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Abstract

We construct exact solutions of BPS pion domain walls in the four-dimensional N = 1

supersymmetric SU(N) chiral Lagrangian with pion masses introduced via linear and

quadratic superpotentials. The model admits N discrete vacua in the center of SU(N) for

the linear superpotential. In addition to the latter, new vacua appear for the quadratic su-

perpotential. We find that the domain wall solutions of pions (Nambu-Goldstone bosons)

that interpolate between a pair of (pion) vacua preserve half of supersymmetry. Contrary

to our expectations, we have not been able to find domain walls involving the quasi-

Nambu-Goldstone bosons present in the theory, which in turn has the consequence that

not all vacua of the theory are connected by a BPS domain wall solution.
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1 Introduction

Domain walls that separate two vacua are topological defects appearing in various subjects of

physics from condensed matter physics to field theory, high energy physics [1], QCD [2], and cos-

mology [3]. In supersymmetric theories, Bogomol’nyi-Prasad-Sommerfield (BPS) domain walls

are the most stable configurations, studied extensively in the literature, such as supergravity [4]

and N = 1 supersymmetric QCD [5]. They preserve half of supersymmetry (therefore called
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1/2 BPS states) and their tension is given by the central charge in 1+1 dimensions [6]. In

3+1 dimensions the tension of the 1/2 BPS domain walls coincides instead with a tensorial

charge present only in theories with broken translational invariance [5]. Domain walls were also

studied in theories with extended supersymmetry such as N = 2 supersymmetric hyper-Kähler

sigma models [7] and N = 2 supersymmetric Abelian [8] and non-Abelian [9] gauge theories.

If multiple domain walls with different angles join at a junction, the total configuration is a

1/4 BPS state preserving a quarter of supersymmetry both in N = 1 [10, 11] and N = 2 [12]

supersymmetric gauge theories. See Refs. [13, 14, 15] for reviews.

In this paper, we study BPS pion domain walls in the N = 1 supersymmetric chiral La-

grangian with pion mass terms. The model appears as the low-energy effective theory of

supersymmetric QCD in supersymmetric vacua with broken chiral symmetry. The SU(N) chi-

ral Lagrangian with the simplest pion mass term admits N symmetric discrete vacua in the

center elements of SU(N). We construct exact solutions of BPS SU(2K) pion domain walls

interpolating between the pion vacua present in the theory and find that these domain walls

carry SU(2K)/[SU(K)× SU(K)×U(1)] orientational moduli as well as translational moduli.

These domain walls are special solutions interpolating only 2 of 2K vacua. We have not been

able to find any domain wall solutions connecting any of the other 2K−2 vacua. We construct

the low-energy effective field theory on the domain wall for the N = 2 case and obtain the

CP 1 model. This case is similar to the moduli space found for vortices in U(2) gauge theories

[16]. The SU(2) case (N = 2) reduces to a domain wall in the O(4) model admitting two

discrete vacua [17, 18], in which the CP 1 moduli of the domain wall were already found. In

contrast to pion domain walls in non-supersymmetric theories [19, 2] that are topologically and

dynamically unstable, pion domain walls found in this paper saturate the BPS bound and are

therefore stable classically and quantum mechanically (even non-perturbatively).

In supersymmetric theories, a global symmetry G is extended to its complex extension GC

since the potential is constructed from a superpotential which is holomorphic in the chiral

superfields. Consequently, spontaneously broken global symmetry in supersymmetric vacua

results in additional massless bosons, called quasi-Nambu-Goldstone (NG) bosons [20, 21] in

addition to the usual NG bosons. These massless bosons together with their fermionic super-

partners, called quasi-NG fermions [22], constitute chiral multiplets. The NG and quasi-NG

bosons must parametrize a Kähler manifold as required from supersymmetric nonlinear sigma

models [23]. The general framework to construct low-energy effective theories was provided in
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Refs. [24]. In the case of chiral symmetry breaking SU(N)L × SU(N)R → SU(N)L+R, there

must appear the same number of quasi-NG bosons as the number of NG bosons (pions) and the

target space is SU(N)C ≃ SL(N,C) [25]. The most general Kähler potential is an arbitrary

function of G-invariants, corresponding to the deformation of directions of quasi-NG bosons,

which cannot be fixed by G [25, 26, 27, 28]. Manifestly supersymmetric higher-derivative cor-

rections have recently been constructed, including the example of chiral symmetry breaking

[29]. A supersymmetric Skyrme term has been constructed recently [30] but the usual kinetic

term canceled out as in the case of baby (lower dimensional) Skyrmions [31]. In this paper, we

study – for chiral symmetry breaking – supersymmetric pion mass terms preserving the vector

symmetry H = SU(N)L+R. In the case of the simplest superpotential, the potential admits N

symmetric discrete vacua for the SU(N) case. We construct BPS pion domain walls interpo-

lating between the pion vacua of the theory. These vacua for which we are able to find domain

wall solutions are antipodal points on the target space. However, as we mentioned, not all the

supersymmetric vacua are connected by domain walls; vacua with an imaginary part require

quasi-NG bosons to be turned on. For this type of domain wall – although we have found the

BPS equations – we have not been able to find a domain wall solution, neither analytically

nor numerically. Using an appropriate Ansatz, we have reduced the BPS matrix equation to a

complex scalar equation which describes one NG mode and one quasi-NG mode, for which we

can show that no solutions exist. Although we do not yet have a solid proof of absence of the

remaining domain wall, our results provide some evidence.

As a similar model, the (non-supersymmetric) U(N) chiral Lagrangian with the pion mass

term admits a non-Abelian sine-Gordon soliton that carries CPN−1 moduli [32]. The low-

energy effective theory on said domain wall is given by the CPN−1 model [33]. Such a U(N)

chiral Lagrangian appears e.g. in the Josephson junction of two non-Abelian superconductors,

in which a non-Abelian sine-Gordon soliton describes a non-Abelian vortex (color-magnetic flux

tube) from the bulk point of view [34], that is a non-Abelian extension of Josephson vortices in

field theory [35]. For the non-Abelian sine-Gordon soliton in the U(N) chiral Lagrangian, one

has to consider the group U(N) instead of SU(N). We do not need a U(1) part and consider

instead the simple group SU(N). Consequently, our configurations separate into two different

vacua so they are domain walls, but two spatial infinities of a sine-Gordon soliton are in the

same vacuum. We also show that there is no BPS domain wall interpolating the same vacuum

in our model. Only two physically distinct vacua can be connected by a BPS pion domain wall.
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As a consequence, we find no domain wall solutions for the SU(2K + 1) case.

This paper is organized as follows. In Sec. 2, we give a brief review of the supersymmetric

nonlinear sigma model and chiral symmetry breaking in supersymmetric theories, and discuss

supersymmetric pion mass terms. In Sec. 3, we construct non-Abelian BPS domain walls. In

Sec. 4, we construct the effective theory on the domain wall which is the CP 1 model. Section

5 is devoted to a summary as well as discussions. We use the notation of the textbook of Wess

and Bagger [36].

2 Supersymmetric chiral Lagrangian

Subsections 2.1 and 2.2 are devoted to a review of supersymmetric nonlinear sigma models and

chiral symmetry breaking in supersymmetric theories, respectively, while the supersymmetric

mass term in Subsection 2.3 has not been discussed in the literature.

2.1 Supersymmetric nonlinear sigma models

In four-dimensional N = 1 supersymmetric theories, we have N chiral superfields Φi, (i =

1, . . . , N) whose component expansion in the chiral basis, ym = xm + iθσmθ̄, is given by

Φi(y, θ) = ϕi(y) + θψi(y) + θ2F i(y), (2.1)

where ϕi is a complex scalar field, ψi is a Weyl fermion and F i is a complex auxiliary field. The

supersymmetric Lagrangian is described by a Kähler potential K(Φ,Φ†) as well as a superpo-

tentialW (Φ), where the first is a function of the superfields, Φi, and the latter is a holomorphic

function

L =

∫

d4θ K(Φ,Φ†) +

(∫

d2θ W (Φ) + c.c.

)

= −gī(ϕ, ϕ̄)∂mϕi∂mϕ̄̄ + gī(ϕ, ϕ̄)F
iF ∗̄ + F i∂W

∂ϕi
+ F ∗̄∂W

∗

∂ϕ̄̄
+ (fermion terms), (2.2)

where gī ≡ ∂
∂ϕi

∂
∂ϕ̄̄K(ϕ, ϕ̄) is the Kähler metric. The potential V can be written in terms of

the superpotential as

V = gīF
iF ∗̄ = gī

∂W

∂ϕi

∂W ∗

∂ϕ̄̄
, (2.3)

while the auxiliary field is solved by

F i = −gī∂W
∗

∂ϕ̄̄
. (2.4)
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Here gī is the inverse of the Kähler metric gī. The G-invariance of the Kähler potential implies

that the following transformation

K(Φ,Φ†)
g→ K(Φ′,Φ′†) = K(Φ,Φ†) + F (Φ, g) + F ∗(Φ†, g), (2.5)

is preserved; i.e. the transformation with F (F ∗) being a (n anti-)holomorphic function of Φ

(Φ†) which are determined by a group element g ∈ G. This transformation is called a Kähler

transformation and the latter two terms in the above equation vanish under the superspace

integral
∫
d4θ.

2.2 Supersymmetric chiral Lagrangian

Let us now consider chiral symmetry breaking of the form

G = SU(N)L × SU(N)R → H = SU(N)L+R. (2.6)

The NG modes corresponding to the above symmetry breaking span the following coset space

G/H =
SU(N)L × SU(N)R

SU(N)L+R
≃ SU(N). (2.7)

We denote the generators of the coset by TA ∈ su(N), which take value in the SU(N) algebra.

It was shown in Ref. [21] that when the vacuum expectation value (VEV) giving rise to the

symmetry breaking belongs to a real representation of SU(N), then the number of quasi-NG

boson is exactly the same as the number of NG bosons; this is also called a maximal realization.

Chiral symmetry breaking belongs to said class and the total target space is given by

GC/HC ≃ SU(N)C ≃ SL(N,C) ≃ T ∗SU(N). (2.8)

The NG supermultiplet is expressed as the following coset representative

M = exp(iΦiTAδ
A
i ) ∈ GC/HC, (2.9)

where the NG superfields take the form

Φi(y, θ) = πi(y) + iσi(y) + θψi(y) + θθF i(y), (2.10)

with πi being NG bosons, σi quasi-NG bosons – both of which are real fields – and finally ψi

quasi-NG fermions. The NG supermultiplets obey the following nonlinear transformation law

M →M ′ = gLMg†R, (gL, gR) ∈ SU(N)L × SU(N)R. (2.11)
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In the vacuumM = 1N , the unbroken symmetry H = SU(N)L+R defined by gL = gR remains.1

From the following transformation

MM † → gLMM †g†L, (2.12)

the simplest Kähler potential, that is invariant under the SU(N)L×SU(N)R symmetry, is just

K0 = f 2
πtr (MM †), (2.13)

where fπ is a constant. The bosonic part of the Lagrangian – corresponding to the above Kähler

potential – to leading order in the derivative expansion is

L0 = −f 2
πtr (∂mM∂mM †), (2.14)

where M is the lowest component of the NG superfield given in Eq. (2.9).

From the left-invariant Maurer-Cartan one-form iM−1 ∂M
∂ϕi we define the holomorphic vielbein

EA
i (ϕ) and their conjugates as

iM−1∂M

∂ϕi
= EA

i (ϕ)TA, −i∂M
†

∂ϕ̄ı̄
M−1† = E∗Ā

ı̄ (ϕ̄)TĀ. (2.15)

Their pull-backs to space-time give

iM−1∂mM = EA
i (ϕ)TA∂mϕ

i, −i(∂mM †)M−1† = E∗Ā
ı̄ (ϕ̄)TĀ∂mϕ̄

ı̄. (2.16)

By using the vielbein, the Lagrangian for the bosonic fields can be rewritten as

L0 = −f 2
πtr (MTATB̄M

†)EA
i (ϕ)E

∗B̄
̄ (ϕ̄)∂mϕ

i∂mϕ̄̄ = −GAB̄E
A
i (ϕ)E

∗B̄
j (ϕ̄)∂mϕ

i∂mϕ̄̄

= −gī(ϕ, ϕ̄)∂mϕi∂mϕ̄̄, (2.17)

with the Kähler metric gī and the metric GAB̄ on the tangent space, defined by

gī(ϕ, ϕ̄) = f 2
πtr (MTATB̄M

†)EA
i (ϕ)E

∗B̄
̄ (ϕ̄) = GAB̄E

A
i (ϕ)E

∗B̄
̄ (ϕ̄), (2.18)

GAB̄ = f 2
πtr (MTATB̄M

†), (2.19)

respectively.

1 For chiral symmetry breaking in supersymmetric vacua, the unbroken group H = SU(N)L+R is not unique,

and is further broken to a subgroup when some quasi-NG bosons get VEVs [25], where some of the quasi-NG

bosons change to NG bosons [25, 28].
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The Kähler potential in Eq. (2.13) is the simplest one, while the most general Kähler

potential can be written as [25, 28]

K = f(tr (MM †), tr [(MM †)2], · · · , tr [(MM †)N−1]), (2.20)

with an arbitrary function of N − 1 arguments.

If we set all quasi-NG bosons to zero [26, 25]

U =M |σi=0 ∈ SU(N), (2.21)

we get the SU(N) chiral Lagrangian

L = −f 2
πtr (∂mU∂

mU †) = f 2
πtr (U

†∂mU)
2, (2.22)

where the decay constant fπ is determined from the function f . Here, we have used that

GAB̄|σ=0 = f 2
πδAB̄, EA

i |σj=0 = eAi (π). (2.23)

with the normalization of generators tr [TATB̄] = δAB̄ and the vielbein eAi (π) for SU(N).

2.3 Supersymmetric mass term

The pion mass term in the chiral Lagrangian breaks the G = SU(N)L × SU(N)R symmetry

explicitly. It is often considered that explicit breaking terms do not break the vector symmetry

SU(N)L+R. Here we consider such mass terms preserving the vector symmetry SU(N)L+R.

The superpotential invariant under SU(N)L+R is

W = g(tr (M), tr (M2), · · · , tr (MN−1)), (2.24)

with an arbitrary function g of N − 1 arguments.

In this paper, we consider only functions of the trace M , for simplicity:

W = w(trM), (2.25)

with an arbitrary function w. The auxiliary fields are solved as

F i = −gī∂W
∗

∂ϕ̄̄
= −iw̄′(trM †)tr (M †TĀ)g

īE∗Ā
̄ (ϕ̄), (2.26)

where the prime denotes differentiation with respect to the argument, and so the potential term

can be written as

V = gīF
iF ∗̄ = |w′(trM)|2 tr (M †TB̄)tr (MTA)G

AB̄. (2.27)
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Here GAB̄ is the inverse of the metric GAB̄ on the tangent space. The supersymmetric vacua

are given by

F = 0 ⇔ w′(trM) tr (MTA) = 0. (2.28)

In the next two subsections we will consider the two simplest possibilities for a chiral symmetry

breaking mass term, conserving the vector symmetry SU(N)L+R.

2.3.1 Linear superpotential

The simplest superpotential

W = w(trM) =
m

N
trM, (2.29)

with mass m ∈ R, admits N symmetric supersymmetric vacua, given by2

M = ωk1N , k = 0, 1, 2, · · · , N − 1, ω ≡ exp(2πi/N), (2.30)

namely the center elements of SL(N,C).

Let us point out a crucial fact about the restriction to the NG subspace: M = M |σi=0 =

U ∈ SU(N). In this subspace, we can write

tr [U ] = tr
[
exp

{
iθATA

}]
∈ R, (2.31)

if and only if θA ∈ R are real parameters. Since for the NG restriction θA are indeed real

parameters, the above expression holds.3 Therefore, in this subspace only the vacua

U = 1N , U = −1N , (2.32)

can be reached for even N and only the vacuum

U = 1N , (2.33)

is possible for odd N . In order to reach the general ωk 6= ±1N vacua, we need to turn on the

quasi-NG directions.

2A phase for the mass will just rotate all the supersymmetric vacua, so we can set the phase to zero without

loss of generality.
3To realize that the expression holds, it is enough to realize that an i can only come from the product of an

odd number of generators which is traceless and therefore does not contribute to the trace. All even powers of

the generators have no i and thus the trace is a real quantity.
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We note that for the N = 2 case, the NG boson part of the Lagrangian with the superpo-

tential (2.29) reduces to the well-known O(4) model:

L = −f 2
π∂mm · ∂mm, (2.34)

with m = (m1, · · · , m4) with the constraint m2 = 1 and the potential [17, 18],

V =
m2

2f 2
π

(m2
1 +m2

2 +m2
3) =

m2

2f 2
π

(1−m2
4), (2.35)

admitting two vacua m4 = ±1.

2.3.2 Quadratic superpotential

We will also consider the next-simplest potential, i.e. a quadratic potential of the form

W = w(trM) =
m

2N2
(trM)2 , (2.36)

such that the vacuum equation now reads

tr (M)tr (MTA) = 0, (2.37)

which has both the old type of vacua

M = ωk1N , ω = exp
2πi

N
, (2.38)

as well as new vacua

trM = 0. (2.39)

These new vacua are sections of SL(N,C) and probably connected spaces, but not connected

to the old type of vacua.

The SU(2) case of N = 2, i.e. the NG subspace of the model, now reduces to the O(4)

model with the following potential

V =
m2

2f 2
π

m2
4(1−m2

4), (2.40)

admitting three vacua: m4 = ±1 and m4 = 0. Notice that the vacua m4 = ±1 are point-like

on the space of vacua, whereas the vacuum m4 = 0 is the manifold S2: m2
1+m

2
2+m

2
3 = 1. The

latter can be interpreted as vacuum moduli.

The m4 = 0 vacuum breaks the global SU(2) symmetry to U(1).
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3 BPS pion domain walls

3.1 BPS equation and Bogomol’nyi bound for domain walls

BPS equations are obtained by the condition that the supersymmetry transformation of fermions

vanish. The transformation law of the fermions in the chiral multiplet is given by

δψi = i
√
2σmξ̄∂mϕ

i +
√
2ξF i, (3.1)

where ξ and ξ̄ are transformation parameters. Assuming that the fields ϕi depend only on

the x1-direction and imposing the half-BPS condition iσ1ξ̄ = ξ, we obtain the following BPS

equation for domain walls:

∂1ϕ
i + F i = 0. (3.2)

From Eq. (2.26), the above equation reads

∂1ϕ
i = iw̄′(trM †) tr (M †TĀ)g

īE∗Ā
̄ . (3.3)

By multiplying by EB
i TB on the both sides, we obtain the invariant form of the BPS equation

iM−1∂1M = iw̄′(trM †)tr (M †TB̄)TAG
AB̄. (3.4)

If we restrict to the NG-boson subspace, M =M |σi=0 = U , we get

iU †∂1U =
i

f 2
π

w̄′(trU †)tr (U †TA)TA. (3.5)

The BPS equation (3.4) can also be obtained from the Bogomol’nyi bound. The Lagrangian

can be written as

L = −GAB̄E
A
i (ϕ)E

∗B̄
̄ (ϕ̄)∂1ϕ

i∂1ϕ̄̄ −GAB̄|w′(trM)|2tr (MTA)tr (M
†TB̄), (3.6)

yielding the energy for domain walls

E =

∫

dx1
(

GAB̄E
A
i (ϕ)E

∗B̄
̄ (ϕ̄)∂1ϕ

i∂1ϕ̄̄ +GAB̄|w′(trM)|2tr (MTA)tr (M
†TB̄)

)

=

∫

dx1 GAB̄

[

EA
i (ϕ)∂1ϕ

i − iGAC̄w̄′(trM †)tr (M †TC̄)
]

×
[

E∗B̄
̄ (ϕ̄)∂1ϕ̄

̄ + iGDB̄w′(trM)tr (MTD)
]

+ T, (3.7)
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where the domain wall topological charge is defined by

T ≡
∫

dx1
(

−iEA
i (ϕ)∂1ϕ

iw′(trM)tr (MTA) + iE∗B̄
̄ (ϕ̄)∂1ϕ̄

̄w̄′(trM †)tr (M †TB̄)
)

=

∫

dx1
(
w′(trM)tr (∂1M) + w̄′(trM †)tr (∂1M

†)
)

= |[2ℜ(W )]x=+∞
x=−∞|. (3.8)

If we now consider the restriction to the NG subspace (i.e. setting σi = 0), then we get the

energy for the NG domain walls

E =

∫

dx1
[
f 2
πtr (iU

†∂1U)
2 + f−2

π |w′(trU)|2tr (UTA)tr (U †TA)
]

=

∫

dx1 tr
[(
fπU

†∂1U − f−1
π w′(trU)tr (UTA)TA

) (
fπ∂1U

†U − f−1
π w̄′(trU †)tr (U †TB)TB

)]

+ T, (3.9)

in turn reproducing the BPS equation for the NG subspace (3.5) and the domain wall topological

charge T is now given by

T =

∫

dx1
(
w′(trU)tr (∂1U) + w̄′(trU †)tr (∂1U

†)
)
=

∣
∣[2ℜ(W )]x=+∞

x=−∞
∣
∣. (3.10)

The energy E is most severely bounded from below by |T |. The bound is saturated when

the quantity in the parentheses in Eq. (3.9) vanishes. This condition is nothing but the BPS

equation (3.5).

3.2 Linear superpotential

In this subsection we consider the simplest superpotential, namely the linear one of Eq. (2.29).

In this case, the BPS equation reads

iM−1∂1M =
im

N
tr (M †TB̄)TAG

AB̄. (3.11)

Restricting to the NG-boson subspace, M =M |σi=0 = U , we get

iU †∂1U =
im

Nf 2
π

tr (U †TA)TA, (3.12)

where we have used the expression of the inverse metric on the tangent space: GAB̄ = f−2
π δAB̄.

With this superpotential, we can calculate the tension of the domain wall using Eq. (3.8),

which for the vacua (2.30) gives

Tk = 2m|ℜ(ωk)− 1| = 4m sin2 πk

N
, k ∈ Z, (3.13)
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where we have assumed that the domain wall starts from the vacuum M = 1N and goes to

the vacuum M = ωk1N . The fundamental domain wall, i.e. interpolating between two nearest

vacua, thus has the tension

T1 = 2m|ℜ(ω)− 1| = 4m sin2 π

N
. (3.14)

A domain wall with the maximum tension is given by

k

N
=

1

2
for even N,

k

N ± 1
=

1

2
for odd N. (3.15)

If we now restrict to the NG subspace, M = M |σi=0 = U , then only real vacua exists

and thus the single domain wall exists only for even N and interpolates between U = 1N and

U = −1N , giving the domain wall tension

T = 4m sin2 π

2
= 4m. (3.16)

A double domain wall for even N or a single domain wall for odd N would wind 2π and thus

have a vanishing tension. Since the superpotential is not double valued, these solutions do not

exist. Alternatively, we can think of two domain walls in the NG subspace for even N as a

domain wall and an anti-domain wall, which thus have zero overall topological charge. They

may exist locally if well separated, but they are likely to decay to the vacuum, i.e. to the trivial

topological sector.

3.2.1 SU(2) solution

We will begin with the simplest possible solution, which is in the NG subspace and for N = 2;

namely the SU(2) case. The linear superpotential (2.29) gives rise to two discrete vacua U =

±12. The general element of SU(2) can be written as

U = exp

(

i
θ

2
n · σ

)

= cos
θ

2
12 + in · σ sin θ

2
, (3.17)

with a unit vector n = (n1, n2, n3), (n
2 = 1) and the Pauli matrices σA. We construct a domain

wall interpolating between U = 12, (θ = 0) at x → +∞ and U = −12, (θ = 2π) at x → −∞.

By using an SU(2) transformation, Eq. (3.17) can be diagonalized without loss of generality to

n = (0, 0, 1), yielding:

U0 = diag (eiθ/2, e−iθ/2). (3.18)
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Then, the BPS equation (3.12) reduces to

∂1θ = −m

f 2
π

sin
θ

2
, (3.19)

which is the BPS equation for the sine-Gordon soliton. A single soliton solution is

θ(x1) = 4 arctan exp

[

− m

2f 2
π

(x1 −X)

]

, (3.20)

with the constant X ∈ R corresponding to the position of the soliton. We thus find that the

most general single soliton solution is Eq. (3.17) with Eq. (3.20). The general solution therefore

has the moduli

S2 ≃ SO(3)

SO(2)
≃ CP 1 ≃ SU(2)

U(1)
, (3.21)

characterized by n. The tension for this domain wall is T = 4m.

3.2.2 SU(2K) solutions

In this section we consider the NG subspace for even N = 2K, with K ∈ Z. We now choose

an Ansatz for the element U for a single domain wall as

U0 = diag

(

exp

(
iθ

2

)

, · · · , exp
(
iθ

2

)

, exp

(

−iθ
2

)

, · · · , exp
(

−iθ
2

))

= exp(iθT0), (3.22)

T0 ≡ diag

(
1

2
, · · · , 1

2
,−1

2
, · · · ,−1

2

)

. (3.23)

The boundary conditions of θ for the domain wall are: θ = 0, (U = 12K) at x → +∞ and

θ = 2π, (U = −12K) at x→ −∞.

The BPS equation (3.12) can now readily be calculated as

i∂1θT0 =
m

2Kf 2
π

tr
[

U †
0TA

]

TA

=
m

2Kf 2
π

2K∑

k=K+1

1

k(k − 1)

[

Ke−
iθ
2 + (k − 1−K)e

iθ
2 − (k − 1)e

iθ
2

]

× diag



1, · · · , 1
︸ ︷︷ ︸

k−1

, 1− k, 0, · · · , 0
︸ ︷︷ ︸

2K−k





= −im
f 2
π

sin
θ

2

2K∑

k=K+1

1

k(k − 1)
diag



1, · · · , 1
︸ ︷︷ ︸

k−1

, 1− k, 0, · · · , 0
︸ ︷︷ ︸

2K−k





= − im

Kf 2
π

T0 sin
θ

2
. (3.24)
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The solutions are thus given by Eq. (3.20) with m→ m/K.

Since there are only two real vacua, this is the general single domain wall in the restricted

NG subspace. The tension is again 4m.

The solution has the moduli

SU(2K)

SU(K)× SU(K)× U(1)
, (3.25)

in addition to the translational modulus.

3.2.3 SU(2) double domain wall case

In this section we consider the NG subspace for the N = 2 case, with a double domain wall,

interpolating from 12 back to 12. We now choose an Ansatz for the element U for a single

domain wall as

U0 = diag (exp (iθ) , exp (−iθ)) = exp(iθT0), (3.26)

T0 ≡ diag (1,−1) . (3.27)

The boundary conditions of θ for the domain wall are: θ = 0, (U = 12) at x→ +∞ and θ = 2π,

(U = 12) at x → −∞.

The BPS equation (3.12) now reads

∂1θ = − m

2f 2
π

sin θ. (3.28)

θ can interpolate from π to 0, which is the normal domain wall solution of Sec. 3.2.1 or from π

to 2π, which is simply the anti-domain wall solution (mod 2π). Due to the fact that the right-

hand side of Eq. (3.28) is negative (positive) semi-definite for θ in the range [0, π] ([π, 2π]), no

BPS pion domain wall solution (i.e. NG boson domain wall) can interpolate between 2π and 0.

This result extends trivially to SU(2K) and since SU(2K + 1) only has the single vacuum

of the double domain wall, also no BPS solutions exist for odd N = 2K + 1.

3.2.4 SL(3,C) case

We now attempt to relax the restriction to the NG subspace, which is a necessity if we are to

consider the domain wall between the general vacua M = 1N and M = ω1N . We will start by
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considering SL(3,C). We first diagonalize an SL(3,C) element M as

M0 = diag

(

exp

(
iθ

3

)

, exp

(
iθ

3

)

, exp

(

−i2θ
3

))

= exp(iθT0), (3.29)

T0 ≡ diag

(
1

3
,
1

3
,−2

3

)

. (3.30)

We consider the boundary conditions of θ for a domain wall: θ = 0, (M = 13) at x→ +∞ and

θ = 2π, (M = ω13) at x→ −∞.

Now the situation is a little more complicated because when we are not restricting to the

NG subspace, we need also to take into account the metric on the tangent space GAB̄. The

BPS equation (3.4) now reads

i∂1θ =
me

i2θ
3

(

1− eiθ̄
)

f 2
π

(
eiθ + 2eiθ̄

) , (3.31)

where we have used the inverse metric on the tangent space

G11̄ = G22̄ = G33̄ =
1

f 2
π

e2ℑ(θ)/3, (3.32)

G44̄ = G55̄ = G66̄ = G77̄ =
1

2f 2
π

e−4ℑ(θ)/3 +
1

2f 2
π

e2ℑ(θ)/3, (3.33)

G45̄ = −G54̄ = G67̄ = −G76̄ = −i 1

2f 2
π

e−4ℑ(θ)/3 + i
1

2f 2
π

e2ℑ(θ)/3, (3.34)

G88̄ =
3ei2θ/3+iθ̄/3

f 2
π(e

iθ + 2eiθ̄)
, (3.35)

and the generators are TA = 1√
2
λA, where λA are the Gell-Mann matrices.

Let us decompose Eq. (3.31) into real and imaginary parts

∂1a = −me
b/3

(
sin a

3
+ eb sin 2a

3

)

f 2
π(1 + 2e2b)

, (3.36)

∂1b = −me
b/3

(
cos a

3
− eb cos 2a

3

)

f 2
π(1 + 2e2b)

, (3.37)

where we have defined the complex function θ = a + ib, in terms of two real-valued functions.

Notice that the only fixed points (vacua) of this system is a = 2πn and b = 0 with n ∈ Z. If we

consider the imaginary function, b, then around the vacuum a = 2π, the asymptotic behavior

of b when large and negative is

b ∼ −3 log
mx

f 2
π

+ const., (3.38)

15



whereas if b is large and positive, it goes as

b ∼ 3

2
log

mx

f 2
π

+ const.. (3.39)

Neither of these behaviors allow for b to return to the vacuum b = 0. This means that the

system exhibits an instability such that when |b| is larger than some critical value, it cannot

return to the vacuum even if a ≃ 2π. This, however, does not prove the absence of solutions

to the equation (3.31). We will leave this task to future studies. We have nevertheless been

seeking for numerical solutions without finding any.

3.2.5 SL(N,C) case

Here we generalize the previous section to SL(N,C). We first diagonalize an SL(N,C) element

M as

M0 = diag

(

exp

(

i
θ

N

)

, · · · , exp
(

i
θ

N

)

, exp

(

−iθN − 1

N

))

= exp(iθT0), (3.40)

T0 ≡ diag

(
1

N
, · · · , 1

N
,−N − 1

N

)

. (3.41)

We consider the boundary conditions of θ for a domain wall: θ = 0, (M = 1N) at x → −∞
and θ = 2π, (M = ω1N) at x→ +∞.

Substituting this form into the BPS equation (3.4), we get

i∂1θ =
me

i(N−1)θ
N

(

1− eiθ̄
)

f 2
π

(
eiθ + (N − 1)eiθ̄

) . (3.42)

Since, as we have seen in the previous section, it is difficult at best to find solutions in the

generic case where the quasi-NG bosons are turned on, we will first attempt a simplification.

We want to take the large N limit of the above equation. Let us define

m̃ ≡ m

Nf 2
π

. (3.43)

In the large N limit, Eq. (3.42) reduces to

i∂1θ = m̃eiθ(e−iθ̄ − 1). (3.44)

The vacua are clearly θ = 2πn, with n ∈ Z. A domain wall solution would thus go from 0 to

2π. Let us again decompose the equation into real functions

∂1a = −m̃e−b sin a, (3.45)

∂1b = m̃e−2b(eb cos a− 1), (3.46)
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where θ = a+ ib. Expanding Eq. (3.46) in small a yields

∂1b = m̃e−2b
[
eb
(
1− 1

2
a2 +O(a4)

)
− 1

]
, (3.47)

which for b = 0 and a small but positive will drive b negative. It is easy to see from the right-

hand side of (3.46) that once b is negative, it will always decrease and hence become more and

more negative. Since all the vacua has b = 0, no solution exists to this equation.

Since we have used a particular – albeit well motivated – Ansatz for the domain wall field

M and we have taken the large N limit, this is not a general proof of non-existence.

Finally, let us consider the finite N case. Decomposing Eq. (3.42) into real functions, we

get

∂1a = −m

f 2
π

e
b
N

(

sin a
N
+ eb sin (N−1)a

N

)

1 + (N − 1)e2b
, (3.48)

∂1b = −m

f 2
π

e
b
N

(

cos a
N
− eb cos (N−1)a

N

)

1 + (N − 1)e2b
, (3.49)

where θ = a+ ib. Expanding Eq. (3.49) in small a yields

∂1b = −m

f 2
π

e
b
N

(

1− a2

2N2
− eb

(

1− (N − 1)2a2

2N2
+O(a4)

)

+O(a4)

)

. (3.50)

Since the SU(2) case is already solved, we will consider only N > 2, in which case the second

cosine dominates and hence for b = 0 and small a again drives b negative. If b attains a negative

value and it has to return to zero for when a goes to 2π, then a positive value of the right-hand

side of Eq. (3.49) is a necessity. The larger negative values b takes on, the harder it is for the

function to be positive; therefore we will consider b = 0 as the most conservative choice for a

negative value of b. If the function cannot attain positive values for b = 0, then even less so for

b < 0. It is thus enough to realize that

− cos
a

N
+ cos

(N − 1)a

N
≤ 0, for N ≥ 4. (3.51)

Hence, no solution exists for N ≥ 4. This is of course consistent with the large N limit

considered above. The only possibility is N = 3 for which we do not have a proof at present.

Numerically, however, we have not been able to find a solution to the BPS equation.

Of course the proof of non-existence is limited to the use of our Ansatz. We leave a general

proof for future work.
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3.3 Quadratic potential

In this section we turn to the case of the quadratic potential (2.36), hence the BPS equation

reads

iM−1∂1M =
im

N2
tr (M †)tr (M †TB̄)TAG

AB̄. (3.52)

Restricting again to the NG-boson subspace, M =M |σi=0 = U , we have

iU †∂1U =
im

N2f 2
π

tr (U †)tr (U †TA)TA. (3.53)

With this superpotential, we can also calculate the domain wall tension using Eq. (3.8),

which for a domain wall between M = 1N and the new vacuum yields

T =
m

N2

∣
∣ℜ

(
(tr1N)

2
)∣
∣ = m, (3.54)

while for a domain wall between the vacuum M = ωk1N and the new vacuum, we have

T =
m

N2

∣
∣ℜ

(
(ωktr 1N)

2
)∣
∣ = m cos

4πk

N
. (3.55)

If we restrict to the NG subspace, M = M |σi=0 = U , only real vacua exist and so the tension

is always given by Eq. (3.54).

3.3.1 SU(2) solution

Let us consider N = 2 as a warm up. The old vacua have ω = eiπ and so are given by

M1 = 12, M2 = −12, (3.56)

whereas the new vacuum is given by

trM = 0, (3.57)

which we can flesh out as

M3 =




a b

c −a



 , (3.58)

whose determinant is

− a2 − bc = 1, (3.59)
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yielding

M3 =




a −1+a2

c

c −a



 . (3.60)

The simplest possibility is a = 0 and c = 1, i.e.,

M3 = −iτ 2. (3.61)

The complication of the N = 2 case is that there is no new diagonal vacuum. We will now

consider an Ansatz that will interpolate between one of the old vacua and the new vacuum,

namely from M1 to M3:

U = 12 cos θ − iτ 2 sin θ. (3.62)

Since both vacua are in the subspace spanned by the NG bosons, it is consistent to restrict

to the NG submanifold, if a solution exists. The boundary conditions are θ = 0 (U = 12) at

x → +∞ and θ = π/2 (U = −iτ 2) at x → −∞. Notice that due to the two vacua not being

proportional to the identity matrix (12), the global SU(2) symmetry is broken to U(1) by the

vacuum. Plugging the above Ansatz into Eq. (3.5) we get

τ 2∂1θ = −τ 2 m
4f 2

π

sin 2θ, (3.63)

which has the solution

θ(x1) = arctan exp

[

− m

2f 2
π

(x1 −X)

]

, (3.64)

where X is again a position modulus.

The U(1) symmetry possessed by the vacuum is unbroken by the domain wall solution.

Consequently, the domain wall has no orientational moduli.

3.3.2 SU(2K) solutions

We can straightforwardly extend the SU(2) solution to SU(2K), by embedding K blocks of

the SU(2) Ansatz (3.62) in U0 as

U0 =







12 cos θ1 − iτ 2 sin θ1
. . .

12 cos θK − iτ 2 sin θK






, (3.65)
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which interpolates between the vacuum U = 12K and

U =













0 −1

1 0
. . .

0 −1

1 0













. (3.66)

It is straightforward to show that the BPS equation is exactly the same as (3.63) in each K

block along the diagonal. The solution is therefore Eq. (3.64),

θi(x
1) = arctan exp

[

− m

2f 2
π

(x1 −Xi)

]

, (3.67)

with i = 1, . . . , K and the moduli space is now given by

SU(K)

U(1)K−1
, (3.68)

for generic position moduli X1 6= X2 6= · · · 6= XK . If however X1 = X2 = · · · = XK then no

orientational (NG) moduli exist for this solution.

4 Low-energy effective theory on the domain wall

In this section, we construct the low-energy effective theory on the SU(2) domain wall for the

linear superpotential (2.29) by using the moduli (or Manton’s) approximation [37]. The most

general solution is obtained by performing the SU(2)L+R transformation in Eq. (3.18) and is

given by

U = V U0V
† = exp(iθV T0V

†), V ∈ SU(2). (4.1)

Now we define the complex 2-vector φ by the following relation

V T0V
† = φφ† − 1

2
12. (4.2)

The vector φ satisfies the constraint φ†φ = 1. Using this vector, the general solution is rewritten

as

U = exp

[

iθ(φφ† − 1

2
12)

]

=
[
12 + (eiθ − 1)φφ†] exp(−iθ/2). (4.3)
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The vector φ parametrizes CP 1 and the moduli of the solution are given by X and φ.

We first promote the moduli X and φ in the solution to fields X(xα) and φ(xα) depending on

the coordinates xα of the domain wall world-volume, substitute it into the original Lagrangian,

and then perform an integration over the codimension.

The differentiation of U with respect to the world-volume coordinates xα can be calculated

as

∂αU =

[

− i

2

(
12 + (eiθ − 1)φφ†) ∂αθ + i∂αθe

iθφφ†

+ (eiθ − 1)(∂αφφ
† + φ∂αφ

†)

]

exp(−iθ/2). (4.4)

By using the relations

∂αe
iθ(x1;X(xα)) = i∂αX

∂θ

∂X
eiθ = −i∂αX∂1θeiθ, (4.5)

2|1− eiθ|2 = 2(2− eiθ − e−iθ) = 8 sin2 θ

2
, (4.6)

we obtain

tr
(
∂αU∂

αU †) =
1

2
(∂1θ)

2(∂αX)2 + 8 sin2 θ

2

[
∂αφ†∂αφ+ (φ†∂αφ)

2
]
. (4.7)

By noting the formulas

∫

dx1 sin2 θ

2
=

2

m
,

∫

dx1 (∂1θ)
2 =

∫

dx1
(
m

f 2
π

sin
θ

2

)2

=
2m

f 4
π

, (4.8)

where we have used the BPS equation (3.19) in the second relation, the integration of Eq. (4.7)

over the codimensional coordinate x yields the final form of the effective Lagrangian on the

wall:

Leff = −m

f 2
π

∂αX∂
αX − 16f 2

π

m

[
∂αφ

†∂αφ+ (φ†∂αφ)(φ
†∂αφ)

]
− m

f 2
π

, (4.9)

where the last term is the tension of the domain wall. The first term describes the translational

zero modes while the second term represents the orientational zero modes, which is described

by the CP 1 model.

5 Summary and discussion

We have studied the BPS domain walls in the N = 1 supersymmetric chiral Lagrangian with

SU(N)L+R invariant pion mass terms. The bosonic components of the model consist of both
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NG and quasi-NG bosons. We have constructed exact solutions of BPS pion domain walls

for the case of a linear and a quadratic superpotential. In all cases we have considered the

simplest Kähler potential; the difference with the most general Kähler potential of the chiral

invariant amounts simply to a change in the Kähler modulus (pion decay constant). All the

domain wall solutions are topologically stable. We have, however, found not all vacua are

connected by domain walls of BPS type. In particular, we have only been able to find BPS

domain wall solutions connecting pion vacua, i.e. vacua with no imaginary part. These domain

wall solutions, in turn, are described only by the NG-boson subspace and not by the quasi-NG

bosons, which are left turned off in the solutions. For a well-motivated Ansatz, we have found

the complex BPS equation not restricted to the NG submanifold. We have, however, proved

that this BPS equation has no solutions for N ≥ 4. The N = 2 case has only real vacua and

the analytic domain wall solution is simply the sine-Gordon solution. We have not been able

to find analytical or numerical solutions to the BPS equation for N = 3, although we do not

at present have a proof of non-existence. The understanding of the absence of domain walls

between all the vacua with an imaginary part still needs some progress. This may in turn teach

us about the dynamics of the quasi-NG bosons in nonperturbative solutions. We leave this

interesting open issue for future studies.

The BPS bound gives a tension which is the absolute value of the real part of the difference

between the superpotential evaluated at two given vacua. The fact that the tension is the real

part of this difference, means that if the vacua are purely imaginary (for instance M = i and

M = −i), then the BPS bound gives a vanishing tension. Since, physically, no domain wall

can interpolate two such vacua with vanishing tension, they are necessarily not saturating the

bound and thus are non-BPS. Whether non-BPS solutions exist or not is beyond the scope of

this paper, although it is an interesting problem which we leave for future work.

Non-Abelian vortices in U(2) gauge theories also carry CP 1 moduli [16] and the U(N) gauge

group was generalized to an arbitrary gauge group [38] such as SO(N) and USp(2N) [39]. Our

model itself could straightforwardly be extended to a chiral Lagrangian of an arbitrary group

G, but one nontrivial question is which coset space G/H is realized on the domain wall. We

have already observed a more complicated structure of the domain walls in our model than

simply the CPN−1 model; further cosets appear already in the SU(N) case.

Our model should admit a domain wall junction as a 1/4 BPS state [10]. In particular,

the simplest superpotential with N vacua is expected to admit a ZN symmetric domain wall
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junction as in Ref. [11]. However, since we already have observed that not all the vacua are

connected in our model, the domain wall junctions may be either absent or modified compared

to the usual case.

The effective theory of a non-Abelian vortex in U(N) gauge theory is the CPN−1 model,

and lump solutions on it correspond to Yang-Mills instantons in the bulk [40]. The total

configuration of lumps inside a vortex is a 1/4 BPS state. In the same way, lump solutions in

our domain wall, which will correspond to Skyrmions in the bulk as the case of a non-Abelian

sine-Gordon soliton [33], may be 1/4 BPS states.

Recently, a supersymmetric Skyrme term has been constructed in Ref. [30] in which it

has been found that the usual kinetic term cancels out. In this case, the introduction of a

superpotential can be done only perturbatively [31]. Construction of such a model and its BPS

domain wall solutions – that may be of compacton type – remain as a future problem.

The chiral Lagrangian can be realized on a non-Abelian domain wall in N = 2 supersym-

metric U(N) gauge theory with two N × N complex scalar fields (hypermultiplets) [41, 42].

If we find a suitable mass deformation preserving (part of) the supersymmetry in the original

bulk action that induces the superpotential W = m
N
tr (M) on the wall, then our solution may

describe a wall inside a wall as a 1/4 BPS state. The non-Abelian domain wall in Refs. [41, 42]

describes a non-Abelian Josephson junction in the presence of a Josephson term in the bulk

that breaks supersymmetry, and a sine-Gordon soliton on the wall that describes a non-Abelian

vortex absorbed into the junction [34]. A supersymmetry-preserving mass deformation, if it

exists, would describe a supersymmetric Josephson junction and would give a BPS non-Abelian

vortex absorbed into the junction, that is, a BPS non-Abelian Josephson vortex.

Finally, in (non-supersymmetric) QCD, topological solitons in chiral symmetry breaking

were studied, see, e. g. Refs. [2, 43]. Our BPS configurations may have implications for these

more realistic cases as well.

Acknowledgments

S. B. G. thanks the Recruitment Program of High-end Foreign Experts for support. The

work of M. N. is supported in part by a Grant-in-Aid for Scientific Research on Innovative

Areas “Topological Materials Science” (KAKENHI Grant No. 15H05855) and “Nuclear Matter

in Neutron Stars Investigated by Experiments and Astronomical Observations” (KAKENHI

Grant No. 15H00841) from the the Ministry of Education, Culture, Sports, Science (MEXT) of

23



Japan. The work of M. N. is also supported in part by the Japan Society for the Promotion of

Science (JSPS) Grant-in-Aid for Scientific Research (KAKENHI Grant No. 25400268) and by

the MEXT-Supported Program for the Strategic Research Foundation at Private Universities

“Topological Science” (Grant No. S1511006). The work of S. S. is supported in part by Kitasato

University Research Grant for Young Researchers.

References

[1] T. Vachaspati, “Kinks and domain walls: An introduction to classical and quantum soli-

tons,” Cambridge University Press (2006).

[2] M. Eto, Y. Hirono, M. Nitta and S. Yasui, “Vortices and Other Topological Solitons in

Dense Quark Matter,” PTEP 2014, no. 1, 012D01 (2014) [arXiv:1308.1535 [hep-ph]];

[3] A. Vilenkin, and E. P. S. Shellard, “Cosmic Strings and Other Topological Defects,” Cam-

bridge Monographs on Mathematical Physics (2000).

[4] M. Cvetic, F. Quevedo and S. J. Rey, “Stringy domain walls and target space modular

invariance,” Phys. Rev. Lett. 67, 1836 (1991); M. Cvetic, S. Griffies and S. J. Rey, “Static

domain walls in N=1 supergravity,” Nucl. Phys. B 381, 301 (1992) [hep-th/9201007].

[5] G. R. Dvali and M. A. Shifman, “Domain walls in strongly coupled theories,” Phys. Lett.

B 396, 64 (1997) [Phys. Lett. B 407, 452 (1997)] [hep-th/9612128]; G. R. Dvali and

M. A. Shifman, “Dynamical compactification as a mechanism of spontaneous supersymme-

try breaking,” Nucl. Phys. B 504, 127 (1997) [hep-th/9611213]; A. Kovner, M. A. Shifman

and A. V. Smilga, “Domain walls in supersymmetric Yang-Mills theories,” Phys. Rev. D

56, 7978 (1997) [hep-th/9706089]; B. Chibisov and M. A. Shifman, “BPS saturated walls

in supersymmetric theories,” Phys. Rev. D 56, 7990 (1997) [Phys. Rev. D 58, 109901

(1998)] [hep-th/9706141]; A. V. Smilga and A. Veselov, “Complex BPS domain walls

and phase transition in mass in supersymmetric QCD,” Phys. Rev. Lett. 79, 4529 (1997)

[hep-th/9706217]; V. S. Kaplunovsky, J. Sonnenschein and S. Yankielowicz, “Domain walls

in supersymmetric Yang-Mills theories,” Nucl. Phys. B 552, 209 (1999) [hep-th/9811195];

B. de Carlos and J. M. Moreno, “Domain walls in supersymmetric QCD: From weak to

strong coupling,” Phys. Rev. Lett. 83, 2120 (1999) [hep-th/9905165]; M. Naganuma and

24

http://arxiv.org/abs/1308.1535
http://arxiv.org/abs/hep-th/9201007
http://arxiv.org/abs/hep-th/9612128
http://arxiv.org/abs/hep-th/9611213
http://arxiv.org/abs/hep-th/9706089
http://arxiv.org/abs/hep-th/9706141
http://arxiv.org/abs/hep-th/9706217
http://arxiv.org/abs/hep-th/9811195
http://arxiv.org/abs/hep-th/9905165


M. Nitta, “BPS domain walls in models with flat directions,” Prog. Theor. Phys. 105, 501

(2001) [hep-th/0007184].

[6] E. Witten and D. I. Olive, “Supersymmetry Algebras That Include Topological Charges,”

Phys. Lett. B 78, 97 (1978).

[7] E. R. C. Abraham and P. K. Townsend, “Q kinks,” Phys. Lett. B 291, 85 (1992);

E. R. C. Abraham and P. K. Townsend, “More on Q kinks: A (1+1)-dimensional analog

of dyons,” Phys. Lett. B 295, 225 (1992); J. P. Gauntlett, D. Tong and P. K. Townsend,

“Multidomain walls in massive supersymmetric sigma models,” Phys. Rev. D 64, 025010

(2001) [hep-th/0012178]; M. Arai, M. Naganuma, M. Nitta and N. Sakai, “Manifest super-

symmetry for BPS walls in N=2 nonlinear sigma models,” Nucl. Phys. B 652, 35 (2003)

[hep-th/0211103]; M. Arai, M. Naganuma, M. Nitta and N. Sakai, “BPS wall in N=2

SUSY nonlinear sigma model with Eguchi-Hanson manifold,” In *Arai, A. (ed.) et al.: A

garden of quanta* 299-325 [hep-th/0302028].

[8] D. Tong, “The Moduli space of BPS domain walls,” Phys. Rev. D 66, 025013 (2002)

[hep-th/0202012]; Y. Isozumi, K. Ohashi and N. Sakai, “Massless localized vector field on

a wall in D = 5 SQED with tensor multiplets,” JHEP 0311, 061 (2003) [hep-th/0310130];

Y. Isozumi, K. Ohashi and N. Sakai, “Exact wall solutions in five-dimensional SUSY QED

at finite coupling,” JHEP 0311, 060 (2003) [hep-th/0310189].

[9] Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, “Construction of non-Abelian walls and their

complete moduli space,” Phys. Rev. Lett. 93, 161601 (2004) [hep-th/0404198]; Y. Isozumi,

M. Nitta, K. Ohashi and N. Sakai, “Non-Abelian walls in supersymmetric gauge theories,”

Phys. Rev. D 70, 125014 (2004) [hep-th/0405194]; Y. Isozumi, M. Nitta, K. Ohashi and

N. Sakai, “All exact solutions of a 1/4 Bogomol’nyi-Prasad-Sommerfield equation,” Phys.

Rev. D 71, 065018 (2005) [hep-th/0405129]; M. Eto, Y. Isozumi, M. Nitta, K. Ohashi,

K. Ohta and N. Sakai, “D-brane construction for non-Abelian walls,” Phys. Rev. D 71,

125006 (2005) [hep-th/0412024]; M. Eto, Y. Isozumi, M. Nitta, K. Ohashi, K. Ohta,

N. Sakai and Y. Tachikawa, “Global structure of moduli space for BPS walls,” Phys.

Rev. D 71, 105009 (2005) [hep-th/0503033]; M. Eto, T. Fujimori, Y. Isozumi, M. Nitta,

K. Ohashi, K. Ohta and N. Sakai, “Non-Abelian vortices on cylinder: Duality between

vortices and walls,” Phys. Rev. D 73, 085008 (2006) [hep-th/0601181]; A. Hanany and

25

http://arxiv.org/abs/hep-th/0007184
http://arxiv.org/abs/hep-th/0012178
http://arxiv.org/abs/hep-th/0211103
http://arxiv.org/abs/hep-th/0302028
http://arxiv.org/abs/hep-th/0202012
http://arxiv.org/abs/hep-th/0310130
http://arxiv.org/abs/hep-th/0310189
http://arxiv.org/abs/hep-th/0404198
http://arxiv.org/abs/hep-th/0405194
http://arxiv.org/abs/hep-th/0405129
http://arxiv.org/abs/hep-th/0412024
http://arxiv.org/abs/hep-th/0503033
http://arxiv.org/abs/hep-th/0601181


D. Tong, “On monopoles and domain walls,” Commun. Math. Phys. 266, 647 (2006)

[hep-th/0507140].

[10] G. W. Gibbons and P. K. Townsend, “A Bogomolny equation for intersecting domain

walls,” Phys. Rev. Lett. 83, 1727 (1999) [hep-th/9905196]; S. M. Carroll, S. Hellerman

and M. Trodden, “Domain wall junctions are 1/4 - BPS states,” Phys. Rev. D 61, 065001

(2000) [hep-th/9905217]; A. Gorsky and M. A. Shifman, “More on the tensorial central

charges in N=1 supersymmetric gauge theories (BPS wall junctions and strings),” Phys.

Rev. D 61, 085001 (2000) [hep-th/9909015].

[11] H. Oda, K. Ito, M. Naganuma and N. Sakai, “An Exact solution of BPS domain wall

junction,” Phys. Lett. B 471, 140 (1999) [hep-th/9910095]; M. Naganuma, M. Nitta and

N. Sakai, “BPS walls and junctions in SUSY nonlinear sigma models,” Phys. Rev. D 65,

045016 (2002) [hep-th/0108179].

[12] M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, “Webs of walls,” Phys. Rev. D 72,

085004 (2005) [hep-th/0506135]; M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai,

“Non-Abelian webs of walls,” Phys. Lett. B 632, 384 (2006) [hep-th/0508241]; M. Eto,

Y. Isozumi, M. Nitta, K. Ohashi, K. Ohta and N. Sakai, “D-brane configurations for

domain walls and their webs,” AIP Conf. Proc. 805, 354 (2006) [hep-th/0509127]; M. Eto,

T. Fujimori, T. Nagashima, M. Nitta, K. Ohashi and N. Sakai, “Effective Action of Domain

Wall Networks,” Phys. Rev. D 75, 045010 (2007) [hep-th/0612003]; M. Eto, T. Fujimori,

T. Nagashima, M. Nitta, K. Ohashi and N. Sakai, “Dynamics of Domain Wall Networks,”

Phys. Rev. D 76, 125025 (2007) [arXiv:0707.3267 [hep-th]].

[13] D. Tong, “TASI lectures on solitons: Instantons, monopoles, vortices and kinks,”

hep-th/0509216.

[14] M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, “Solitons in the Higgs phase:

The Moduli matrix approach,” J. Phys. A 39, R315 (2006) [hep-th/0602170]; M. Eto,

Y. Isozumi, M. Nitta and K. Ohashi, “1/2, 1/4 and 1/8 BPS equations in SUSY Yang-

Mills-Higgs systems: Field theoretical brane configurations,” Nucl. Phys. B 752, 140 (2006)

[hep-th/0506257].

[15] M. Shifman and A. Yung, “Supersymmetric Solitons and How They Help Us Understand

Non-Abelian Gauge Theories,” Rev. Mod. Phys. 79, 1139 (2007) [hep-th/0703267]; M. Shif-

26

http://arxiv.org/abs/hep-th/0507140
http://arxiv.org/abs/hep-th/9905196
http://arxiv.org/abs/hep-th/9905217
http://arxiv.org/abs/hep-th/9909015
http://arxiv.org/abs/hep-th/9910095
http://arxiv.org/abs/hep-th/0108179
http://arxiv.org/abs/hep-th/0506135
http://arxiv.org/abs/hep-th/0508241
http://arxiv.org/abs/hep-th/0509127
http://arxiv.org/abs/hep-th/0612003
http://arxiv.org/abs/0707.3267
http://arxiv.org/abs/hep-th/0509216
http://arxiv.org/abs/hep-th/0602170
http://arxiv.org/abs/hep-th/0506257
http://arxiv.org/abs/hep-th/0703267


man and A. Yung, “Supersymmetric solitons,” Cambridge, UK: Cambridge Univ. Pr.

(2009) 259 p.

[16] A. Hanany and D. Tong, “Vortices, instantons and branes,” JHEP 0307, 037 (2003)

[hep-th/0306150]; R. Auzzi, S. Bolognesi, J. Evslin, K. Konishi and A. Yung, “NonAbelian

superconductors: Vortices and confinement in N=2 SQCD,” Nucl. Phys. B 673, 187 (2003)

[hep-th/0307287]; M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, “Moduli space

of non-Abelian vortices,” Phys. Rev. Lett. 96, 161601 (2006) [hep-th/0511088]; M. Eto,

K. Konishi, G. Marmorini, M. Nitta, K. Ohashi, W. Vinci and N. Yokoi, “Non-Abelian

Vortices of Higher Winding Numbers,” Phys. Rev. D 74, 065021 (2006) [hep-th/0607070];

M. Eto, K. Hashimoto, G. Marmorini, M. Nitta, K. Ohashi and W. Vinci, “Univer-

sal Reconnection of Non-Abelian Cosmic Strings,” Phys. Rev. Lett. 98, 091602 (2007)

[hep-th/0609214].

[17] A. E. Kudryavtsev, B. M. A. G. Piette and W. J. Zakrzewski, “On the interactions of

skyrmions with domain walls,” Phys. Rev. D 61, 025016 (1999) [hep-th/9907197]; A. Losev,

M. A. Shifman and A. I. Vainshtein, “Single state supermultiplet in (1+1)-dimensions,”

New J. Phys. 4, 21 (2002) [hep-th/0011027]; A. Ritz, M. Shifman and A. Vainshtein,

“Enhanced worldvolume supersymmetry and intersecting domain walls in N=1 SQCD,”

Phys. Rev. D 70, 095003 (2004) [hep-th/0405175].

[18] M. Nitta, “Correspondence between Skyrmions in 2+1 and 3+1 Dimensions,” Phys. Rev.

D 87, no. 2, 025013 (2013) [arXiv:1210.2233 [hep-th]]; M. Nitta, “Matryoshka Skyrmions,”

Nucl. Phys. B 872, 62 (2013) [arXiv:1211.4916 [hep-th]]; S. B. Gudnason and M. Nitta,

“Domain wall Skyrmions,” Phys. Rev. D 89, no. 8, 085022 (2014) [arXiv:1403.1245 [hep-

th]]; S. B. Gudnason and M. Nitta, “Baryonic sphere: a spherical domain wall carrying

baryon number,” Phys. Rev. D 89, no. 2, 025012 (2014) [arXiv:1311.4454 [hep-th]].

[19] T. Hatsuda, “Effects Of Finite Density On Chiral Domain Wall In Neutron And Quark

Matter,” Prog. Theor. Phys. 75, 301 (1986) [Prog. Theor. Phys. 75, 996 (1986)]; D. T. Son

and M. A. Stephanov, “Axial anomaly and magnetism of nuclear and quark matter,”

Phys. Rev. D 77, 014021 (2008) [arXiv:0710.1084 [hep-ph]]; M. Eto, K. Hashimoto and

T. Hatsuda, “Ferromagnetic neutron stars: axial anomaly, dense neutron matter, and

pionic wall,” Phys. Rev. D 88, 081701 (2013) [arXiv:1209.4814 [hep-ph]].

27

http://arxiv.org/abs/hep-th/0306150
http://arxiv.org/abs/hep-th/0307287
http://arxiv.org/abs/hep-th/0511088
http://arxiv.org/abs/hep-th/0607070
http://arxiv.org/abs/hep-th/0609214
http://arxiv.org/abs/hep-th/9907197
http://arxiv.org/abs/hep-th/0011027
http://arxiv.org/abs/hep-th/0405175
http://arxiv.org/abs/1210.2233
http://arxiv.org/abs/1211.4916
http://arxiv.org/abs/1403.1245
http://arxiv.org/abs/1311.4454
http://arxiv.org/abs/0710.1084
http://arxiv.org/abs/1209.4814


[20] T. Kugo, I. Ojima and T. Yanagida, “Superpotential Symmetries and Pseudonambu-

goldstone Supermultiplets,” Phys. Lett. B 135, 402 (1984).

[21] W. Lerche, “On Goldstone Fields in Supersymmetric Theories,” Nucl. Phys. B 238, 582

(1984); G. M. Shore, “Supersymmetric Higgs Mechanism With Nondoubled Goldstone

Bosons,” Nucl. Phys. B 248, 123 (1984); W. Buchmuller and W. Lerche, “Geometry and

Anomaly Structure of Supersymmetric σ Models,” Annals Phys. 175, 159 (1987).

[22] W. Buchmuller, S. T. Love, R. D. Peccei and T. Yanagida, “Quasi Goldstone Fermions,”

Phys. Lett. B 115, 233 (1982); W. Buchmuller, R. D. Peccei and T. Yanagida, “Quasi

Nambu-Goldstone Fermions,” Nucl. Phys. B 227, 503 (1983).

[23] B. Zumino, “Supersymmetry and Kahler Manifolds,” Phys. Lett. B 87, 203 (1979).

[24] M. Bando, T. Kuramoto, T. Maskawa and S. Uehara, “Structure of Nonlinear Realization

in Supersymmetric Theories,” Phys. Lett. B 138, 94 (1984); M. Bando, T. Kuramoto,

T. Maskawa and S. Uehara, “Nonlinear Realization in Supersymmetric Theories,” Prog.

Theor. Phys. 72, 313 (1984); M. Bando, T. Kuramoto, T. Maskawa and S. Uehara, “Non-

linear Realization in Supersymmetric Theories. 2.,” Prog. Theor. Phys. 72, 1207 (1984);

M. Bando, T. Kugo and K. Yamawaki, “Nonlinear Realization and Hidden Local Symme-

tries,” Phys. Rept. 164, 217 (1988).

[25] A. C. W. Kotcheff and G. M. Shore, “Kahler σ Models From Supersymmetric Gauge

Theories,” Int. J. Mod. Phys. A 04, 4391 (1989).

[26] G. M. Shore, “Geometry of Supersymmetric σ Models,” Nucl. Phys. B 320, 202 (1989);

G. M. Shore, “Geometry of Supersymmetric σ Models. 2. Fermions, Connections and

Currents,” Nucl. Phys. B 334, 172 (1990).

[27] K. Higashijima, M. Nitta, K. Ohta and N. Ohta, “Low-energy theorems in N=1 supersym-

metric theory,” Prog. Theor. Phys. 98, 1165 (1997) [hep-th/9706219].

[28] M. Nitta, “Moduli space of global symmetry in N=1 supersymmetric theories and the

quasiNambu-Goldstone bosons,” Int. J. Mod. Phys. A 14, 2397 (1999) [hep-th/9805038].

[29] M. Nitta and S. Sasaki, “Higher Derivative Corrections to Manifestly Supersymmetric

Nonlinear Realizations,” Phys. Rev. D 90, no. 10, 105002 (2014) [arXiv:1408.4210 [hep-

th]].

28

http://arxiv.org/abs/hep-th/9706219
http://arxiv.org/abs/hep-th/9805038
http://arxiv.org/abs/1408.4210


[30] S. B. Gudnason, M. Nitta and S. Sasaki, “A supersymmetric Skyrme model,”

arXiv:1512.07557 [hep-th].

[31] C. Adam, J. M. Queiruga, J. Sanchez-Guillen and A. Wereszczynski, “Extended Su-

persymmetry and BPS solutions in baby Skyrme models,” JHEP 1305, 108 (2013)

[arXiv:1304.0774 [hep-th]]; M. Nitta and S. Sasaki, “BPS States in Supersymmetric Chi-

ral Models with Higher Derivative Terms,” Phys. Rev. D 90, no. 10, 105001 (2014)

[arXiv:1406.7647 [hep-th]]; M. Nitta and S. Sasaki, “Classifying BPS States in Super-

symmetric Gauge Theories Coupled to Higher Derivative Chiral Models,” Phys. Rev. D

91, 125025 (2015) [arXiv:1504.08123 [hep-th]].

[32] M. Nitta, “Non-Abelian Sine-Gordon Solitons,” Nucl. Phys. B 895, 288 (2015)

[arXiv:1412.8276 [hep-th]].

[33] M. Eto and M. Nitta, “Non-Abelian Sine-Gordon Solitons: Correspondence between

SU(N) Skyrmions and CPN−1 Lumps,” Phys. Rev. D 91, no. 8, 085044 (2015)

[arXiv:1501.07038 [hep-th]].

[34] M. Nitta, “Josephson junction of non-Abelian superconductors and non-Abelian Josephson

vortices,” Nucl. Phys. B 899, 78 (2015) [arXiv:1502.02525 [hep-th]]; M. Nitta, “Josephson

instantons and Josephson monopoles in a non-Abelian Josephson junction,” Phys. Rev. D

92, no. 4, 045010 (2015) [arXiv:1503.02060 [hep-th]].

[35] M. Nitta, “Josephson vortices and the Atiyah-Manton construction,” Phys. Rev. D 86,

125004 (2012) [arXiv:1207.6958 [hep-th]].

[36] J. Wess and J. Bagger, “Supersymmetry and supergravity,” Princeton, USA: Univ. Pr.

(1992) 259 p

[37] N. S. Manton, “A Remark on the Scattering of BPS Monopoles,” Phys. Lett. B 110, 54

(1982); M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, “Manifestly supersymmetric

effective Lagrangians on BPS solitons,” Phys. Rev. D 73, 125008 (2006) [hep-th/0602289].

[38] M. Eto, T. Fujimori, S. B. Gudnason, K. Konishi, M. Nitta, K. Ohashi and W. Vinci,

“Constructing Non-Abelian Vortices with Arbitrary Gauge Groups,” Phys. Lett. B 669,

98 (2008) [arXiv:0802.1020 [hep-th]].

29

http://arxiv.org/abs/1512.07557
http://arxiv.org/abs/1304.0774
http://arxiv.org/abs/1406.7647
http://arxiv.org/abs/1504.08123
http://arxiv.org/abs/1412.8276
http://arxiv.org/abs/1501.07038
http://arxiv.org/abs/1502.02525
http://arxiv.org/abs/1503.02060
http://arxiv.org/abs/1207.6958
http://arxiv.org/abs/hep-th/0602289
http://arxiv.org/abs/0802.1020


[39] M. Eto, T. Fujimori, S. B. Gudnason, K. Konishi, T. Nagashima, M. Nitta, K. Ohashi

and W. Vinci, “Non-Abelian Vortices in SO(N) and USp(N) Gauge Theories,” JHEP

0906, 004 (2009) [arXiv:0903.4471 [hep-th]]; L. Ferretti, S. B. Gudnason and K. Konishi,

“Non-Abelian vortices and monopoles in SO(N) theories,” Nucl. Phys. B 789, 84 (2008)

[arXiv:0706.3854 [hep-th]]; M. Eto, T. Fujimori, S. B. Gudnason, M. Nitta and K. Ohashi,

“SO and US(p) Kahler and Hyper-Kahler Quotients and Lumps,” Nucl. Phys. B 815,

495 (2009) [arXiv:0809.2014 [hep-th]]; M. Eto, T. Fujimori, S. B. Gudnason, Y. Jiang,

K. Konishi, M. Nitta and K. Ohashi, “Vortices and Monopoles in Mass-deformed SO and

USp Gauge Theories,” JHEP 1112, 017 (2011) [arXiv:1108.6124 [hep-th]].

[40] A. Hanany and D. Tong, “Vortex strings and four-dimensional gauge dynamics,” JHEP

0404, 066 (2004) [hep-th/0403158]; M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai,

“Instantons in the Higgs phase,” Phys. Rev. D 72, 025011 (2005) [hep-th/0412048]; T. Fu-

jimori, M. Nitta, K. Ohta, N. Sakai and M. Yamazaki, “Intersecting Solitons, Amoeba and

Tropical Geometry,” Phys. Rev. D 78, 105004 (2008) [arXiv:0805.1194 [hep-th]].

[41] M. Shifman and A. Yung, “Localization of nonAbelian gauge fields on domain walls at

weak coupling (D-brane prototypes II),” Phys. Rev. D 70, 025013 (2004) [hep-th/0312257];

M. Eto, T. Fujimori, M. Nitta, K. Ohashi and N. Sakai, “Domain walls with non-Abelian

clouds,” Phys. Rev. D 77, 125008 (2008) [arXiv:0802.3135 [hep-th]].

[42] M. Eto, M. Nitta, K. Ohashi and D. Tong, “Skyrmions from instantons inside domain

walls,” Phys. Rev. Lett. 95, 252003 (2005) [hep-th/0508130].

[43] M. Eto, Y. Hirono and M. Nitta, “Domain Walls and Vortices in Chiral Symmetry Break-

ing,” PTEP 2014, no. 3, 033B01 (2014) [arXiv:1309.4559 [hep-ph]].

30

http://arxiv.org/abs/0903.4471
http://arxiv.org/abs/0706.3854
http://arxiv.org/abs/0809.2014
http://arxiv.org/abs/1108.6124
http://arxiv.org/abs/hep-th/0403158
http://arxiv.org/abs/hep-th/0412048
http://arxiv.org/abs/0805.1194
http://arxiv.org/abs/hep-th/0312257
http://arxiv.org/abs/0802.3135
http://arxiv.org/abs/hep-th/0508130
http://arxiv.org/abs/1309.4559

	1 Introduction
	2 Supersymmetric chiral Lagrangian
	2.1 Supersymmetric nonlinear sigma models
	2.2 Supersymmetric chiral Lagrangian
	2.3 Supersymmetric mass term
	2.3.1 Linear superpotential
	2.3.2 Quadratic superpotential


	3 BPS pion domain walls
	3.1 BPS equation and Bogomol'nyi bound for domain walls
	3.2 Linear superpotential
	3.2.1 SU(2) solution
	3.2.2 SU(2K) solutions
	3.2.3 SU(2) double domain wall case
	3.2.4 SL(3,C) case
	3.2.5 SL(N,C) case

	3.3 Quadratic potential
	3.3.1 SU(2) solution
	3.3.2 SU(2K) solutions


	4 Low-energy effective theory on the domain wall
	5 Summary and discussion

