (42b)

Eqs. (42a) and (42b) are exactly opposite to each other. The contribution of the counter-

terms, Eq. (38), is therefore zero. This actually follows from the Ward identity for reduced

QED which relates the wave function and vertex renormalization constants.
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