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WIMP detection and slow ion dynamics in carbon nanotube arrays
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Large arrays of aligned carbon nanotubes (CNTs), open at one end, could be used as target
material for the directional detection of weakly interacting dark matter particles (WIMPs). As a
result of a WIMP elastic scattering on a CNT, a carbon ion might be injected in the body of the
array and propagate through multiple collisions within the lattice. The ion may eventually emerge
from the surface with open end CNTs, provided that its longitudinal momentum is large enough
to compensate energy losses and its transverse momentum approaches the channeling conditions
in a single CNT. Therefore, the angle formed between the WIMP wind apparent orientation and
the direction of parallel carbon nanotube axes must be properly chosen. We focus on very low
ion recoil kinetic energies, related to low mass WIMPs (≈ 11 GeV) where most of the existing
experiments have low sensitivity. Relying on some exact results on two-dimensional lattices of
circular obstacles, we study the low energy ion motion in the transverse plane with respect to CNT
directions. New constraints are obtained on how to devise the CNT arrays to maximize the target
channeling efficiency.

PACS numbers: 02.50.-r, 61.48.De, 61.85.+p, 95.35.+d

I. INTRODUCTION

Directional detection is one of the research frontiers on
WIMPs and several techniques are being studied and de-
veloped. In a recent paper [1], it has been proposed that
large arrays of aligned carbon nanotubes (CNTs) might
be of use as target material for the directional detection
of Dark Matter (DM) Weakly Interacting Massive Parti-
cles (WIMPs).
As a result of a WIMP scattering on the surface of

a CNT, a carbon ion, with energy up to few tens keV,
might be extracted1 and propagate through multiple col-
lisions within the CNT empty volume, provided that its
initial velocity is sufficiently aligned with the CNT axis:
a sort of ion channeling phenomenon. However, in a large
aligned CNT array, the ion might be equally channeled by
the interstices among different nanotubes, as mentioned
in [1]. The purpose of this paper is to illustrate the dy-
namics in these regions and, by means of Monte Carlo
(MC) simulations, to provide an evaluation of the “chan-
neling efficiency” of a large number of CNT arrays as the
target of a directional DM detector2. Here, by channel-
ing efficiency we mean the capacity of the target to drive
the struck ions towards the top end of the system, with

∗ gianluca.cavoto@roma1.infn.it
† emilio.cirillo@duniroma1.it
‡ antonio.polosa@roma1.infn.it
1 In this paper we assume totally ionized carbon nuclei.
2 CNT arrays, consisting of 1012 − 1014 carbon nanotubes each,
are the building blocks of our target. A large number of them
must be packed, to obtain a target surface of the order of 100
m2.

kinetic energy above a certain threshold.3

At first, we consider particles satisfying channeling
conditions. A continuum repelling potential, from the
collective structure of atoms on the CNT surface, can be
used to describe the channeling kinematics [2, 3]. For
nanotube radii much larger than the typical C electron
orbital size, the potential can be well approximated by
a step barrier. In this approximation, CNTs are consid-
ered as full solid cylinders, totally reflecting those ions
having the right initial conditions, namely a transverse
energy lower than the continuum potential barrier [1, Fig.
4]. The ion motion in the transverse plane is that of a
particle bouncing in a 2D lattice of circular obstacles.
Longitudinal energy and velocity along CNTs’ axes are
conserved. Ions are assumed to move freely between con-
secutive reflections and their trajectories are a combina-
tion of broken lines [4]. Given these initial assumptions,
we can validate our Monte Carlo (MC) simulations on
known results on classical billiards [5, 6].
In a second step, the initial conditions of the extracted

ions are computed from the recoiling ion momentum dis-
tribution [1]. When channeling conditions are not met,
the scattered ion is allowed to penetrate the CNT and it
is then subject to larger energy losses [4, 7–9] and angu-
lar deviation effects [10, 11], due to the interactions with
atoms at the CNT surfaces.
The results obtained here give more strength to the

proposal presented in [1] and give important suggestions
on how to devise the CNT arrays. Although we are still in
the stage of a conceptual design and theoretical consider-

3 For more details, see Sec. VC.
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ations, the outcome of this work is another step towards
the testing of the prototype envisaged in [1].

II. DIRECTIONAL DARK MATTER

DETECTION

With really small expected rates, the challenge of dark
matter detection experiments is to distinguish an unam-
biguous signal from a large background.
Direct detection experiments identify the recoils pro-

duced by incident WIMPs on the detector target nuclei.
The signal is subject to an annual modulation, related to
the variation of the Earth’s relative motion with respect
to the DM Galactic halo. Up to now, only the DAMA ex-
periment [12] claimed the detection of an annual modula-
tion with an undeniable statistical significance. CRESST
[13] and CoGeNT [14] also reported anomalous results,
but their consistency with DAMA ones is a vexed ques-
tion.
Moreover, these results are in conflict with those

from CDMS [15], XENON10 [16], ZEPLIN-II [17] and
ZEPLIN-III [18], which, on the contrary, found no evi-
dence of annual modulation.
Directional detection of dark matter was proposed

in [19], where it was observed that a strong forward-
backward asymmetry is expected in the case of an
isothermal spherical Galactic halo. Because of this, di-
rectional detection, even if in the case of poor angular res-
olution, might also provide information on the apparent
WIMP wind direction. Several experiments, including
DRIFT [20], NEWAGE [21], MIMAC [22] and DMTPC
[23], are focused on this goal. Each of them is based on
specific detection techniques.
DRIFT, NEWAGE, MIMAC and DMTPC are DM di-

rectional detectors using as target materials low pressure
gas mixtures. Nuclear recoils are identified by measuring
the induced ionization with a time projection chamber
(TPC) technique.
DMTPC set a 90% CL upper limit on the spin-

dependent WIMP-proton cross section of 2.0 · 10−33 cm2

for 115 GeV WIMPs [23], while DRIFT’s exclusion curve
for spin-dependent WIMP-proton interactions reaches
1.1 pb at 100 GeV [20].
There are also other types of proposals. One is to use

nuclear emulsions, consisting of AgBr crystals immersed
in an organic gelatin, as both the WIMP target and the
tracking detector by reconstructing the direction of the
recoiled nucleus [24]. Another one is to use DNA or RNA,
so that the path of the recoiling nucleus can be tracked
to nanometer accuracy [25].
In [1], a new type of directional detector was out-

lined. It consists of large arrays of CNTs which pro-
vide the target material for WIMP-nuclei collisions and
an anisotropic sensitivity to the recoil direction, comple-
mented by a readout technique to detect the emitted nu-
clei. Given the relatively low mass of the C nuclei, such
detector would extend the WIMP search to low masses

(≈ 10 GeV) if a suitable ion detection threshold of few
KeV might be attained.

III. CNTS AND THE MACHTA-ZWANZIG

REGIME IN INFINITE HORIZON BILLIARDS

As a first approximation, we consider the CNT system
to be a regular array of L × L cylindrical obstacles and
assume that the particles cannot penetrate them. Elastic
collisions are also assumed.

a
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FIG. 1. Motion of the particle in the obstacle system, pro-
jected onto the 2D plane (left panel). Here, the circles rep-
resent the CNT sections, a is the lattice spacing, ρ the CNT
radius and δ the inter-cylinder width. The ion motion in the
lattice can also be treated as that of a particle within a primi-
tive cell with periodic boundary conditions (right panel). The
portion of trajectory shown in this picture starts at the green
point. Positions connected by periodic boundary conditions
are labeled by the same number.

Let h be the height of the cylindrical obstacles, ρ the
radius of their circular basis (see Fig. 1) and assume the
cylinder axes are parallel to the z direction (the longi-

tudinal direction), in the z > 0 half-space, their bases
being on the z = 0 plane (the transverse plane). We call,
respectively, the z = 0 plane and its parallel plane at
z = h the bottom and the top ends of the system. As-
sume that the bottom bases centers of the L2 cylinders
form a square regular array on the z = 0 plane. Let
a > 2ρ be the distance between the centers of the bases
of two neighboring cylinders and δ = a− 2ρ the minimal
width of the interstices (see Fig. 1, left panel).
Consider a particle entering the lattice through the

bottom plane, thus with longitudinal velocity component
v‖ > 0, and let v⊥ be the modulus of the projection of
the velocity on the transverse plane.
Assuming uniformly distributed positions and trans-

verse velocity directions as initial conditions at the bot-
tom end, we estimate the typical time needed by a par-
ticle to exit the array from the top end.
The 2D motion of the system is equivalent to the mo-

tion of a particle inside an “infinite-horizon” periodic bil-
liard table: a billiard in which there are corridors run-
ning straightforwardly towards the perimeter. The av-
erage time spent by a particle inside the billiard can be
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estimated by using the so called Machta-Zwanzig approx-
imation [5, 6], which holds in the limit δ ≪ a (as for the
finite-horizon case). We assume therefore that the parti-
cle spends in each elementary cell (see Fig. 1, right panel)
a random time exponentially distributed with mean

τR =
π(a2 − πρ2)

4v⊥δ
(1)

and then moves with equal probability 1/4 to any of the
four neighboring cells4. Hence, we can estimate the typi-
cal total time τ spent by a particle in the billiard by con-
sidering a two-dimensional homogeneous random walk on
a square of L×L points in Z

2. The walker starts on the
square from a uniformly distributed random point. We
then evaluate the mean number of hops n performed by
the walker to reach the external boundary of the square.
The typical time needed by the particle to exit the bil-
liard is then given by

τ = nτR = n
π(a2 − πρ2)

4v⊥δ
(2)

We evaluate n numerically by averaging the total number
of hops performed by each particle in an ensemble of 106

particles. By interpolating the results as a function of the
side length L, we find n = L2/7. The quadratic depen-
dence on the side length of the square is quite obvious,
since the random walk is symmetric, while the precise
value of the numerical prefactor is not.
In the following, we briefly discuss the algorithm we

used in MC simulations for an infinite horizon billiard.
The semi-analytical expression in Eq. (2), with n =
L2/7, is then compared to MC numerical results.

A. Simulated ions trajectories

We consider a square primitive cell with side of length
a and periodic boundary conditions (Fig. 1, right panel).
The CNT transverse section is a centered circle in the cell.
Each cell is labeled with the indices (i, j), which define
its position in the L× L lattice. A particle moves in the
lattice and propagates through multiple reflections on ob-
stacles. The starting position of the particle, projected
onto the transverse plane, is determined by (i0, j0), the
initial (x0, y0) coordinates within the cell and the initial
v⊥,0 direction; these quantities are randomly extracted
from uniform distributions. We also assume that the par-
ticle trajectory starts outside the nanotube.
As a first step, we check if the ion trajectory intersects

any obstacle in the cell: 1) If it does, we calculate the re-
flection angle and determine the new ion trajectory; 2) If
it does not, we evaluate the ion position at the boundary
of the cell, according to its direction. Then, we exploit

4 For a derivation of Eq. (1), see App. A.

the periodic boundary conditions to place the particle on
the opposite side of the cell, with proper position and
transverse velocity (Fig. 1, right panel). This procedure
is repeated until a stop condition is fulfilled, that is ei-
ther when the ion exits the lattice or it covers a length
d = h v⊥

v‖
in the transverse plane.

B. Mean exit time

Below, we show the MC results for the mean exit time,
τ , as a function of L from a lattice with ρ = 5.4 nm and
a = 11 nm. When the exit time τ from the transverse
lattice is smaller than that from the top surface of the
CNT array, we are losing a signal count in our ideal DM
detector 5.

We evaluate τ for L = 100, 150, 200, 250 and we inter-

polate the results with τ(L) = τR
L2

p0
, where p0 is a free

fit parameter. The same is done for a ρ = 5.45 nm and
a = 11 nm lattice. The results are shown in Fig. 2.

FIG. 2. Numerical values for the mean exit time from the
transverse lattice (τ ), as functions of L, for ρ = 5.4 nm, a = 11
nm (circles) and ρ = 5.45 nm, a = 11 nm (squares) lattices.
The point interpolation returns p0 = 9.13 (continuos line) and
p0 = 8.36 (dashed line), respectively. The transverse velocity

of the carbon ion is v⊥ =
√

2E⊥/MC , where E⊥ = 300 eV is
its transverse energy and MC its mass.

Finally, in Fig. 3, we show the ratio R of the semi-
analytical and numerical results for the average exit time
from the transverse lattice, extracted for different values
of δ/a. As shown in Fig. 3, the Machta-Zwanzig approx-
imation becomes effective once δ/a → 0.

5 CNT arrays are the target material for WIMP-nuclei collisions
and must be complemented by a readout apparatus to detect
those emitted ions which reach the top end of the system.
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FIG. 3. Ratio R between semi-analytical and numerical re-
sults for the mean exit time from the transverse lattice, for
different values of δ/a.

IV. LATERAL LOSSES

In this Section, we address the question whether a par-
ticle reaches the top end before exiting the lattice through
its sides. We will consider arrays with larger lattice spac-
ings, a = 58 nm, and ρ = 5 nm. These are the experimen-
tal values obtained with a scattering electron microscope
(SEM) image analysis of a sample of aligned CNTs (Fig.
4).

FIG. 4. Image of aligned CNTs on a silicon substrate obtained
with a SEM. The sample has an inclination of 60◦ with respect
to the electron beam.

We then calculate the lateral losses through the sides
in the case of a regular lattice and in the case of a ran-
dom system of CNTs. In this second case, which rea-
sonably provides a more realistic description of a physi-
cal CNT array 6, the spacing between tubes is not con-
stant. Specifically, we assume a Gaussian distribution for

6 In our study the CNT array is modeled in a simple but real-
istic way. Nevertheless, at this stage we neglected some other
potential features of a physical CNT array, such as the presence
of flaws (e.g. unused CNT growth precursors or not perfectly

the displacements of the CNT center positions around
the sites of a regular lattice. The simulated carbon
ion has an initial energy E‖ = p

2
‖/2MC = 1 keV and

E⊥ = p
2
⊥/2MC = 300 eV and it can either exit the

CNT lattice from the top, after covering the CNT length
h ≃ 300µm, or from the lateral walls, i.e. exit from the
transverse lattice, before the top is reached. In the latter
case, a potential signal DM counting is lost.
We call η the fraction of particles leaving from the

external perimeter before reaching the top. We expect
a 1/L behavior, which can be explained as follows. If L
is sufficiently large, we expect that most of the particles,
which exit from the sides, originate within a thin frame
close to the external perimeter. The number of particles
generated with random initial positions and momenta on
the transverse lattice scales with L2, whereas the number
of particles generated close to the perimeter scales with
L. Hence, we expect the η ∼ 1/L scaling.

FIG. 5. Numerical results for η on a transverse lattice with
parameters ρ = 5 nm and a = 58 nm as a function of the
lattice size L. η stands for the fraction of particles leaving
from the external lattice perimeter, before reaching the CNT
top. We provide results for a regular (squares) and a ran-
dom Gaussian lattice (circles), with zero mean µ and σ = 10
nm. The curves, ηreg(L) and ηrand(L), which fit the regular
and random lattice values of η, are shown as continuous and
dashed lines, respectively.

The results of our MC simulations for the regular and
random lattices are shown in Fig. 5 with two curves
superimposed, ηreg(L) =

414
L and ηrand(L) =

314
L , which

fit the data in the regular and random cases, respectively.
It is interesting to observe that random lattices trap more
particles than regular ones because infinite horizons are
closed due to the random displacement of the obstacles.

straight CNTs), which may reduce the CNT array channeling
efficiency.
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In Fig. 6, we show another plot for η as a function of
the nanotube height, h, with L = 2 × 105. It is worth-
while noting that lateral losses, if L is sufficiently large,
do not change dramatically as h grows. Thus, relying
on these results for η as a function of L and h, we can
conclude that, if we consider a CNT array with L of the
order of 105 or larger and a realistic value of the height,
h ∼ 300 µm, the amount of lateral losses can be kept
negligibly small. These are explanatory results, taken in

FIG. 6. Numerical results of η for a lattice with parameters
ρ = 5 nm and a = 58 nm as a function of the CNT height h.
η stands for the fraction of particles leaving from the external
lattice perimeter, before reaching the CNT top. We provide
results for a regular (squares) and a random Gaussian lattice
(circles), with null mean µ and σ = 10 nm.

the limit of small ion longitudinal energy. An estimation
of the lateral losses for ions whose initial conditions are
produced by the scattering of a galactic halo WIMP on
the target nucleus, as computed in [1], are discussed in
Sec. V (see Table I).

V. INTERACTIONS BETWEEN IONS AND

CNT WALLS

In the previous simulations, we discussed the special
case of ions whose transverse energy is below the poten-
tial barrier of the CNTs, so that reflections from nan-
otubes occur in the transverse lattice. In the following,
we will consider the general case of ion initial conditions
being produced by the scattering of a galactic haloWIMP
on the target nucleus, as computed in [1]. In order to
run our Monte Carlo simulations, a specific value for the
WIMP mass, Mχ, must be chosen. Our choice is to con-
sider WIMPs with a mass equal to that of the carbon-12
nucleus, because the largest energy transfer occurs when
projectile and target masses are equal.
In the case the channeling initial conditions are not

met, ions do not get reflected at nanotube’s surfaces and

are also subject to energy losses [4, 7–9] and angular de-
viations [10, 11], due to the interaction with atoms when
crossing nanotubes. Thus, unlike Ref. [1], the ion mo-
tion is not limited to the internal volume of a carbon
nanotube, but ions can propagate within the entire CNT
array with the possibility of traversing CNT surfaces.
Moreover, in addition to chiral CNTs, we also include

a 30% fraction of armchair tubes, which is approximately
the fraction of metallic nanotubes in a generic CNT sam-
ple [27]. The potential barrier of chiral CNTs is axially
symmetric and equal to 390 eV, while the potential of
armchair CNTs can be approximated as a square pulse
shape [1, Fig. 5]. For the sake of simplicity, the latter is
written as

U(r = ρ, φ) =

{

100 eV (n even)
390 eV (n odd)

(3)

Here, φ and r are cylindrical coordinates, with 2πn
304 +φ0 <

φ < 2π(n+1)
304 + φ0, φ0 is a random phase, extracted from

a uniform distribution in the [0, 2π] range, and 304/2 is
the number of “windows” in the tube wall, namely those
portions of the CNT surface for which U(r = ρ, φ) = 100
eV.

A. Energy loss

Nuclear stopping prevails on the electronic one [9] for
very slow ions (with a kinetic energy of a few keV per
nucleon). The latter can thus be neglected, as a first ap-
proximation. Following Ref. [4], with some appropriate
modifications, we will discuss the formalism to calculate
energy losses.
The position dependent nuclear stopping force is given

by

Fn(r) = −Sn(E)na(r) (4)

where r is the radial coordinate in the plane transverse
to the CNT axis and na(r) the nuclear distribution, av-
eraged over a cylindrical surface of radius r coaxial with
the CNT. It can be approximated as

na(r) =
ns√
2πu⊥

e
− (r−ρ)2

2u2
⊥ (5)

where u⊥ = 8.6 ·10−3 nm is the transverse thermal vibra-
tion amplitude at 300 K and ns = 38.0 nm−2 the atomic
density on the CNT surface [1]. Sn(E) depends on the
interatomic potential chosen to model the ion-nucleus
interaction. Our choice is the ZBL (Ziegler, Biersack
and Littmark) universal repulsive potential [7], because
it provides, in the energy range we consider here, results
that are more precise than those of classical atomic mod-
els, like Thomas-Fermi or Bohr [8]. In Ref. [9], the ZBL
potential was interpolated with the formula

Sn(E) =
8.462 · 10−15Z1Z2M1Sn(ǫ)

(M1 +M2)(Z0.23
1 + Z0.23

2 )
eV · cm2 (6)
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FIG. 7. The blue line represesents the trajectory of a particle
crossing a CNT (red line), with radius ρ. b is the impact pa-
rameter. Here, we neglect possible angular deviation effects.

where Sn(ǫ) =
0.5 log(1+1.1383ǫ)

ǫ+0.01321ǫ0.21226+0.19593ǫ0.5 . Here, the in-
dices 1 and 2 refer to the projectile and target nuclei,
respectively, and ǫ is the reduced energy, defined as

ǫ(E) =
M2aE

(M1 +M2)Z1Z2e2
(7)

where a = 0.885 a0(Z
2/3
1 + Z

2/3
2 )−1/2 is the interatomic

screening radius in Lindhard’s theory (a0 is the Bohr
radius), E the ion kinetic energy, Mi and Zie (i = 1, 2)
the masses and charges of the projectile and target nuclei.
We call b the impact parameter with respect to the

center of the nanotube (Fig. 7). When the ion crosses
the CNT wall, it loses an amount of energy

∆E(b;E) =

∫ ∞

0

Fn

(

√

x2 + b2
)

dx (8)

where x =
√
r2 − b2. It is then convenient to average

∆E(b;E) over the impact parameter distribution of an

homogeneous beam, dP
db =

4
√

ρ2−b2

πρ2 . In this way, we

obtain a parametrization for the average energy loss in a
CNT crossing depending on ion kinetic energy only.

B. Angular deviation effects

When the ion crosses a nanotube surface, it is also
subject to angular deviations due to Coulomb scattering
with nuclei. We consider two possible regimes, depending
on the angle of the incident particle with respect to the
CNT surface: 1. single scattering 2. multiple scattering.
A rough way to distinguish between them is discussed in
the following.
We introduce here a limit angle ΘSM . If the incident

angle between the ion direction and the CNT surface is
larger than ΘSM , the ion is subject to single (Ruther-
ford) scattering, otherwise undergoes multiple scattering.
The incident angle is equal to ΘSM when the ion trajec-
tory, as it crosses the nanotube surface, is tangent to the
screened Coulomb fields of two carbon atoms belonging
to the same unit cell. The Coulomb fields are described

FIG. 8. 2D representation of the procedure used to estimate
ΘSM . The blue line is the limit ion trajectory, which distin-
guishes between single and multiple scattering regimes. The
orange circles are the screened Coulomb fields (of radius RC)
of two carbon nuclei in the graphene lattice, belonging to the
same unit cell. ℓ = 0.14 nm is the carbon-carbon bond length
in graphene.

as spheres, with radius RC = a0 Z
−1/3. ΘSM can then

be calculated as (see Fig. 8)

ΘSM = arcsin (2RC/ℓ) (9)

where ℓ = 0.14 nm is the carbon-carbon bond length in
graphene.

1. Single scattering regime

If the particle enters the CNT with an incident angle
larger than ΘSM , we can calculate the ion-nucleus scat-
tering angle using Rutherford theory. In particular, the
scattering angle, θs, is extracted from the distribution ∼
cos θs
sin3

θs
.

The probability of carbon-ion–nucleus scattering can
be estimated as the ratio between the fraction of sur-
face of the graphene lattice unit cell “occupied” by the
screened nuclear Coulomb field and the total area of the
unit cell. With an effective shielding radius of the order
of a0 Z

−1/3, the calculated probability is 10%, approxi-
mately.

2. Multiple scattering regime

When a scattered carbon ion moves grazing a CNT
wall (a graphene layer) with a direction almost parallel
to its axis, multiple scattering might occur.
The most appropriate treatment to estimate angular

deviations of low energy ions undergoing N . 20 scat-
terings, is described in [10, 11]. The starting point is the
differential scattering cross-section by Lindhard, Nielsen
and Scharff (LNS) [28], which describes the dynamics of
a projectile incident upon a target atom on the basis of
classical scattering theory and the Thomas-Fermi model
of atoms. In the treatment in [10, 11] further assump-
tions are considered: a) atoms are described as spheres
with radius r0; b) binary collision events have azimuthal
symmetry; c) there is negligible energy loss in any sin-
gle collision; d) the scattering angles are small. In this
way a simplified expression of the angular distribution of
the projectile after multiple scattering can be obtained
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in terms of reduced variables [10]. These are the reduced
energy, ǫ [see Eq. (7)], the reduced total scattering angle,

θ̃s = ǫ
2

M1+M2

M2
θs, and the reduced thickness, χ = a2N

r20
,

given in dimensionless units. Under these assumptions,
the angular distribution of the projectile after multiple
scattering can be written as

F (θ̃s) =
ǫ2

8π

(

M1+M2

M2

)2 [

f1(χ, θ̃s)− a2

r20
f2(χ, θ̃s)

]

(10)

where f1(χ, θ̃s) and f2(χ, θ̃s) are functions, calculated by
numerical integration and tabulated in Ref. [10].

C. Monte Carlo estimates of the CNT array

channeling efficiency

We consider a random lattice, with parameters a = 58
nm, ρ = 5 nm, µ = 0, σ = 10 nm, size L = 105 and
nanotube height of 300 µm. The open end of the CNT
array is directed along the WIMP wind direction, which
is opposite to the Sun’s direction in the Galactic frame
(leading towards the Cygnus constellation). The particle
trajectory is considered to start outside the nanotube
internal volume at some given distance from the bottom
of the CNT array basis extracted from a uniform random
distribution. We define different event categories. 1)
Top events, when the ions exit from the top end of the
array, with energy above a detection threshold on the ion
kinetic energy of Eth = 1 keV7: these are the ions that
can eventually be detected; 2) Bottom events, when the
ions reach the CNT substrate; 3) Dead events, when the
ions reach energies below Eth (because of energy loss)
while they are still propagating within the array; 4) Side
events, when the ions exit from the lateral sides of the
array. For all of them, the initial kinematic conditions
are taken from distributions expected for WIMP-nuclei
collisions.
We define θ to be the angle between the ion trajectory

and the Sun’s direction.

TABLE I. Results of our simulation. We consider a total num-
ber of 105 ions trajectories and report the fraction of possible
Top, Bottom, Side and Dead events, as explained in the text.

Top Bottom Side Dead

(30.8 ± 0.1)% (1.79± 0.04)% (0.45± 0.02)% (67.0± 0.1)%

1. Number of top events

A MC simulation including all the effects described
above is performed to study the CNT array channeling

7 At this stage, this threshold of the readout apparatus is ideal
and further experimental tests are needed.

FIG. 9. Distribution of the initial total kinetic energy E =
E‖ + E⊥. We also show the distributions of top, dead and
bottom events as a function of the initial conditions.

efficiency. The latter is defined as the ratio between top
events and the total number of scattering events. The re-
sults are shown in Figs. 9–11 and Table I. The estimated
channeling efficiency of the CNT array is 31%.

FIG. 10. Distribution of the initial ion directions. We also
show the distributions of top, dead and bottom events as a
function of the initial conditions.

When the initial ion energy distribution is peaked at
low values of E, as in Fig. 9, most of the particles do
not succeed to exit the array, as their energy sets below
Eth before they can leave the lattice. On the other hand,
the target channeling efficiency heavily depends on the
orientation of the CNT, as expected; in particular, since
the recoil distribution is peaked at initial angles θ ≈ π,
Fig. 10, the number of top events is much larger than
that of bottom events.
This is an important confirmation of the hypothesis of

an anisotropic response of the CNT array to the WIMP
wind described in [1]. Moreover, almost 1/4 of top events
leave the array because of secondary channeling effects,
which can change the initial particle direction and make
it satisfy the channeling conditions in the CNT interior.
In Fig. 11, we show the final ion kinetic energies and
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FIG. 11. Histograms of final ion kinetic energies and final
directions for top and bottom events.

directions as the particles reach the top or the bottom of
the CNT array. The ions might roughly lose on average
4 keV during their path towards the top of the array.
As expected, top events take place when ions have an
initial kinetic energy higher than the mean initial one;
moreover, we observe that their mean final angle is closer
to θ = π than the mean initial one, due to secondary
channeling effects.

2. Target mass

After providing an estimation of the target channeling
efficiency for a given set of lattice parameters, we want
to see how it varies with the lattice spacing at fixed CNT
radius, ρ = 5 nm. This can give important indications to
optimize the cost and size of the target. For example, if
distances between tubes are small, we can arrange more
CNTs on a given surface.
For small values of a, particles undergo many collisions

with CNTs. Therefore, their mean energy loss is larger
and the number of dead events increases with respect
to the large corridor case. However, a relatively strong
decrease of the lattice spacing does not heavily reduce
the number of top events. Specifically, the channeling
efficiencies of a lattice with a = 10 nm and one with
a = 70 nm are 27% and 31%, respectively.

TABLE II. Total CNT mass in a large-scale target, as a func-
tion of the lattice spacing a. Nanotube height is h = 300 µm
and radius is ρ = 5 nm.

a [nm] Target mass [kg]

11 11.8

30 1.6

45 0.7

58 0.4

Given this, we want to find a value for the lattice spac-

ing, which may provide a suitable target mass and a good
channeling efficiency. We assume that the total surface
of the target is 100 m2. The target is made up of 100
panels. Each of them has a surface of 1 m2 and con-
sists of a double “brush”, composed of a large number
of adjacent CNT arrays. Including the active detection
volume of the readout apparatus, each panel might have
a thickness of ≈ 10 mm. The target plus detector vol-
ume is then roughly 1× 1× 1 m3. We assume that CNT
array units are closely packed with each other, so that

the number of CNTs in a panel is ≈ 2 m2

a2 . Considering

a CNT surface density of 1/1315 g·m−2 and a nanotube
height of 300 µm, we compute the total CNT mass of the
target for different values of a. The results are reported
in Table II. In order to have about 1 kg of CNT mass,
we should consider arrays with distances between nan-
otubes less than 30 nm. These values for a correspond
to an array channeling efficiency of 27%.

VI. RESULTS AND CONCLUSIONS

We studied the dynamics of low energy ions in a car-
bon nanotube lattice with Monte Carlo simulations. Our
results were used to provide an evaluation of the channel-
ing efficiency of a target, composed of a large number of
adjacent CNT arrays. The system, consisting of the CNT
lattice target for WIMP particles plus the readout appa-
ratus to detect the ions emitted by the lattice at CNTs’
top end, represents our WIMP directional detector [1].
At the present initial stage of this research, we only

focus on the channeling potential of our target, as a
function of parameters like the lattice spacing and nan-
otubes height/diameter. The target is considered to be
background-free, even though it may contain a certain
amount of radioactive contaminants. A detailed discus-
sion of background sources and an exhaustive description
of the readout apparatus needs an experimental effort
that is underway.
Collisions with WIMPs might struck carbon ions out

of their lattice positions and inject them in the array with
initial kinematical conditions depending on the relative
orientation of the CNT axes with respect to the appar-
ent WIMP wind from the Cygnus. The smaller the angle
between these two directions, the higher the probability
of channeling within the single nanotubes or from the in-
terstices among them. The ions whose trajectories exit
from the surface with open end nanotubes (on the oppo-
site side CNTs terminations are closed by a substrate as
in Fig. 4), might be detected by the readout apparatus
and constitute the directional DM signal.
The array efficiency depends on several technical spec-

ifications, as the length of the CNT array basis in terms
of number of nanotubes and the lattice spacing. Ions
with right initial conditions, which anyway get lost from
the lateral sides of the array, are weakening the signal. It
is thus worthwhile to estimate the lateral ion losses as a
function of the size of the array. We showed that lateral
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ion losses can be kept sufficiently low if we consider CNT
arrays with a number of nanotubes & 105 × 105, within
a large range of nanotube heights. As can be seen from
the results of Table I, calculated with the initial kine-
matic conditions from the ion recoil distribution (see [1]
and Figs. 9, 10), the expected lateral losses are of the
order of 0.5%, approximately.

Therefore, commercially available CNT arrays, with
a lateral side of 106 − 107 nanotubes, are substantially
unaffected by this problem. The channeling efficiency
should also depend on the lattice spacing, a, between
nanotubes – in a weak way as we found. Because of this,
we can consider a small lattice spacing, a < 30 nm, in
order to pack a suitable target mass, of the order of 1 kg,
on a given surface (100 m2, approximately) preserving,
at the same time, the array channeling efficiency.

An important outcome of the present study and Ref.
[1] is that a CNT array may cooperate to effectively pro-
vide the required anisotropic response for the directional
detection of WIMPs. In fact, the number of calculated
top events is much larger than that of bottom events,
which corresponds to the number of top events when the
CNT brush is reversed with respect to the direction of
the WIMP wind (Table I). The double CNT brush de-
picted in Ref. [1] might be able to help to discriminate
the signal from the background. This would necessarily
involve, for example, an assessment of the radiopurity of
the CNTs, which is out of the scope of the present paper.

In [1] the analysis was focused on the calculation of
ion channeling within the fundamental constituent of the
lattice: a single nanotube.

It was shown that it is difficult to match the right chan-
neling conditions inside a single CNT immediately after
a WIMP collision. However the CNT array as a whole
– including interstices among nanotubes – can enlarge
the acceptance of the target cooperating at driving the
trajectories of not perfectly collimated ions towards the
open exit. Indeed, we showed here that those ions which
cannot be channeled in a single nanotube, but have initial
kinematic conditions close to the channeling ones, have
further chances to be channeled by the array, including
the interstitial space between CNTs.

In Ref. [1], the calculated fraction of ions channeled
in the nanotubes, immediately after a WIMP scattering
event, is 0.4%; see [1, Fig. 7]. The remaining large ma-
jority, which is the subject of the present study, consists
of those particles scattered outside the single nanotube
and/or not satisfying the very strict channeling condi-
tions within a single CNT. As shown in Table I, a non-
negligible fraction of these particles may be guided to-
wards the top end of the system by the interstitial spaces
between CNTs. Therefore, by combining the previous
results of Ref. [1] and those of the present paper, we es-
timate that the average fraction of particles reaching the
top end of the system grows from 0.4% [1] up to ≈ 30%.
This represents the channeling efficiency for ions of our
CNT target after a WIMP scattering event.

To quantify the channeling potentiality of our CNT lat-

FIG. 12. Square elementary cell (left panel). The portion of
the cell area the particle can escape from in a time smaller
than ∆t is zoomed in on the right. The particle is a distance
s from the slit and has direction ϕ. It can leave the cell in a
time less than ∆t if s < v∆t cos ϕ.

tice as a whole with respect to the single nanotube case,
we can also introduce an acceptance angle, θa. Specif-
ically, the acceptance angle is calculated in such a way
that the integral over the ion recoil distribution up to θa
is equal to the fraction of channeled top events, namely
those events which reach the top end satisfying channel-
ing conditions. The computed value for the CNT array is
θa = 35◦, while that for the single nanotube, calculated
by using the findings of Ref. [1], is θa = 4◦. Thus, an
increase in the channeling efficiency of the lattice as a
whole, with respect to the single nanotube, can be trans-
lated in terms of a larger target acceptance.
Such an improvement has obvious consequences on the

construction specifications of a Dark Matter detector, es-
pecially in terms of target mass. Testing experimentally
the single carbon nanotube array unit, with electron or
neutron probes for example, will finally tell to which ex-
tent the approximation used in our calculations are real-
istic.
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Appendix A: Residence time in Machta-Zwanzig

regime

Following Ref. [5], we calculate the residence time,
τR, of a particle in an infinite-horizon billiard with an
elementary square cell. See Fig. 12 (left panel).
For δ → 0, the particle motion in the elementary

square cell can be regarded as ergodic. Thus, the prob-
ability that a particle leaves the cell in a time smaller
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than ∆t is given by the ratio between the phase space
available to exit, which we call Ω, and the total phase
space, Ω0. The total volume of the phase space of the
cell is Ω0 = 2πvA, with A = a2−πρ2. The calculation of
the phase space available to exit the cell is more complex
and is discussed in the following.

We refer to Fig. 12. We assume that, due to the
smallness of v∆t, the obstacle curvature can be ignored.
A particle, which is at distance s away from the border,
leaves the cell in a time smaller than ∆t if s < v∆t and
ϕ < arccos

(

s
v∆t

)

. Thus, the portion of velocity space for

the particle to exit the cell has an area 2v arccos
(

s
v∆t

)

.

We can now integrate over the rectangle δ × v∆t of Fig.
12 (right panel) and obtain

Ω = 4δ

∫ v∆t

0

ds 2v arccos
( s

v∆t

)

= 8δv2∆t (A1)

where we also have a factor of four because there are
four possible exit paths. The particle exits the cell when
Ω/Ω0 = 4δv∆t

πA = 1. The average residence time in the
cell is thus

τR = ∆t =
πA

4δv
=

π(a2 − πρ2)

4δv
(A2)
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