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The Faddeev Model and Scaling in Quantum Chromodynamics
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The Faddeev two body bound state model is discussed as an example of a QCD inspired model
thought by some to exhibit dimensional transmutation. This simple model is solved exactly and the
growth of a specified dimensional energy scale is shown to be an illusion.
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I. INTRODUCTION

Consider a two spatial dimensional non-relativistic at-
tractive potential scattering model[1, 2] described by the
Faddeev Hamiltonian

H = −

(

h̄2

2µ

)

[∆ + ǫδ(r)] (1)

wherein µ is the reduced mass of the two particles, ∆
is the two dimensional Laplacean, ǫ is a dimensionless
coupling strength and δ(r) is a pure s-wave short ranged
potential. In principle, one solves the Schrödinger equa-
tion for scattering states

Hψ(r) = Eψ(r) =

(

h̄2k2

2µ

)

ψ(r) (2)

which behaves as

ψ(r) → eikx +

(

eikr
√

i

r

)

f(E) + · · · as r → ∞. (3)

The differential s-wave target length is thereby
(

dL

dθ

)

= |f(E)|2, (4)

with a total target length given by the two dimenisonal
optical theorem

L =

√

8π

k
ℑmf(E). (5)

Introducing a complex energy in the upper half plane
ℑm z > 0, the dimensionless analytic scattering ampli-
tude τ(z) determines f(E) via

f(E) = −

√

1

8πk
τ(E + i0+),

L = −

(

1

k

)

ℑmτ(E + i0+). (6)

The solution to the Faddeev model is thought to be
described in terms of a bound state two particle energy
of −EB by the so-called[3, 9] renormalized expression

τ(z) =

[

4π

ln(−EB/z)

]

(dimensional transmutation). (7)

What is remarkable about Eq.(7), is that the energy scale
needed to make the logarithm argument dimensionless
cannot be uniquely determined by the Hamiltonian in
Eq.(1) since there is no combination of h̄ and µ that
has the physical dimensions of an energy. Dimensional
transmutation is thought by some[5] to exist in a pure
Yang-Mills quantum field theory of glue. But it is dif-
ficult to construct theories that are reasonable that do
not obey the usual Abelian multiplicative group involved
in changing physical units. To conclude that Eq.(7) has
some validity one must introduce in some form a length
scale which smears out the δ(r) in Eq.(1). Without such
smearing, the rigorous solution to the Faddeev model is
τ(z) = 0, i.e. the two particles neither bind nor scatter.
In Sec.II, the general theory of scattering amplitudes

are reviewed with an eye toward describing how such am-
plitudes vary with energy. The particular case of a sepa-
rable interaction is discussed in Sec.III. For the Faddeev
model, it is shown that there is no binding and no scat-
tering in Sec.IV. The idea of renormalizing the model to
get a bound state energy is also discussed. The actual
value of the dimensionally transmuted energy is not very
well defined., i.e. the renormalized solution is not rigor-
ously valid. This point has also been discussed in [6] who
suggest that any apparent anomalous breaking of scale
invariance in the problem is in fact an explicit symme-
try breaking due to the introduction of a regulator which
breaks it. Our exact solution of the problem confirms
this. In the concluding Sec.V the notion of dimensional
transmutation is further discussed.

II. GENERAL SCATTERING THEORY

With z as the complex energy in the upper half com-
plex plane ℑm z > 0 , the scattering matrix for a Hamil-
tonian decomposition

H = H + V (8)

is given by

G(z) =

[

1

z −H

]

,

T (z) = V + V G(z)T (z). (9)
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If we fix the scattering amplitude at a reference energy
z0, then the scattering potential

V =

[

1

1 + T (z0)G(z0)

]

T (z0) (10)

can be eliminated from the scattering Eq.(9) so that

T (z) = T (z0) + T (z0) {G(z)−G(z0)}T (z). (11)

Eq.(11) shows in a general manner how it is possible to
slide the scattering amplitude from one energy scale z0
to another energy scale z.

III. A SEPARABLE INTERACTION

A separable two body interaction model producing a
possible bound state may be taken to be

V = V |v〉 〈v| . (12)

The scattering amplitude thereby has the form

T (z) = T (z) |v〉 〈v| . (13)

For the separable interaction, Eq.(9) reads

g(z) = 〈v|G(z) |v〉 ,

T (z) =

[

V

1− Vg(z)

]

. (14)

Employing

G(z, z0) = 〈v|G(z)−G(z0) |v〉 = g(z)− g(z0), (15)

the energy scaling of the scattering amplitude is given by
Eq.(11) in the separable interaction form

T (z) =

[

1

1− T (z0)G(z, z0)

]

T (z0). (16)

Finally we may define the spectral weight of the separable
potential via

Q(E) = 〈v| δ(E −H) |v〉 ,

q(t) =

∫

∞

0

Q(E)e−iEt/h̄dE = 〈v| e−iHt/h̄ |v〉 , (17)

so that

g(z) = −

(

i

h̄

)
∫

∞

0

eizt/h̄q(t)dt,

g(z) =

∫

∞

0

[

Q(E)dE

z − E

]

, (18)

and

G(z, z0) =

∫

∞

0

Q(E)

[(

1

z − E

)

−

(

1

z0 − E

)]

dE,

G(z, z0) =

(

i

h̄

)
∫

∞

0

[

eiz0t/h̄ − eizt/h̄
]

q(t)dt, (19)

determines the sliding energy scale.

IV. THE FADDEEV MODEL

In two spatial dimensions, the Faddeev model is de-
scribed as the potential model

H = −

(

h̄2

2µ

)

[∆ + ǫδ(r)] = H + Vδ(r), (20)

wherein ǫ is a dimensionless coupling strength. The short
ranged potential is thereby

V (r) = Vδ(r) = −

(

h̄2

2µ

)

ǫδ(r),

V (r)ψ(r) = Vδ(r)ψ(0) =

∫

〈r| V |r′〉ψ(r′)d2r′,

〈r| V |r′〉 = Vδ(r)δ(r′) = V 〈r|v〉 〈v|r′〉 ,

〈r|v〉 = δ(r) =

∫

〈r|k〉 〈k|v〉

[

d2k

(2π)2

]

,

〈r|k〉 = eik·r ⇒ 〈k|v〉 = 1. (21)

One may now compute the rigorously exact solution for
this Faddeev problem.

A. Sliding Energy Scale

Employing Eqs.(17) and (20) yields the decay ampli-
tude

q(t) =

∫

exp

(

−
ih̄k2t

2µ

)

|〈k|v〉|
2

[

d2k

(2π)2

]

. (22)

From Eqs.(21) and (22)

q(t) =
( µ

2πith̄

)

. (23)

In virtue of Eqs.(19) and (23) one computes

G(z, z0) =

(

µ

2πh̄2

)
∫

∞

0

[

eiz0t/h̄ − eizt/h̄
] dt

t
,

G(z, z0) =

(

µ

2πh̄2

)

ln

[

z

z0

]

. (24)

Let

τ(z) =

(

2µ

h̄2

)

T (z). (25)

Eqs.(16), (24) and (25) now read

τ(z) =

[

τ(z0)

1−
[

τ(z0)/4π
]

ln(z/z0)

]

. (26)

Eq.(26) is central to the solution of this Faddeev model.

1

τ(z)
=

1

τ(z0)
−

[

1

4π

]

ln

(

z

z0

)

. (27)

Having chosen the energy scale z0, the scattering am-
plitude at any energy z may be found from its value at
that chosen scale. There is no guarantee, however, that
that value, at z0 is nonzero. The characteristic logarithm
appears in the denominator of Eq.(26).
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B. Fixed Energy

To evaluate the scattering amplitude at an initial com-
plex energy z0, one must evaluate Eqs.(14), (21), (22) and
(25) to arrive at

τ(z0) = −

[

ǫ

1 + (h̄2/2µ)ǫg(z0)

]

= −

[

ǫ

1 + ǫI(z0)

]

,

I(z0) = −i

(

h̄2

2µ

)
∫

∞

0

q(t)eiz0t/h̄dt.(28)

From Eqs.(23) and (28), one has for the Faddeev model

I(z0) = −

[

1

4π

]
∫

∞

0

eiz0t/h̄
(

dt

t

)

|I(z0)| = ∞ for ℑm z0 > 0 (29)

due to the logarithmic divergence in the time integral as
t → 0. Thus, we have τ(z0) = 0 and then in virtue of
Eq.(26) the following[7]:
Theorem: The Faddeev singular potential does not scat-

ter nor does it bind the particles, i.e.

τ(z) = 0 for ℑm z > 0. (30)

Since the divergence in I(z0) is merely logarithmic, one
might seek to evade this rigorous theorem by means of an
intuitive renormalization viewpoint.

C. Theorem Evasion

In order to evade a rigorous theorem, it is required to
relax standards of mathematics. A formal derivative of
the I(z0) function in Eq.(29) yields

I ′(z0) = −

[

i

4πh̄

]
∫

∞

0

eiz0t/h̄dt =

[

1

4πz0

]

. (31)

The general solution of Eq.(31) can be expressed in terms
of a large energy cut-off Λ as

I(z0,Λ) =

(

1

4π

)

ln

[

−z0
Λ

]

. (32)

Note that |I(z0,Λ)| → ∞ as Λ → ∞ in agreement with
Eq.(29). Now the scattering amplitude with a high en-
ergy cut-off follows from Eqs,(27) and (28). It is

1

τ(z)
= −

(

1

ǫ

)

−

(

1

4π

)

ln

[

−z0
Λ

]

−

(

1

4π

)

ln

[

z

z0

]

. (33)

Now we may consider the so-called renormalization pre-
scription:
(i) Choose a bound state energy z0 = −EB so that the
sum of the first two terms on the right hand side of
Rq.(33) vanish; i.e.

− z0 = Λe−4π/ǫ ≡ EB. (34)

(ii) The scattering amplitude has a singularity at the
bound state energy

τ(z) =

[

4π

ln(−EB/z)

]

. (35)

(iii) The bound state energy appearing in the denomi-
nator logarithm of Eq.(35) has appeared from nowhere
since there is nothing with dimensions of energy in the
Faddeev model. This paradox is known as dimensional

transmutation. However the bound state energy can be
whatever one wishes it to be. The renormalization limit-
ing process,

EB =

[

lim
Λ→∞ and ǫ→0+

] [

Λ exp

(

−
4π

ǫ

)]

, (36)

gives one no idea of the actual value of the bound state
energy EB .
The paradox is resolved when it is realized that for the

rigorous solution of the Faddeev model in Sec.IVB there

is no bound state energy and there is no scattering. A
mathematical theorem is very difficult to evade.
Even in very recent literature this seems to have re-

mained a point of confusion. Padmanabhan in his other-
wise delightful book[8] of 2015, writing in his discussion
of this problem in Chapter 10, describes the problem as
“ill-defined”, but then “taking a clue from what is done in
quantum field theory” goes on to try to find the scatter-
ing cross section for an attractive delta function potential
in 2 dimensions anyway. This is eventually expressed for-
mally in terms of the “bound state energy”. The deter-
mination of this putative bound state energy requires an
additional process outside the mathematics of the prob-
lem where “one performs an experiment to measure some
observable quantity (like the binding energy) of the sys-
tem as well as some of the parameters describing the sys-
tem (like the coupling constant)”. Of course this project
is not going to work if there is no bound state at all, so
his formal solution is in fact unphysical, in accord with
his initial intuition. The theory is as incapable of deliv-
ering a cross section as it is of delivering a bound state
energy – and for the same reason: any quantity with di-
mensions of length or energy must be found by extending
the model to some larger theory which can provide quan-
tities with the needed dimensions. The one given simply
does not suffice. Similar arguments are given throughout
the literature[9–12], though rarely with Padmanabhan’s
clarity in showing how an unphysical result can arise.

V. CONCLUSION

The Faddeev two body bound state model has been
discussed as an example of a QCD inspired model
thought by some to exhibit dimensional transmutation.
This simple model was solved exactly and the growth of
a specified dimensional energy scale is shown to be some-
thing of an illusion.
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The argument concerning quantities with physical di-
mensions again occurs in the pure Yang-Mills quantum
field theory of pure glue. It does not seem possible to
generate physical quantities with physical dimensions if
such dimensions do not occur in the microscopic Hamilto-
nian. The Faddeev model is a particularly simple model
that can be employed to discuss the general problem.
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