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Abstract. Quantum Chromodynamics (QCD) is the strongly interacting part
of the Standard Model. It is supposed to describe all of nuclear physics; and
yet, almost fifty years after the discovery of gluons and quarks, we are only just
beginning to understand how QCD builds the basic bricks for nuclei: neutrons
and protons, and the pions that bind them together. QCD is characterised by
two emergent phenomena: confinement and dynamical chiral symmetry breaking
(DCSB). They have far-reaching consequences, expressed with great force in the
character of the pion; and pion properties, in turn, suggest that confinement
and DCSB are intimately connected. Indeed, since the pion is both a Nambu-
Goldstone boson and a quark-antiquark bound-state, it holds a unique position
in Nature and, consequently, developing an understanding of its properties is
critical to revealing some very basic features of the Standard Model. We describe
experimental progress toward meeting this challenge that has been made using
electromagnetic probes, highlighting both dramatic improvements in the precision
of charged-pion form factor data that have been achieved in the past decade and
new results on the neutral-pion transition form factor, both of which challenge
existing notions of pion structure. We also provide a theoretical context for
these empirical advances, which begins with an explanation of how DCSB works
to guarantee that the pion is unnaturally light; but also, nevertheless, ensures
that the pion is the best object to study in order to reveal the mechanisms
that generate nearly all the mass of hadrons. In canvassing advances in these
areas, our discussion unifies many aspects of pion structure and interactions,
connecting the charged-pion elastic form factor, the neutral-pion transition form
factor and the pion’s leading-twist parton distribution amplitude. It also sketches
novel ways in which experimental and theoretical studies of the charged-kaon
electromagnetic form factor can provide significant contributions. Importantly,
it appears that recent predictions for the large-Q2 behaviour of the charged-
pion form factor can be tested by experiments planned at the upgraded 12GeV
Jefferson Laboratory. Those experiments will extend precise charged-pion form
factor data up to momentum transfers that it now appears may be large enough
to serve in validating factorisation theorems in QCD. If so, they may expose the
transition between the nonperturbative and perturbative domains and thereby
reach a goal that has driven hadro-particle physics for around thirty-five years.

Keywords: Abelian anomaly, confinement, dynamical chiral symmetry breaking,
elastic and transition form factors, π-meson, K-meson, non-perturbative QCD, parton
distribution amplitudes and functions
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1. Importance and nature of the pion within the Standard Model

The pion occupies a special place in nuclear and particle physics. Its existence was
predicted in 1935 [1] and after a twelve year search, it became the first meson seen
experimentally: the charged pion in 1947 [2] and the neutral pion in 1950 [3, 4]. It is
Nature’s longest ranging nuclear messenger, being the archetype for meson-exchange
forces and, hence, even today plays a critical role as an elementary field in nuclear
structure Hamiltonians [5–7]. Yet, after eighty years of study, controversies remain
concerning the pion’s internal structure, how this connects with newly measured cross-
sections and even whether the internal structure of the charged and neutral pion is
the same. The longstanding challenge is to address these and related questions within
quantum chromodynamics (QCD) [8], which should describe the strong interaction
sector in the Standard Model of Particle Physics.

The trouble with the pion and the source of its great fascination is the apparently
dichotomous nature of this peculiar hadron. Since no hadron is elementary, the
pion must be a bound-state; and following introduction of the constituent-quark
model (CQM) in the early 1960s [9, 10], the pion came to be considered as an
ordinary quantum mechanical bound-state of a constituent-quark and constituent-
antiquark. In that approach, however, explaining its properties requires a finely tuned
potential [11]. In order to see why, consider that CQMs describe a nucleon with
mass mN = 940MeV as a combination of three constituent-quarks; and a range of
successful applications suggest that it is reasonable to infer that each constituent has
mass MQ ≈ MN/3 ≈ 310MeV. Furthermore, a description of the ρ-meson under
similar assumptions yields MQ = MQ̄ ≈ mρ/2 ≈ 390MeV, i.e. a consistent outcome.
However, if the pion is added to this mix, one arrives at MQ ≈ mπ/2 ≈ 70MeV, viz.
a completely different scale, so that the pion appears unnaturally light.

During the same period, a competing picture of the pion began to emerge via
the development of current algebra [12–15] and the notion of partial conservation of
the axial current (PCAC) [16–19] in order to describe hadronic weak-decays and pion-
nucleon interactions. As the crucial role of the pion in the application of these ideas
became appreciated, some practitioners began to ask whether it was natural for the
pion to be so light: mπ/mN ≈ 0.15 came to be seen as an empirical fact in demand
of an explanation. In this connection, it then occurred to some of those involved
that there is one special circumstance under which Nature produces unnaturally light
spinless bosons, i.e. when a symmetry is spontaneously or dynamically broken in the
underlying theory [20–22]. Within the context of current algebra and PCAC, the
low-mass pion could then be explained as the (pseudo) Nambu-Goldstone boson that
arises as a consequence of the dynamical breakdown of the symmetry associated with
the isovector axial-current, viz. chiral symmetry. As highlighted by the successes of
chiral perturbation theory [23–29], this has turned out to be a very useful idea; and
dynamical chiral symmetry breaking (DCSB) is now understood to be one of the
most important emergent phenomena in the Standard Model, being responsible for
the generation of more than 98% of visible mass [30, 31].

Crucial amongst this train of discoveries and of particular relevance herein is
the result established in Ref. [32]; namely, in a Universe that realises the pion as a
pseudo-Nambu-Goldstone boson,

m2
π ∝ 〈π|UECSB|π〉 , (1)

where UECSB is any term which explicitly breaks chiral symmetry in the Hamiltonian
that describes strong interactions. No picture of the pion founded upon a quantum
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mechanics of constituent-quarks and -antiquarks can reproduce the Gell-Mann–Oakes–
Renner (GMOR) relation, Eq. (1). With careful tuning, such models can produce a
light pion; but they always yield mπ ∝ 〈π|UECSB|π〉. Notwithstanding that, quantum
mechanics models based on the notion of MQ ≈ MN/3 constituent-quarks also
achieved numerous successes. We thus arrive at one of the most significant questions
within the Standard Model, viz. how does one simultaneously realise the GMOR
relation and form an almost-massless bound state from very massive constituents?
Stated more generally, how does one expose and express all the consequences of DCSB,
both in hadron mass patterns and interactions, within a theory that describes all those
hadrons as bound-states of apparently massive quarks (and antiquarks)?

This problem became even more challenging following the formulation of QCD in
terms of colour-carrying gluons and quarks, because it was then necessary to reconcile
predictions for low-energy processes, such as ππ scattering [33, 34] and the neutral-
pion’s two-photon decay [35, 36], with perturbative QCD (pQCD) analyses that yield
predictions for pion elastic and transition form factors, Fπ(Q

2) andG(Q2) respectively,
at high energies [37–40]. The latter can be expressed succinctly. In the case of the
elastic form factor:

∃Q0 > ΛQCD | Q2Fπ(Q
2)

Q2>Q2
0≈ 16παs(Q

2)f2
πw 2

ϕ(Q
2), (2)

where: fπ = 92.2MeV is the pion’s leptonic decay constant [41]; αs(Q
2) is the strong

running-coupling, which at leading-order is

αs(Q
2) = 4π/[β0 ln(Q2/Λ2

QCD)], (3)

with β0 = 11− (2/3)nf (nf is the number of active quark flavours); and

wϕ(Q
2) =

1

3

∫ 1

0

dx
1

x
ϕπ(x;Q

2) , (4)

where ϕπ(x;Q
2) is the pion’s valence-quark parton distribution amplitude (PDA),

which describes the probability that a valence-quark within the pion is carrying a
light-front fraction x of the bound-state’s total momentum. Here, ΛQCD ∼ 200MeV
is the natural mass-scale of QCD (whose dynamical generation through quantisation
spoils the conformal invariance of the classical massless theory [42–44]); and, notably,
the value of Q0 is not predicted by pQCD.

On the domain Λ2
QCD/Q

2 ≃ 0 [38–40],

ϕπ(x;Q
2)

Λ2
QCD/Q2≃0

≈ ϕcl
π (x) = 6x(1− x) ; (5)

and hence

Q2Fπ(Q
2)

Λ2
QCD/Q2≃0

≈ 16παs(Q
2)f2

π . (6)

The result for the transition form factor is even simpler because it does not involve
the pion PDA at leading order:

∃Q̃0 > ΛQCD | Q2G(Q2)
Q2>Q̃2

0≈ 4π2fπ, (7)

where Q̃0 may be distinct from Q0.
The validity of Eqs. (2), (7) relies on QCD being a local, relativistic, non-Abelian,

quantum gauge-field theory, which possesses the property of asymptotic freedom [45–
47], i.e. the QCD interactions are weaker than Coulombic at short distances. This
behaviour is evident in the one-loop expression for the running coupling in Eq. (3) and
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verified in a host of experiments (see, e.g. Fig. 9.4 in Ref. [41]). Hence, as a necessary
consequence of asymptotic freedom, αs(Q

2) must increase as Q2 approaches Λ2
QCD

from above. In fact, at Q2 ≈ 4GeV2 =: ζ22 , which corresponds to a length-scale on
the order of 10% of the proton’s radius, it is empirically known that αs(ζ

2) > 0.3.
These observations describe a peculiar circumstance, viz. an interaction that becomes
stronger as the participants try to separate. It leads one to explore some curious
possibilities: If the coupling grows so strongly with separation, then perhaps it is un-
bounded; and perhaps it would require an infinite amount of energy in order to extract
a quark or gluon from the interior of a hadron? Such thinking has led to the

Confinement Hypothesis : Colour-charged particles cannot
be isolated and therefore cannot be directly observed. They
clump together in colour-neutral bound-states.

Confinement seems to be an empirical fact; but a mathematical proof is lacking.
Partly as a consequence, the Clay Mathematics Institute offered a “Millennium
Problem” prize of $1-million for a proof that SUc(3) gauge theory is mathematically
well-defined [48], one necessary consequence of which will be an answer to the question
of whether or not the confinement conjecture is correct in pure-gauge QCD. There is
a problem with this, however: no reader of this article can be described within pure-
gauge QCD. The presence of quarks is essential to understanding all known visible
matter, so a proof of confinement that deals only with pure-gauge QCD is chiefly
irrelevant to our Universe. We exist because Nature has supplied two light quarks and
those quarks combine to form the pion, which is unnaturally light and hence very easily
produced. Therefore, no understanding of Standard Model confinement is practically
relevant unless the picture also explains the connection between confinement and
DCSB, and therefore the existence and role of pions, i.e. pseudo-Nambu-Goldstone
modes with mπ < ΛQCD.

Given the importance of the pion within the Standard Model, enormous
experimental effort has been devoted to verifying the entire gamut of rigorous
theoretical predictions that relate to pion properties and interactions. The low-energy
results have been tested extensively and hold up well [49, 50]. It might be argued,
however, that such experiments only check global symmetries and breaking patterns,
which could be characteristic of a broad class of theories. On the other hand, as
emphasised by the quark discovery experiments performed at the Stanford Linear
Accelerator Center (SLAC) [51–53], measurements at high-energy are a direct probe
of QCD itself. In large part, this notion is behind the construction and operation of the
Thomas Jefferson National Accelerator Facility (JLab), in Newport News, Virginia,
USA, the relativistic heavy-ion collider (RHIC) on Long Island, New York, USA,
and also the rationale for numerous measurements of hard exclusive processes in the
BaBar experiment at SLAC and with the Belle detector at the high energy accelerator
research organisation (KEK) in Tsukuba, Japan. We will focus herein on some of the
tensions between experiment and theory found in connection with such measurements;
and describe recent theoretical advances that may relieve them.

2. Form factors: experimental history, current status, and future

Form factors are of primary importance in hadron physics because they provide
Poincaré-invariant information about the nonpointlike nature of QCD’s observable
bound-states, and the distribution of gluons and quarks within them. At low values



The pion: an enigma within the Standard Model 5

of Q2, the pion’s elastic form factor, Fπ, has been determined directly up to photon
energies of Q2 = 0.253GeV2 at Fermilab [54, 55] and at the CERN SPS [56, 57]
from the scattering of high-energy, charged pions by atomic electrons. These data
were used to constrain the charge radius of the pion, which is determined to be
rπ = 0.657 ± 0.012 fm. Owing to kinematic limitation in the energy of the pion
beam and unfavorable momentum transfer, one has to resort to other experimental
methods to reach the higher Q2 regime. At higher values of Q2, Fπ can be determined
from electroproduction of pions on the proton.

In general, electroproduction reactions are of interest as they allow for measuring
photoproduction amplitudes as functions of the photon mass. The weakness of the
electromagnetic interaction allows one to treat these reactions in the one-photon
exchange approximation as virtual photoproduction by space-like photons, Q2 >0,
whose mass, energy, direction, and polarization density are tagged by the scattered
electron [58]. The electroproduction reaction can be described in terms of form factors,
which are generalizations of the form factors observed in elastic electron-hadron
scattering or in terms of cross-sections that are extensions of the photoproduction
cross-sections. In general, the virtual photon is polarised. There are two transverse
polarization states and a third component, which can either be taken as a scalar or
as longitudinal, with its only component along the momentum-direction of the virtual
photon.

For a coincidence experiment in which the scattered electron and the
electroproduced charged pion are detected, the differential cross-section can be
expressed in terms of a known electrodynamic factor and a virtual photoproduction
cross section. The latter can be expressed in terms of linear combinations
of the products of virtual-photoproduction helicity amplitudes, which are the
unpolarised transverse production, the purely scalar (longitudinal) production, and the
interference terms between the transverse and transverse-scalar states. This reduced
cross-section can be written as a sum of four separate cross-sections or structure
functions, which depend on Q2, and also the invariant mass of the virtual photon-
nucleon system,W , and the Mandelstam variable, t:

2π
d2σ

dtdφ
=

dσT

dt
+ ǫ

dσL

dt
(8)

+
√

2ǫ(1 + ǫ)
dσLT

dt
cosφ+ ǫ

dσTT

dt
cos2φ .

Here, ǫ = 1/
(

1 + 2|q|2

Q2 tan2 θe
2

)

is the polarization of the virtual photon, with q

denoting the three-momentum of the transferred virtual photon, θe is the electron
scattering angle, and φ is the angle between the scattering plane defined by the
incoming and scattered electrons and the reaction plane defined by the transferred
virtual photon and the scattered meson. In order to separate the different structure
functions one has to determine the cross-section for at least two sufficiently different
values of ǫ as a function of the angle φ for fixed values of W and t.

The determination of the pion form factor from pion electroproduction requires
that one-meson exchange (the pion pole) dominates the longitudinal cross-section at
small values of t. The pion pole includes a factor −t/(t−m2

π)
2, which is zero at t=0 and

reaches a maximum at t=−m2
π. The first value is unphysical, since forward scattering

occurs at tmin=−4m2
pξ

2/(1− ξ2), where mp is the proton mass and ξ = xB/(2− xB),
with xB =Bjorken-x, while the second can be reached in experiments for ξ ∼ mπ/2mp.
The dominance of the pion pole in the longitudinal cross-section and its characteristic
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t–dependence allows for extractions of the electromagnetic pion form factor from these
data.

Cross-section data suggest a dominant pion pole in the longitudinal π+ cross-
section at values of −t < 0.3 (GeV/c)2 [59]. The strength of the pion pole falls-off
rapidly with increasing values of t. The observation of a dominant pion pole alone is,
however, insufficient to make a precise extraction of Fπ from the data. In order to
minimise background contributions, the longitudinal cross-section, σL, is thus isolated
via a Rosenbluth L/T(/LT/TT) separation. Without an explicit L/T separation it is
not clear what fraction of the cross-section is due to longitudinal photons and what
part owes to the contribution of the pole in these kinematics. Data from survey
experiments, like those from Refs. [60, 61], though interesting in their own right, are
thus not used in precision form factor extractions.

Data for Fπ using the pion electroproduction reaction have been obtained
for values of Q2 up to 10GeV2 at Cornell [62–64]. However, those data suffer
from relatively large statistical and systematic uncertainties. More precise data
were obtained at the Deutsches Elektronen-Synchrotron (DESY) [65, 66]. With
the availability of high-intensity electron beams, combined with accurate magnetic
spectrometers at JLab, it has been possible to determine L/T-separated cross-sections
with high precision. The measurement of these cross-sections in the regime of
Q2 = 0.60 − 1.60GeV2 (Experiment Fpi-1 [67, 68]) and Q2 = 1.60 − 2.45GeV2

(Experiment Fpi-2 [69] and pionCT [70]) are described in detail in Ref. [71]. Pion
electroproduction experiments are performed at the smallest possible value of t, which
is still a distance away from the pion pole, and thus the pion form factor has to be
obtained either by kinematic extrapolation or by using a theoretical model. In the
latter case, consistency between data and model is essential.

Frazer [72] originally proposed that the pion form factor could be extracted from
σL via a kinematic extrapolation to the pion pole, and that this could be done in an
analytical manner using the “Chew-Low extrapolation” [73]. The last serious attempt
to extract Fπ from electroproduction data using this method is described in Ref. [74].
The extrapolation failed to produce a reliable result, because different polynomial fits
that were equally likely in the physical region gave divergent values of the form factor
when extrapolated to the pion pole.

Brown et al., at the Cambridge electron accelerator, were the first to use a
theoretical model to extract Fπ from electroproduction data. In Ref. [75] the model of
Berends [76] was used. This model includes the dominant isovector Born term, with
corrections for t values away from the pole by means of fixed-t dispersion relations,
and gave a fair description of the data. However, the LT term of the cross-section
and the t-dependence of the data were systematically underpredicted. The DESY
experiments [65, 66] produced high-quality L/T-separated electroproduction cross-
sections and used the generalised Born Term Model (BTM) of Gutbrod and Kramer
[77], which gave a better overall description of the data, in order to extract Fπ .

More recent experiments like those discussed in Refs. [69–71, 78, 79] have used
a Regge model for pion electroproduction developed by Vanderhaeghen, Guidal and
Laget (VGL) [79–81] for the extraction of Fπ. In this model the pole-like propagators
of Born term models are replaced with Regge propagators, i.e. the interaction is
effectively described by the exchange of a family of particles with the same quantum
numbers instead of a single particle. The model parameters are fixed from pion
photoproduction data. The free parameters are Λπ and Λρ, the trajectory cutoffs.
A fit to the model longitudinal cross-section then gives Fπ at each value of Q2. If
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Figure 1. Upper panel – Checking t- and model-dependence in the pion form
factor extraction at a central value of Q2 = 2.45GeV2 and center-of-mass energy
W = 2.22GeV: the solid squares denote the Fπ values for the case in which
the model was fit to each point separately and the band shows the Fπ value
obtained from a fit to all points. The error bars and the error band include
statistical and uncorrelated uncertainties. (Data from Ref. [78].) Lower panel

– Checking dominance of the t-channel process in σL through the charged-pion
longitudinal cross-section ratios at Q2 = 2.45GeV2 and W = 2.22GeV . The
cross-section ratios are close to unity and much larger than the ratios typically
found for the transverse cross-section, which are close to 1/4. This significant
difference suggests pion pole dominance in the longitudinal cross sections (and
parton model dominance in the transverse). The error bars include statistical
and uncorrelated uncertainties, and the (green) band denotes the uncertainty of
a constant fit to all data points. (Data from Ref. [82]).

the same vertices and coupling constants are used, the Regge model and the BTM
calculations agree at the pole of the exchanged particle; but away from the pole, where
data are acquired, the Regge model provides a superior description of the available
data.

To give confidence in the electroproduction method yielding the physical form
factor, one can carry out several experimental studies. These include checking the
consistency of the model with the data, extracting the form factor at several values
of tmin for fixed Q2, verifying that the pole diagram is the dominant contribution
to the reaction mechanism, and verifying that the electroproduction technique gives
results consistent with those from π − e elastic scattering at the same Q2. In
Ref. [78], to check if the VGL Regge model properly accounts for the pion production
mechanism, spectator nucleon, and other off-shell (t-dependent) effects, Fπ was
extracted at different distances in t from the pion pole. The resulting Fπ values
agreed to within 4% and did not depend on the t acceptance, which lends confidence
in the applicability of the VGL model to the kinematic regime of the data and the
validity of the extracted Fπ values. The dominance of the t-channel process in σL
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was verified in Ref. [82] through the charged-pion longitudinal cross-section ratios,
RL = σL[n(e, e

′π−)p]/σL[p(e, e
′π+)n], obtained with a deuterium target. The t-

channel diagram is purely isovector and so any isoscalar background contributions,
like b1(1235) to the t channel, will dilute the ratio. With increasing t, the transverse
cross-section ratio is expected to approach the ratio of quark charges, i.e. 1/4.
The data show that RL approaches the pion charge ratio, consistent with pion-
pole dominance. The t-dependence of the transverse cross section ratio, RT =
σT [n(e, e

′π−)p]/σT [p(e, e
′π+)n], shows a rapid fall-off consistent with s-channel quark

knockout. Illustrations of t-channel dominance, and t- and model-dependence in the
Fπ extraction for t ∈ [0.15, 0.37]GeV2 are shown in Fig. 1. Direct comparison of Fπ

values extracted from very low t electroproduction with the exact values measured in
elastic π − e scattering showed that the data are consistent within the uncertainties,
lending further confidence to the validity of the extracted Fπ values.

The world precision Fπ data are summarised in Fig. 2. They seem to follow
a monopole form (curve-B, lower panel), which is the maximum allowed value of the
form factor as set by the long-distance-scale pion charge-radius. As explained in Sec. 1,
there is a perspective from which one might view the pion bound-state as a quantum
mechanical two-body problem and hence there have been numerous computations of
Fπ(Q

2) over many years. We provide a contemporary update in Sec. 6.1. Data on Fπ

are also available at timelike momenta, e.g. Refs. [87, 88], out to t ≈ 18GeV2. Here,
the form factor is measured via annihilation e+e− → h+h−, where h+h− is π+π−.
In the analysis of such data, contributions to the π+π− sample from the leptonic
background and the φ(2S) resonance must be taken into account.

Just as in the case of elastic scattering, electroproduction and timelike data enable
extraction of the pion charge radius, e.g. Refs. [89, 90] (spacelike) and Refs. [91, 92]
(timelike). In the latter, extension to the spacelike domain is accomplished through
the use of dispersion relations and models to obtain separate real and imaginary
parts. In Ref. [90], the use of models is avoided and the impact of new experiments
is evaluated. Naturally, in a non-relativistic model the hadron charge distribution is
the Fourier transform of the form factor and the proton’s distribution was extracted
in this manner in Ref. [93]. However, in particular for the low-mass pion, this non-
relativistic Fourier transform interpretation may be questioned [94]. An alternative
interpretation has been developed in terms of the transverse charge distribution, and
both the proton and pion transverse charge densities have been extracted using this
method [90, 95]. The first attempt at an analysis with spacelike data suggests that
the transverse charge density of the pion is greater than that of the proton close to
the core and that the two densities coalesce for impact parameters larger than 0.3 fm.
The former is expected because the pion radius is smaller than that of the proton,
whereas the latter may be interpreted as the proton consisting of a non-chiral core
occupying most of the volume and a meson cloud at large impact parameters.

The pion transition form factor provides the simplest structure for experimental
perturbative QCD analysis. In the experiment one measures the e+e− → e+e−π0

reaction, where γ∗γ → π0 is purely a quantum electrodynamics process. The detected
lepton scatters at large angles yielding a virtual photon with large Q2. The other
lepton, which is not detected, scatters at small angles yielding a nearly real photon.
Data from BaBar [96] on the pion transition form factor showed a continuous rise
above the asymptotic limit on Q2 & 10GeV2, which does not conform with the
standard QCD approach based on collinear factorization. This deepened the mystery
surrounding the way that QCD makes the changeover from the perturbative to the
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Figure 2. Upper panel. Solid curve – Charged pion form factor computed
in Ref. [83] (rπ = 0.66 fm cf. experiment [41] rπ = 0.672 ± 0.008 fm); long-
dashed curve – calculation in Ref. [84]; and dotted curve – monopole form
“1/(1 + Q2/m2

ρ),” where mρ = 0.775GeV is the ρ-meson mass. In both panels,
the filled-star is the point from Ref. [70], and the filled-circles and -squares are
the data described in Ref. [78]. Lower panel. Q2Fπ(Q2). Solid curve (A) –
prediction in Ref. [83]. Remaining curves, from top to bottom: dotted curve (B)
– monopole form fitted to data in Ref. [56], with mass-scale 0.74GeV; dot-dot–
dashed curve (C) – pQCD prediction obtained from Eq. (2) using the modern,
dilated pion PDA in Eq. (40); and dot-dot–dashed curve (D) – pQCD prediction
computed with the conformal-limit PDA in Eq. (5), which had previously been
used to guide expectations for the asymptotic behaviour of Q2Fπ(Q2). The filled
diamonds and triangle indicate the projected reach and accuracy of forthcoming
experiments [85, 86].

nonperturbative regime. More recent measurements from Belle are consistent with
QCD scaling and do not show a large Q2 enhancement above Q2 ∼ 10GeV2. These
data are in agreement with previous data from CELLO/CLEO [97, 98] and are fully
consistent with the η, η′ transition form factors [99]. The results from Belle also agree
with those from BaBar in the region Q2 < 9GeV2 [100]. A statistical analysis of both
data sets showed that one cannot predict the trends observed at Belle and BaBar
from the other [101]. Additional data on transition form factors and other exclusive
processes are required to reconcile the opposing tendencies observed in the data. We
canvass these and related theoretical issues in Sec. 7.
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The next simplest meson available for experimental studies is the kaon, which
also contains strangeness. Similar to pions, the kaon form factor has been determined
directly up to photon energies of Q2 = 0.10GeV2 at Fermilab [102] and at the CERN
SPS [103] from the scattering of high-energy, charged kaons by atomic electrons. These
data were used to constrain the mean-square charge radius of the kaon, which is
determined to be r2K = 0.34± 0.05 fm2. The kaon charge radius is typically predicted
to be smaller than that of the pion owing to the presence of the heavier strange quark
[84, 104–107]. The available FK data are summarised in Fig. 3.

At higher energies the kaon form factor can, in principle, be extracted from
kaon electroproduction data. However, there are experimental challenges that have
to be addressed. In particular, the kaon pole is farther from the physical region
than the pion, something which may raise doubts about the ability to obtain reliable
information on FK from kaon electroproduction data. In the face of such doubts,
we note two things. First, extraction of the pion form factor from similar pion
electroproduction data at small t is completed by carefully studying the model
dependence of the analysis, not by direct extrapolation; and this justifies greater
confidence in this method. Second, initial comparative extractions of the pion form
factor from low-t and larger-t data suggest only a modest model dependence; and the
larger-t pion data lie at a similar distance from the pole as most of the projected kaon
data discussed herein. It is thus reasonable to imagine that FK may be extracted from
kaon electroproduction data in a similar fashion, albeit with a larger model dependence
than Fπ.

Notwithstanding these observations, detailed demonstration of the dominance of
the kaon pole is required if one is to be confident in the extraction of FK . Current
electroproduction data show that the t-dependence of the longitudinal kaon cross
section is less steep than that of the pion [59, 108]. These data include L/T-
separated cross sections up to photon energies of Q2 = 2.35GeV2 from Refs. [109, 110].
Additional kaon electroproduction data from Jefferson Lab are being analysed. The
results from Refs. [59, 108] are consistent with the kaon pole factor, −t/(t − m2

K)2,
giving less enhancement than that of the pion. However, calculations predict a small
maximum in the kaon cross section near t=0.1 GeV2, owing to the kaon pole [111, 112].
This value of t is smaller than what has hitherto been possible to reach with current
experimental data owing to the lack of suitable experimental facilities. Access to small
values of t and L/T separations of the kaon cross-section will be possible at the JLab12
facility [113].

Current experiments have established the techniques for meson electroproduction
experiments and the determination of the meson form factors from these data. The
12GeV upgrade at Jefferson Lab (JLab12) features new instrumentation that allows
for pushing precision meson form factor measurements to the highest momentum
transfers to date. Planned experiments aim for precision measurements of the pion
form factor to Q2 = 6GeV2 and also have the potential to determine the pion
form factor up to Q2 ∼ 9GeV2 [85, 86]. These measurements are made possible
by the combination of the two moderate acceptance, magnetic spectrometers in
Hall C. The “High Momentum Spectrometer” (HMS) provides angular acceptance
of 6 msr and can detect particles with momenta up to 7GeV/c. The new “Super-
High Momentum Spectrometer” (SHMS) features a solid angle of about 4 msr,
a momentum coverage up to 11GeV/c, and covers scattering angles between 5.5
and 40 degrees. The small scattering angle capability, combined with excellent
control of systematic uncertainties, kinematic reproducibility and well-understood
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Figure 3. Upper panel. Available data on FK(Q2), the kaon elastic
electromagnetic form factor [102, 103]. Solid (blue) curve – Charged kaon form
factor computed in Ref. [84]. Lower panel. Q2FK(Q2). Solid (blue) curve
– prediction in Ref. [84], which does not extend beyond Q2 = 4GeV2 owing
to weaknesses in the numerical method. The remaining curves depict results
obtained from the hard-scattering formula in Eq. (41) when different kaon PDAs
are used: long-dashed (black) curve – DSE prediction, Eq. (43); dot-dashed (green)
curve – Eq. (45), inferred from lQCD values of the lowest two moments, with the
green band indicating the uncertainty in the prediction for Q2FK(Q2) owing to
the errors on these moments; dashed (black) curve – Eq. (46), obtained from the
long-dashed curve by supposing that the second moment of the PDA is just 10%
larger; and dotted (blue) curve – Eq. (5), the conformal-limit PDA. The filled
diamonds indicate the projected reach and accuracy of data on Q2FK(Q2) that
are anticipated from a forthcoming experiment [113]: two error estimates are
pictured, based on different assumptions about the t- and model-dependence of
the form factor extractions, with the larger uncertainty being conservative.

acceptance, enables precision measurements of cross-sections and L/T separations at
high luminosity (> 1038/cm2s). Such data will provide access to the pion form factor
on a domain of momenta that is nearly four-times larger than that explored hitherto.
QCD backgrounds in these data at high values of Q2 and t, such as those described in
Ref. [114], can be isolated experimentally through measurements of the charged-pion
ratio, as discussed above, or of the neutral-pion cross section. For example, since
the charged-pion t-channel diagram is purely isovector, contamination by isoscalar
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backgrounds would be visible in a distortion of the ratio RL. Complementing this,
one can capitalise on the fact that the neutral pion production reaction does not
have a large pion pole contribution. Therefore, measurements of the longitudinal
cross-section for exclusive neutral-pion production, like those in Ref. [115], should be
sensitive to non-pole contributions in the charged-pion cross section.

The small-angle capability of the magnetic spectrometers and availability of
electron beam energies of 11GeV will also allow for measurements of the L/T-
separated kaon cross-section at the highest values of Q2 to date [113]. The challenge in
extracting the kaon form factor from cross-section data is that one has to demonstrate
that the kaon pole dominates. This can be done in a similar way as for the pion.
In addition, the dominance of the kaon pole can, in principle, be tested through
the ratio of the longitudinal cross-sections of Σ0 to Λ channels. The SHMS and
HMS missing mass resolution is expected to be very good and together with the
spectrometer coincidence acceptance will allow for simultaneous measurements of the
Λ and Σ0 channels. If the kaon pole dominates, the ratio should be similar to the
following ratio of coupling constants: g2pKΛ/g

2
pKΣ.

The relative contribution of longitudinal and transverse terms to the meson
production cross-section and their t and Q2 dependence are also of interest in
evaluating the potential for probing a nucleon’s transverse spatial structure through
such processes. In general, only when experimental evidence for the onset of leading-
twist behaviour is established can one be confident in using the light-front handbag
formalism discussed in Refs. [116–118]. One of the most stringent experimental tests
is the Q2 dependence of the longitudinal meson cross-section. In the regime where the
leading-twist formalism is applicable σL is predicted to scale as 1/Q6, the transverse
cross-section is expected to scale as σT ∼ 1/Q8 and consequently, σL >> σT [119].

The leading-twist, lowest-order calculation of the π+ longitudinal cross-section
underestimates current data by an order-of-magnitude [59]. This implies that the data
are not in the regime where a leading-twist analysis applies. However, measurements of
the fully-separated meson cross-sections and their (Q2, t)-dependence are fundamental
and important in their own right. Fully separated cross-sections are essential
for understanding dynamical effects in both variables and in the interpretation
of non-perturbative contributions at experimentally accessible kinematics. Such
measurements of L/T-separated cross-sections will be enabled by JLab12, extending
the current kinematic reach of π+ data and including additional systems [113, 115,
120]. These data will play an important role in developing our understanding of
meson pole dominance and meson form factor extractions, and may also provide
experimental evidence that supports interpretation of the data using the light-front
handbag formalism.

Recent pion cross-section data [69, 70, 121–124] suggest that transversely po-
larised photons play an important role in charged and neutral pion electroproduc-
tion. L/T-separated π+ data show a large σT even at values of Q2 = 2.5GeV2 and
t < 0.3 (GeV/c)2. In the HERMES experiment at DESY, a large sin(φ − φS) mod-
ulation was observed in the Fourier amplitude or transverse target spin asymmetry,
AUT (sin(φ − φs)), which does not seem to vanish in the forward direction [121]. The
observed behaviour of the AUT data demands a strong contribution from transverse
photons. The transverse-transverse interference term in π0 production is large in abso-
lute value, suggesting that transverse photons play an important role in this kinematic
regime.

In order to interpret the data including a large contribution from transverse
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photons, the light-front handbag approach has been extended [111, 112] to transition
amplitudes represented by convolutions of transversity generalised parton distributions
(GPDs) and subprocess amplitudes calculated with a twist-3 pion wave function. With
such a parametrization in terms of transversity GPDs, both the trends and magnitudes
of the π+ data and the interference terms of the π0 data from JLab and HERMES are
described well. Transversity GPDs in pion electroproduction have also been discussed
in [125–127].

To confirm the estimates of the contribution of transverse photons and the
potential to access GPDs in meson production requires a full separation of the cross-
section. The trends discussed above depend on both Q2 and t, and thus it is important
to cover as large a kinematic range as possible, including the regime t < 0.3 (GeV/c)2.
The first L/T-separated π0 cross sections were measured Hall A at JLab-6GeV and
are under analysis [128]. These data cover a range in Q2 between 1.5 and 2 GeV2 and
x of 0.36. A larger kinematic coverage for both charged and neutral pion (and kaon)
production can be achieved with approved experiments at JLab12 [113, 115, 120]. If
experimental evidence for the dominance of σT can be demonstrated to hold, one may
interpret these data using the light-front handbag formalism.

The new experiments described herein are part of an extensive and diverse range
of hadron structure experiments planned at JLab12 [129, 130]. In the context of
this discussion, we would also like to note that experimental data on pion and kaon
parton distribution functions is sparse. It has only been obtained in mesonic Drell-
Yan scattering from nucleons in heavy nuclei, with information on the pion’s PDFs
reported in Refs. [131–133] and results for the ratio of kaon and pion distribution
functions presented in Ref. [134]. Newer data is not available; but would be welcome,
owing to persistent doubts about the large Bjorken-x behaviour of the pion’s valence-
quark PDF [135] and because a single modest-quality measurement of the kaon-to-
pion ratio cannot be considered definitive. An approved experiment [136, 137], using
tagged deep inelastic scattering at JLab12 should contribute to a resolution of the pion
question; and a similar technique might also serve for the kaon. Furthermore, new
mesonic Drell-Yan measurements at modern facilities could yield valuable information
on π and K PDFs [138, 139], as could two-jet experiments at the large hadron collider
[140]; and, looking further ahead, an electron ion collider (EIC) would be capable
of providing access to pion and kaon structure functions through measurements of
forward nucleon structure functions [141, 142]. A contemporary theoretical discussion
of the importance of such measurements is presented in Ref. [143].

3. Nambu-Goldstone Mode

Let us return now to Eq. (1) and address the issue of how this is realised in the Standard
Model. The basic relation here is the axial-vector Ward-Green-Takahashi identity
(AVWGTI) [144–147], which expresses the nature of chiral symmetry in QCD and
describes the pattern by which it is broken. Of course, this statement is meaningless
unless one first understands chiral symmetry. Textbooks provide useful background
at this point, but let us augment that with the following statement: any theory with
fermions, which possesses a well-defined chiral limit, can be separated into two distinct
theories, one with only left-handed fermions and the other with only right-handed
fermions; and no interaction in the original Lagrangian can induce communication
between these fermions of different chirality.

QCD is asymptotically free; its ultraviolet behaviour is therefore well-defined;
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Figure 4. Momentum flow in a colour-singlet vertex
which connects a quark of flavour f and momentum k+
with an antiquark of flavour ḡ and momentum −k

−
, to

form a system with total momentum P = k+ − k
−
.

The relative momentum, k, is implicitly defined via:
k+ = k + ηP , k

−
= k − (1− η)P , with η ∈ [0, 1]; and in

a Poincaré covariant approach no observable can depend
on η, i.e. the definition of the relative momentum.

and, consequently, one may rigorously define a chiral limit in which the action possesses
no current-quark mass terms. This shows that the right-hand-side (rhs) of Eq. (1)
should involve an expectation-value, evaluated between pion states, of that part of the
QCD action which involves the current-quark masses. It also invites one to consider
the action of massless QCD, which, classically, defines a conformally invariant theory.
Such a theory cannot possess a mass-scale; and hence it cannot describe our Universe,
whose visible properties are greatly influenced by the existence of a proton whose mass
mp ≈ 1GeV. A solution of QCD must therefore provide a means by which we can
probe and understand the origin of hadron masses, both ground- and excited-states.
Given empirical evidence that u- and d-quark current-masses are just a few percent
of mp, it is plain that explicit chiral symmetry breaking can only be a very small part
of the story.

It is now sensible to write the explicit form of the AVWGTI:

PµΓ
fg
5µ(k;P )

= S−1
f (k+)iγ5 + iγ5S

−1
g (k−)− i [mζ

f +mζ
g] Γ

fg
5 (k;P ) , (9)

where: Γfg
5µ(k;P ) is an inhomogeneous axial-vector vertex, of the type illustrated

in Fig. 4; Γfg
5 (k;P ) is an analogous pseudoscalar vertex; Sf,g are dressed-quark

propagators; and mζ
f,g are the current-quark masses associated with the two quark

flavours, defined at a renormalisation scale ζ. Actually, each individual term in
Eq. (9) depends on ζ; and yet this identity yields physical results, which cannot. (N.B.
Ref. [148] discusses the important differences encountered in describing and treating
the AVWGTI appropriate to flavourless pseudoscalar mesons.)

The simplest element of Eq. (9) is the dressed-quark propagator, which can be
expressed in a number of equivalent ways:

Sf (p) = − iγ · p σf
V (p

2, ζ2) + σf
S(p

2, ζ2) , (10a)

= 1/[iγ · pAf (p
2, ζ2) +Bf (p

2, ζ2)] , (10b)

= Zf (p
2, ζ2)/[iγ · p+Mf(p

2)] . (10c)

Importantly, amongst the equivalent functions introduced here, only the mass
function, Mf (p

2) = Bf (p
2, ζ2)/Af (p

2, ζ2), is independent of the renormalisation
point. The propagator can be obtained from QCD’s gap equation, which is a
Dyson-Schwinger equation (DSE) [149, 150] that describes how quark propagation
is influenced by interactions, viz. for a quark of flavour f ,

S−1
f (p) = Z2 (iγ · p+mbm

f ) + Σ(p) , (11a)

Σ(p) = Z1

∫ Λ

dq

g2Dµν(p− q)
λa

2
γµSf(q)

λa

2
Γf
ν (q, p), (11b)

where: Dµν is the gluon propagator; Γf
ν , the quark-gluon vertex;

∫ Λ

dq
, a symbol

that represents a Poincaré invariant regularization of the four-dimensional Euclidean
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Figure 5. Dressed-quark self energy in
Eq. (11). The kernel is composed from
the dressed-gluon propagator (looped-line
with dark circle) and the dressed-quark-
gluon vertex (light-circle), and the equation
is nonlinear owing to the appearance of
the dressed-quark propagator (line with dark
circle). This image encodes every imaginable,
valid contribution. (Momentum flows from
right-to-left.)

integral, with Λ the regularization mass-scale; mbm
f (Λ), the Lagrangian current-

quark bare mass; and Z1,2(ζ
2,Λ2), respectively, the vertex and quark wave-function

renormalisation constants. Although we have suppressed the renormalisation scale, ζ,
in Eqs. (11), definition of the gap equation is not complete until a renormalisation
condition is specified. A mass-independent scheme is a useful choice and can
be implemented by fixing all renormalisation constants in the chiral limit. (See,
e.g. Ref. [151] and references therein; or Ref. [44] for a detailed discussion of
renormalisation.)

It is worth noting that the renormalised current-quark mass,

mζ
f = Z−1

m (ζ,Λ)mbm(Λ) = Z−1
4 Z2m

bm
f , (12)

wherein Z4 is the renormalisation constant associated with the mass term in QCD’s
Lagrangian, is simply the dressed-quark mass function evaluated at one particular
deep-spacelike point, viz.

mζ
f = Mf(ζ

2) . (13)

The renormalisation-group-invariant (RGI) current-quark mass may be inferred via

m̂f = lim
ζ2→∞

[

1

2
ln

ζ2

Λ2
QCD

]γm

Mf (ζ
2) , (14)

where γm = 4/β0; and the chiral limit is rigorously defined by m̂f = 0. Moreover,

∀ζ ≫ ΛQCD,
mζ

f

mζ
g

=
m̂f

m̂g
. (15)

The remaining elements in Eq. (9) are the amputated axial-vector and

pseudoscalar vertices, Γfg
5µ,5(k;P ), respectively. They may both be obtained from an

inhomogeneous Bethe-Salpeter equation (BSE) [152], which is exemplified here using
a textbook expression:

[Γ5µ(k;P )]tu

= Z2[γ5γµ]tu +

∫ Λ

dq

[S(q+)Γ5µ(q;P )S(q−)]srK
rs
tu(q, k;P ), (16)

in which K is the fully-amputated quark-antiquark scattering kernel, and the indices
r, s, t, u denote the colour-, Dirac- and flavour-matrix structure of the elements in
the equation. N.B. By definition, K does not contain quark-antiquark to single
gauge-boson annihilation diagrams, nor diagrams that become disconnected by cutting
one quark and one antiquark line: it is two-particle-irreducible. In quantum field
theory, any meson bound-state, constituted from valence f and ḡ quarks and with
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discrete quantum numbers matching that of the vertex, must appear as a pole in this
vertex. The residue of that pole is proportional to the meson’s bound-state Bethe-
Salpeter amplitude: there are rare, special circumstances under which the constant of
proportionality vanishes [153–160].

The power of Eq. (9) now begins to become apparent. Evidently, no simple
connection exists between the kernels of Eqs. (11) and (16), yet there is an identity
which ties their solutions together. This has numerous, far-reaching consequences;
one of which it is important to detail here [161, 162]. To proceed, we specialise to the
case of light u- and d-quarks, capitalise on the fact that PµΓ

ud
5µ(k;P ) and Γud

5 (k;P )

are both JPC = 0−+ vertices so they must possess the same bound-state poles, and
therefore write

Γud
5µ(k;P )

P 2+m2
π
≃0

= γ5 [γµ FA(k;P ) + kµγ · kGA(k;P )]

−σµνkν HA(k;P )] + Γ̃ud
5µ(k;P )

+
2fπPµ

P 2 +m2
π

Γπ(k;P ) , (17)

Γud
5 (k;P )

P 2+m2
π
≃0

= iγ5 [E5(k;P ) + γ · P F5(k;P ) + γ · kk · P G5(k;P )

+σµνkµPνH5(k;P )] +
2ρπPµ

P 2 +m2
π

Γπ(k;P ) , (18)

where E5, FA,5, GA,5, HA,5 are regular in the neighbourhood P 2 + m2
π ≃ 0,

P̃µΓ
ud
5µ,5 ∼ O(P 2 + m2

π), and the putative bound-state’s Bethe-Salpeter amplitude
is [163]:

Γπ(k;P ) = iγ5 [Eπ(k;P )

+γ · P Fπ(k;P ) + γ · kk · P Gπ(k;P ) + σµνkµPν Hπ(k;P )] . (19)

For use hereafter, we note that it is often useful to characterise the scalar functions in
Eq. (19) by their Chebyshev moments:

T (m)(k2;P 2) =
2

π

∫ 1

−1

dx
√

1− x2 Um(x)T (k;P ) , (20)

where x = k ·P/
√
k2P 2 and {Um(x),m = 0, 1, . . .} is the set of Chebyshev polynomials

of the second kind.
Consider now the chiral limit: m̂u = 0 = m̂d, so that final term in Eq. (9) vanishes,

and suppose that m2
π = 0 in this limit, then the AVWGTI entails [161, 162] the

following array of Goldberger-Treiman relations, involving the chiral-limit solutions
for the functions in Eq. (10b):

f0
πE

0
π(y, w = 0;P 2 = 0) = B0(y) , (21a)

F 0
A(y, w = 0;P 2 = 0) + 2f0

πF
0
π (y, w = 0;P 2 = 0) = A0(y) , (21b)

G0
A(y, w = 0;P 2 = 0) + 2f0

πG
0
π(y, w = 0;P 2 = 0) = 2A′

0(y) , (21c)

H0
A(y, w = 0;P 2 = 0) + 2f0

πH
0
π(y, w = 0;P 2 = 0) = 0 , (21d)

where y = k2, w = k · P . In perturbation theory, B(k2) ≡ 0 in the chiral limit.
The appearance of a B(k2)-nonzero solution of (11) in the chiral limit signals DCSB:
one has dynamically generated a running quark mass in the absence of a seed-mass.
Eqs. (21) show that when chiral symmetry is dynamically broken: 1) the homogeneous,
isovector, pseudoscalar BSE has a massless, P 2 = 0, solution; 2) the Bethe-Salpeter
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amplitude for the massless bound-state has a term proportional to γ5 alone, with
Eπ(k; 0) completely determined by the scalar part of the quark self-energy, in addition
to other pseudoscalar Dirac structures, Fπ, Gπ and Hπ, which are nonzero in general
and play a crucial role in the large-Q2 behaviour of pseudoscalar meson elastic form
factors [106, 164, 165]; and 3) the axial-vector vertex is dominated by the associated
pole on P 2 ≃ 0. Notably, this last statement is an expression of PCAC. Moreover, the
converse is also true; namely, 1)-3) entail DCSB.

It is thus seen that

in the chiral limit, DCSB is a sufficient and necessary condition for
the appearance of a massless pseudoscalar bound-state that
dominates the axial-vector vertex on P 2 ≃ 0 and whose constituents
are described by a momentum-dependent mass-function, which may
be arbitrarily large.

Proceeding to the case m̂u 6= 0 6= m̂d, Eqs. (9), (17), (18) ensure that in the
neighbourhood of any 0−+ pole located at P 2 +m2

π = 0:

fπm
2
π = (mζ

u +mζ
d)ρ

ζ
π , (22)

along with generalised versions of Eqs. (21) [162]. It will immediately be apparent that
with Eq. (22) one has recovered Eq. (1). Thus DCSB, expressed via the appearance of
an arbitrarily large dressed-quark mass-function, is necessary and sufficient to ensure
the peculiar behaviour of pseudo-Nambu-Goldstone-boson masses.

There are now a few obvious questions to ask: (1) what does it take to generate
a nonzero running mass-function in the chiral limit; and (2) what are the quantities
fπ, ρ

ζ
π? The first of these is equivalent to asking how does the self-energy depicted

in Fig. 5 generate mass from nothing, something which is impossible in the classical
theory. The answer lies in the fact that Fig. 5 is a deceptively simply picture. It
actually corresponds to a countable infinity of diagrams, all of which can potentially
contribute, and may also express nonperturbative contributions that might not have a
diagrammatic representation at all. To provide a context, quantum electrodynamics,
an Abelian gauge theory, has 12 672 diagrams at order α5 in the computation of
the electron’s anomalous magnetic moment [166]. Owing to its foundation in the non-
Abelian group SU(3), the analogous perturbative computation of a quark’s anomalous
chromomagnetic moment has many more diagrams at this order in the strong coupling.
The number of diagrams represented by the self energy in Fig. 5 grows equally rapidly,
i.e. combinatorially with the number of propagators and vertices used at a given
order. Indeed, proceeding systematically, a computer will very quickly generate the
first diagram in which the number of loops is so great that it is simply impossible to
calculate in perturbation theory: impossible in the sense that we don’t yet have the
mathematical capacity to solve the problem.

Each of the diagrams which contributes to M(p2) in a weak-coupling expansion of
Fig. 5 is multiplied by the current-quark mass, m̂. Plainly, any finite sum of diagrams
must therefore vanish as m̂ → 0. However, with infinitely many diagrams the situation
might be very different: one has “0×∞,” a product whose limiting value is contingent
upon the cumulative magnitude of each term in the sum. Consider therefore the
behaviour of M(p2) at large p2. QCD is asymptotically free [45–47]. Hence, on
this domain, each of the regularised loop diagrams must individually evaluate to a
small number whose value depends on just how large is the coupling. It will not be
surprising, therefore, to learn that for a monotonically-decreasing running-coupling,
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Figure 6. Dressed-quark mass function, M(p) in Eq. (10): solid curves – DSE
results, explained in Refs. [167, 168], “data” – numerical simulations of lattice-
regularised QCD (lQCD) [169]. (NB. m = 70MeV is the uppermost curve
and current-quark mass decreases from top to bottom.) The current-quark of
perturbative QCD evolves into a constituent-quark as its momentum becomes
smaller. The constituent-quark mass arises from a cloud of low-momentum
gluons attaching themselves to the current-quark. This is DCSB: an essentially
nonperturbative effect that generates a quark mass from nothing ; namely, it
occurs even in the chiral limit.

αS(k
2), there is a critical value of αS(0) above which the magnitude of the sum of

infinitely many diagrams is sufficient to balance the linear decrease of m̂ → 0, so that
the answer is nonzero and finite in this limit, viz.

∃αc
S(0) | ∀αS(0) > αc

S(0),M0(p
2) := lim

m̂→0
M(p2; m̂) 6= 0 . (23)

The internal consistency of QCD appears to guarantee that the limit is always finite.
In fact, QCD generates a mass-function of the type depicted in Fig. 6.

The scale of the mass-function in Fig. 6 is striking: even the nontrivial chiral
limit solution, which cannot exist perturbatively, reaches a value of roughly 300MeV
at infrared momenta, i.e. one dressed-quark possesses one-third of the proton’s mass.
It follows that the relationship in Eq. (15) is broken by nonperturbative dynamics, so
that

mζ=p2

f

mζ=p2

g

=
Mf (p

2)

Mg(p2)
(24)

is not independent of p2: in the infrared, i.e. ∀p2 . 2GeV2 =: Λ2
χ, it expresses a ratio

of constituent-like quark masses, which, for light quarks, are two orders-of-magnitude
larger than their current-masses and nonlinearly related to them [170, 171]. Plainly,
DCSB is the primary source of the proton’s mass and hence of the vast bulk of visible
matter in the Universe.

The appearance of a dynamically-generated nonzero mass-function in the solution
of QCD’s chiral-limit one-quark problem has additional fascinating consequences, e.g.
Eqs. (21) in general, and Eq. (21a) in particular, acquire an extraordinary character.
These equations mean that the pseudoscalar two-body problem is solved, well-nigh
completely and without additional effort, once the solution to the one-body dressed-
quark problem is known; and, furthermore, that the quark-level Goldberger-Treiman
relation in Eq. (21a) is the most basic expression of Goldstone’s theorem in QCD, viz.
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Goldstone’s theorem is fundamentally an expression of equivalence
between the one-body problem and the two-body problem in QCD’s
colour-singlet pseudoscalar channel.

Consequently, pion properties are an almost direct measure of the mass function
depicted in Fig. 6; and the reason a pion is massless in the chiral limit is simultaneously
the explanation for a proton mass of around 1GeV. Thus, enigmatically, properties
of the nearly-massless pion are the cleanest expression of the mechanism that is
responsible for almost all the visible mass in the Universe.

We are left to answer the second question posed after Eq. (22); namely, what are
the two nonperturbatively generated constants in the GMOR relation or what are
the residues of the pion pole in the axial-vector and pseudsocalar vertices? A little
additional analysis of the quark-antiquark scattering matrix reveals [161]:

ifπPµ = 〈0|d̄γ5γµu|π〉 (25a)

= Z2 trCD

∫ Λ

dq

iγ5γµSu(q+)Γπ(q;P )Sd(q−) , (25b)

iρζπ = − 〈0|d̄iγ5u|π〉 (26a)

= Z4 trCD

∫ Λ

dq

γ5Su(q+)Γπ(q;P )Sd(q−) , (26b)

where the trace is over colour and spinor indices. The expressions in Eqs. (25) might
be recognised as those defining the pion’s leptonic decay constant, which, owing to the
factor Z2, is a pseudovector projection of the pion’s Bethe-Salpeter wave function onto
the origin in configuration space that is both gauge-invariant and independent of the
renormalisation scale, ζ. Equations (26) express an analogous “decay constant”, viz. a
pseudoscalar projection of the pion’s wave function. Owing to the presence of Z4, this
quantity is also gauge invariant and evolves with renormalisation scale in precisely the
manner required to ensure the rhs of Eq. (22) is ζ-independent.

Notwithstanding these features, Eq. (22) is not a form of the GMOR relation this
is commonly seen in textbooks. The connection may be understood by introducing

κζ
π := fπρ

ζ
π =: [χζ

π]
3 , (27)

for then Eq. (22) can be written

f2
πm

2
π = [mζ

u +mζ
d]κ

ζ
π =: [m̂u + m̂d] κ̂π, (28)

in which form κζ
π is seen to play the role of what is commonly called the chiral

condensate. Notably, Eqs. (22) and (28) are special cases of an exact mass formula in
QCD that is valid for arbitrarily small or large current-quark masses and for both
ground- and excited-state pseudoscalar mesons [155]; and, owing to this feature,
Eq. (27) has come to be recognised as an in-hadron condensate [172]. That connection
is cemented by reiterating an identity, proved elsewhere [161]:

lim
m̂→0

κζ
π = − lim

m̂→0
fπ〈0|q̄iγ5q|π〉 = Z4 trCD

∫ Λ

dq

S0(q; ζ) = −〈q̄q〉0ζ ; (29)

namely, the so-called vacuum quark condensate is, in fact, the chiral-limit value of
the in-meson condensate, viz. it describes a property of the chiral-limit pseudoscalar
meson. This condensate is therefore no more a property of the “vacuum” than
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the pseudoscalar meson’s chiral-limit leptonic decay constant. Moreover, given that
Eq. (29) is an identity in QCD, any veracious calculation of 〈q̄q〉0ζ is the computation
of a gauge-invariant property of the pion’s wave-function. Extensive discussion of the
consequences deriving from this change in perspective is presented in Refs. [150, 173–
176].

It is worth closing this section with some additional remarks on confinement, given
the role it plays in forcing a changed view on the nature of condensates and, indeed, the
integral part that confinement is likely to play in determining whether or not QCD is a
mathematically well-defined relativistic quantum field theory in four dimensions. One
aspect of the Yang-Mills millennium problem [48] is to prove that pure-gauge QCD
possesses a mass-gap ∆ > 0. There is strong evidence supporting this conjecture,
found especially in the fact that numerical simulations of lattice-regularised QCD
(lQCD) predict ∆ & 1.5GeV [177]. This sharpens the conundrum we presented in the
Introduction: with ∆2/m2

π & 100, can the mass-gap in pure Yang-Mills really play
any role in understanding confinement when DCSB, driven by the same dynamics,
ensures the existence of an almost-massless strongly-interacting excitation in our
Universe? If the answer is not no, then it must at least be that one cannot claim to
provide a pertinent understanding of confinement without simultaneously explaining
its connection with DCSB. The pion must play a critical role in any explanation of
confinement in the Standard Model; and any discussion that omits reference to the
pion’s role is practically irrelevant.

This perspective is canvassed elsewhere [150] and can be used to argue that
the potential between infinitely-heavy quarks measured in numerical simulations of
quenched lQCD – the so-called static potential [178] – is disconnected from the
question of confinement in our Universe. This is because light-particle creation
and annihilation effects are essentially nonperturbative in QCD, so it is impossible
in principle to compute a quantum mechanical potential between two light quarks
[179–181]. It follows that there is no flux tube in a Universe with light quarks and
consequently that the flux tube is not the correct paradigm for confinement.

As we have highlighted, DCSB is the key here. It ensures the existence of
pseudo-Nambu-Goldstone modes; and in the presence of these modes, no flux tube
between a static colour source and sink can have a measurable existence. To verify
this statement, consider such a tube being stretched between a source and sink.
The potential energy accumulated within the tube may increase only until it reaches
that required to produce a particle-antiparticle pair of the theory’s pseudo-Nambu-
Goldstone modes. Simulations of lQCD show [179, 180] that the flux tube then
disappears instantaneously along its entire length, leaving two isolated colour-singlet
systems. The length-scale associated with this effect in QCD is r6σ ≃ (1/3) fm and
hence if any such string forms, it would dissolve well within a hadron’s interior.

An alternative realisation associates confinement with dramatic, dynamically-
driven changes in the analytic structure of QCD’s propagators and vertices. That
leads coloured n-point functions to violate the axiom of reflection positivity and
hence forces elimination of the associated excitations from the Hilbert space associated
with asymptotic states [182]. This is certainly a sufficient condition for confinement
[149, 183–185]. It should be noted, however, that the appearance of such alterations
when analysing some truncation of a given theory does not mean that the theory itself
is truly confining: unusual spectral properties can be introduced by approximations,
leading to a truncated version of a theory which is confining even though the complete
theory is not, e.g. Refs. [186, 187]. Notwithstanding exceptions like these, a computed
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violation of reflection positivity by coloured functions in a veracious treatment of QCD
does express confinement. Moreover, via this mechanism, it is achieved as the result
of an essentially dynamical process. Figure 6 highlights that quarks acquire a running
mass distribution in QCD; and, as will become clear, this is also true of gluons (see, e.g.
Refs. [188–193]). The generation of these masses leads to the emergence of a length-
scale ς ≈ 0.5 fm, whose existence and magnitude is evident in all existing studies of
dressed-gluon and -quark propagators, and which characterises the dramatic change in
their analytic structure that we have just described. In models based on such features
[194], once a gluon or quark is produced, it begins to propagate in spacetime; but
after each “step” of length ς , on average, an interaction occurs so that the parton
loses its identity, sharing it with others. Finally a cloud of partons is produced,
which coalesces into colour-singlet final states. This picture of parton propagation,
hadronisation and confinement can be tested in experiments at modern and planned
facilities [129, 142, 195].

4. Continuum Bound-State Problem

As indicated in the Introduction, we will chiefly herein review predictions for pion
elastic and transition form factors that were obtained using a continuum approach
to the two valence-body bound-state problem in relativistic quantum field theory. In
order to enable an appraisal of those predictions, it is appropriate to briefly review
the status of such studies.

A natural framework within which to express and preserve the symmetries
relevant to the pion is provided by QCD’s DSEs [196]. In fact, all bound-state problems
may be formulated this way. The DSEs are a tower of coupled integral equations,
examples of which are Eqs. (11), (16). They are well-suited to the study of problems
in QCD because their simplest use is as a generating tool for perturbation theory.
Owing to asymptotic freedom, that materially reduces model dependence in sound
applications because the interaction kernel in each DSE is known for all momenta
within the perturbative domain, i.e. k2 & 2GeV2: any model need then only be defined
with reference to the long-range behaviour of the kernels. This is good because DSE
solutions are Schwinger functions, i.e. propagators and vertices; and since all cross-
sections are built from Schwinger functions, the approach connects observables with
the long-range behaviour of the theory’s running coupling and masses. Consequently,
feedback between theoretical predictions and experimental tests can then refine the
statements and lead to an understanding of these fundamental quantities. Those
predictions are wide-ranging because the DSEs provide a nonperturbative, continuum
approach to hadron physics and can therefore address questions pertaining to, e.g.:
the gluon- and quark-structure of hadrons; and the roles of emergent phenomena –
confinement and DCSB – and the connections between them.

As a collection of coupled equations, a tractable problem is only obtained once a
DSE truncation scheme is specified. It is unsurprising that the best known procedure
is the weak coupling expansion, which reproduces every diagram in perturbation
theory. That scheme is systematic and valuable in the analysis of large momentum
transfer phenomena; but it precludes any possibility of obtaining nonperturbative
information. A systematic, symmetry-preserving scheme applicable to hadron bound-
states is described in Refs. [197–199]. The procedure generates a Bethe-Salpeter
equation from the kernel of any gap equation whose diagrammatic content is known
and thereby guarantees, inter alia, that Eq. (9) and kindred identities can always be
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preserved in any treatment of composite operators in QCD. The mere existence of this
scheme enabled the proof of exact nonperturbative results (see, e.g. Refs. [200, 201])
and it remains the most widely used today.

The leading-order term in the procedure of Refs. [197–199] is the rainbow-
ladder (RL) truncation. It is widely used and known to be accurate for light-quark
ground-state vector- and isospin-nonzero-pseudoscalar-mesons [150, 200, 202, 203], and
properties of ground-state octet and decuplet baryons [204–207], because corrections
in these channels largely cancel owing to the parameter-free preservation of relevant
WGT identities ensured by this scheme. However, higher-order contributions do not
typically cancel in other channels [208–210]. Hence studies based on the RL truncation,
or low-order improvements thereof, usually provide poor results for light-quark scalar-
and axial-vector-mesons [211–216], exhibit gross sensitivity to model parameters for
tensor-mesons [217] and excited states [155, 218–220], and are unrealistic for heavy-
light systems [221–223].

These difficulties are surmounted in a recently developed truncation scheme [224],
which is beginning to have a material impact. The new scheme enables the use
of far more sophisticated kernels for the gap and Bethe-Salpeter equations, which
include, e.g. Dirac vector⊗vector and scalar⊗scalar quark-antiquark interactions, and
overcome the weaknesses of RL truncation in all channels studied thus far. The
new technique, too, is symmetry preserving; but it has additional strengths, e.g. the
capacity to express DCSB nonperturbatively in the integral equations connected with
bound-states. Owing to this feature, the new scheme is described as the “DCSB-
improved” or “DB” truncation. It preserves successes of the RL truncation; but has
also enabled elucidation of many novel nonperturbative features of QCD. For instance,
the existence of dressed-quark anomalous chromo- and electro-magnetic moments [225]
and the key role they play in determining observable quantities [226]; elucidation of
the causal connection between DCSB and the splitting between vector and axial-
vector mesons [227]; and the impact of that splitting on the baryon spectrum [205].
Furthermore, as will subsequently be highlighted, development of the DB truncation
has enabled a crucial step toward the ab initio prediction of hadron observables in
continuum-QCD.

The connection between the existence of Nambu-Goldstone modes and a
dynamically-generated dressed-quark mass was discussed in connection with Figs. 5
and 6. The propagation of gluons, too, is described by a gap equation [188–193]; and
its solution shows that gluons are cannibals: they are a particle species whose members
become massive by eating each other! The associated gluon mass function, mg(k

2),
is monotonically decreasing with increasing k2 and recent work [193] has established
that

mg(k
2 = 0) ≈ 0.5GeV. (30)

The value of the mass-scale in Eq. (30) is natural in the sense that it is commensurate
with but larger than the value of the dressed light-quark mass function at far infrared
momenta: M(0) ≈ 0.3GeV (see Fig. 6). Moreover, the mass term appears in the
transverse part of the gluon propagator, hence gauge-invariance is not tampered with;
and the mass function falls as 1/k2 for k2 ≫ mg(0) (up to logarithmic corrections),
so the gluon mass is invisible in perturbative applications of QCD: it has dropped to
less-than 5% of it’s infrared value by k2 = 4GeV2.

Crucially, gauge boson cannibalism presents a new physics frontier within the
Standard Model. Asymptotic freedom means that the ultraviolet behaviour of QCD
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is controllable. At the other extreme, dynamically generated masses for gluons and
quarks entail that QCD creates its own infrared cutoffs. Together, these effects
eliminate both the infrared and ultraviolet problems that typically plague quantum
field theories and thereby make reasonable the hope that QCD is nonperturbatively
well defined, viz. that the millennium problem [48] does have a solution. The presence
of dynamically-generated gluon and quark mass-scales must have many observable
consequences, too, and hence can be checked experimentally. For example, one may
plausibly conjecture that dynamical generation of an infrared gluon mass-scale leads
to saturation of the gluon parton distribution function at small Bjorken-x within
hadrons. This could be checked via computations of gluon distribution functions,
using such solutions of the gluon gap equation in hadron bound-state equations. The
possible emergence of this phenomenon stirs great interest; and it is a key motivation
in plans to construct an EIC that would be capable of producing a precise empirical
understanding of collective behaviour amongst gluons [142].

As Eqs. (11), (16) make apparent, one must possess detailed information about the
interactions between quarks and gluons at all momentum scales in order to solve the
continuum bound-state problem. There are two common methods for determining this
information: the top-down approach, which works toward an ab initio computation
of the interaction via direct analysis of the gauge-sector gap equations; and the
bottom-up scheme, which aims to infer the interaction by fitting data within a
well-defined truncation of those equations in the matter sector that are relevant to
bound-state properties. These two approaches have recently been united [193] by a
demonstration that the RGI running-interaction predicted by contemporary analyses
of QCD’s gauge sector coincides with that required in order to describe ground-state
hadron observables using the DB truncation.

These observations are illustrated by Fig. 7. The upper-panel shows that the
top-down RGI interaction and the DB-truncation bottom-up interaction agree within
existing theoretical error; namely, the interaction predicted by modern analyses of
QCD’s gauge sector is in good agreement with that required for a veracious description
of measurable hadron properties using the most sophisticated matter-sector gap and
Bethe-Salpeter kernels available today. This is a remarkable result, given that there
had previously been no serious attempt at communication between practitioners from
the top-down and bottom-up hemispheres of continuum-QCD. It bridges a gap that
had lain between nonperturbative continuum-QCD and the ab initio prediction of
bound-state properties.

The bottom-panel in Fig. 7 shows that the interaction inferred using a modern
RL truncation [229, 230] has the correct shape; but it is too large in the infrared.
This is because the RL truncation suppresses all effects associated with DCSB in
the kernels of the gap and Bethe-Salpeter equations except those expressed in the
running coupling itself, and therefore a description of hadronic phenomena can only be
achieved by overmagnifying the gauge-sector interaction strength at infrared momenta.
A similar conclusion is drawn elsewhere [231]. It follows that whilst the RL truncation
supplies a useful computational link between QCD’s gauge sector and measurable
hadron properties, the model interaction it delivers should neither be misconstrued
nor misrepresented as a pointwise-accurate representation of ghost-gluon dynamics.
Notwithstanding this, the judicious use of RL truncation and the careful interpretation
of its results can still be a valuable tool for hadron physics phenomenology.
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Figure 7. Comparison between top-down results for the gauge-sector interaction
and with those obtained using the bottom-up approach based on hadron physics
observables. Upper panel – solid curve within grey band, top-down result for
the RGI interaction; and dashed curve within pale-green band, advanced bottom-
up result obtained in the DB truncation. Lower panel – solid curve within grey
band, top-down result for the RGI interaction, as in the left panel; and dot-dashed
curve within pale-red band, bottom-up result obtained in the RL truncation.
In all cases, the bands denote the existing level of theoretical uncertainty in
extraction of the interaction. All curves are identical on the perturbative domain:
k2 > 2.5GeV2. (Figures provided by D. Binosi, modelled after those in Ref. [228].)

5. Leading-Twist PDA

The light-front wave-function of an interacting quantum system, ϕ(x), provides a
connection between dynamical properties of the underlying relativistic quantum field
theory and notions familiar from nonrelativistic quantum mechanics. In particular,
although particle number conservation is generally lost in relativistic quantum field
theory, ϕ(x) has a probability interpretation. It can therefore translate features that
arise purely through the infinitely-many-body nature of relativistic quantum field
theory into images whose interpretation seems more straightforward [232–234]. This
would be very useful if realised in connection with confinement and DCSB.

As described in Sec. 3, pion properties are a particularly clear manifestation of
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DCSB. This fact is highlighted by the quark-level Goldberger-Treiman relations in
Eqs. (21), which entail that the x-dependence of ϕπ(x; ζ

2) must provide a nearly pure
expression of this crucial emergent phenomena in the Standard Model; and hence the
calculation of ϕπ(x; ζ

2) provides a means by which to expose DCSB in a wave function
with quantum mechanical characteristics.

The pion bound-state problem derived from Eqs. (11), (16) was solved in
Ref. [234], using both the RL- and DB-truncations with the matching interaction
drawn from Fig. 7. Those solutions were then used to construct the Poincaré-covariant
Bethe-Salpeter wave function for the pion:

χπ(q;P ) = Su(q+)Γπ(q+−;P )Sd(q−) , (31)

as determined in the given truncation, where q+− = [q+ + q−]/2 and Γπ is the Bethe-
Salpeter amplitude in Eq. (19). With the wave function in hand, the PDA in Eq. (2)
was calculated via its definition as the projection of χπ(q;P ) onto the light-front:

fπ ϕπ(x; ζ
2) = trCDZ2

∫ Λ

dq

δ(n · q+ − xn · P ) γ5γ · nχπ(q;P ) . (32)

Here n is a light-like four-vector, n2 = 0; P is the pion’s four-momentum, P 2 = −m2
π

and n · P = −mπ, with mπ being the pion’s mass; and ζ is the scale at which the
dressed-quark propagators and pion Bethe-Salpeter amplitude are computed.

How should one expect the leading-twist PDA defined by Eq. (32) to behave?
In order to answer this question, recall that the pion multiplet contains a charge-
conjugation eigenstate: π0, the neutral pion. Therefore, the peak in the leading
Chebyshev moment [m = 0 in Eq. (20)] of each of the three significant scalar functions
that appear in the expression for Γπ(q;P ) occurs at q+− = 0, i.e. at zero relative
momentum [172, 220, 235]. Moreover, these Chebyshev moments are monotonically
decreasing with q2+−. It follows that ϕπ(x; ζ

2) should exhibit a single maximum,
which appears at x = 1/2, viz. ∀ζ2 > 0, ϕπ(x; ζ

2) is a symmetric, concave function on
x ∈ [0, 1].

Nonperturbative approaches to problems in hadron physics that possess a
traceable connection to QCD are typically formulated in Euclidean space (see, e.g.
Sec. 1.3 of Ref. [236]). In connection with the PDA, this might seem to be a problem
because the light-front is a concept peculiar to Minkowski space. The difficulty can be
overcome by appealing to the fact that the PDA in Eq. (32) is completely characterised
by its moments

〈xm〉 =
∫ 1

0

dxxm ϕπ(x) or 〈xm
∆〉 =

∫ 1

0

dx (2x − 1)m ϕπ(x) , (33)

which may be obtained via

fπ(n · P )m+1〈xm〉 = trCDZ2

∫ Λ

dq

(n · q+)m γ5γ · nχπ(q;P ) ; (34)

and recognising that such moments can be computed from information produced by
Euclidean space analyses of the pion bound-state problem. A novel technique for
achieving this outcome was introduced in Ref. [234]; and, formulated in the continuum,
the procedure enables one to compute arbitrarily many moments and hence accurately
reconstruct the pion’s PDA.

The RL- and DB-truncation pion PDAs computed in Ref. [234] at a resolving
scale ζ = 2GeV=: ζ2 are depicted in Fig. 8. They yield

〈x2
∆〉DB = 0.25 , 〈x2

∆〉RL = 0.28 . (35)
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Figure 8. Predictions for the pion’s twist-two valence-quark PDA, all computed
at a resolving scale ζ = 2GeV=: ζ2: Solid curve (blue) – DB truncation [234];
long-dashed curve (blue) – RL truncation [234]; and short-dashed curve (green)
within (green) shaded area – lQCD [237], as determined following the method in
Ref. [238]. In connection with the lattice curve, the band reflects the error quoted
in Eq. (36). The dotted curve (black) is the conformal limit result in Eq. (5).

The figure also displays the conformal limit result in Eq. (5), for which 〈x2
∆〉 = 0.2, and

a pointwise form inferred, using the method in Ref. [238], from a lQCD computation
of the PDAs first non-trivial moment [237]:

〈x2
∆〉lQCD = 0.236± 0.006 . (36)

(The error quoted here accounts for uncertainties in the chiral extrapolation and
nonperturbatively determined renormalisation factors; but does not include effects
associated with lattice spacing.)

It is apparent from Fig. 8 that all calculations predict a PDA that is significantly
broader than the conformal limit result in Eq. (5). This important outcome is a direct
expression of DCSB, as we now explain. The continuum predictions were computed at
a low renormalisation scale in the chiral limit, whereat the quark mass function owes
entirely to DCSB; and, on the domain p2 ∈ [0, ζ2], the nonperturbative interactions
responsible for DCSB produce significant structure in the dressed-quark’s self-energy,
Fig. 6. The PDA is an integral of the pion’s Bethe-Salpeter wave function, whose
pointwise behaviour is rigorously connected with that of the quark self-energy [see
Eqs. (21)]. Hence, the structure of the pion’s distribution amplitude at the hadronic
scale is a pure expression of DCSB. As the scale is removed to extremely large values,
phase space growth diminishes the impact of nonperturbative DCSB interactions, so
that the PDA relaxes to its asymptotic form.

It is appropriate here to reflect upon and explain the pointwise difference between
the DB and RL results in Fig. 8. Note first that low-m moments are sensitive to the
behaviour of ϕπ(x) in the neighbourhood of x = 1/2, whereas high-m moments are
sensitive to its endpoint behaviour. Then consider that RL-kernels ignore DCSB in
the quark-gluon vertex. Therefore, to describe a given body of phenomena, they must
shift all DCSB-strength into the infrared behaviour of the quark propagator, whilst
nevertheless maintaining perturbative behaviour for p2 > ζ2. This requires B(p2) to
be large at p2 = 0, but drop quickly, behaviour which influences ϕπ(x) via Eq. (21a).
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The concentration of strength at p2 ≃ 0 forces large values for the small-m moments
[see Eq. (35)], which translates into a broad distribution. In contrast, the DB-kernel
builds DCSB into the quark-gluon vertex and its impact is therefore shared between
more elements of a calculation. Hence a smaller value of B(p2 = 0) is capable of
describing the same body of phenomena; and this self-energy need fall less rapidly in
order to reach the common asymptotic limit. It follows that the low-m moments are
smaller and the distribution is narrower.

The near match between the DSE-DB prediction and the lQCD curve is also
significant. An earlier lQCD result [239] produced a PDA that was in better agreement
with the DSE-RL curve; but, as anticipated in Ref. [238], improvements in the lattice
simulations have produced a PDA in good agreement with the DSE-DB prediction,
which is the more realistic result, as explained in Sec. 4. Contemporary theory has
therefore converged on a pointwise form for the pion’s twist-two valence-quark PDA;
and that form is [234, 238, 240–242]:

ϕπ(x; ζ
2
2 ) ≈

8

π

√

x(1 − x) . (37)

It follows that ϕasy
π (x) is a poor approximation to ϕπ(x;Q

2) at all momentum-transfer
scales that are either now accessible to experiments involving pion elastic or transition
processes, or will become so in the foreseeable future [67–69, 78, 99, 129, 243].
Available information indicates that the pion’s PDA is significantly broader at these
scales; and hence that predictions of leading-order, leading-twist formulae involving
ϕasy
π (x), such as Eqs. (2) and (7), must be a misleading guide to interpreting and

understanding contemporary experiments. At accessible energy scales a better guide
is obtained by using the dilated PDAs depicted in Fig. 8 in such formulae, as we will
now proceed to illustrate.

6. Elastic Electromagnetic Form Factors

6.1. Pion

The first publication by the JLab Fπ Collaboration [67] signalled the beginning of a
new era in probing the pion’s internal structure. Subsequent measurements [68–71, 78]
confirmed the observed data trend and this led to a widespread perception that, with
a momentum transfer of Q2 = 2.45GeV2, one is still far from the resolution region
wherein the pion behaves like a simple quark-antiquark pair, i.e. far from establishing
validity of Eq. (2). This conclusion was based on the assumption that Eq. (5) is valid
at Q2 = 2.45GeV2 and hence Eq. (6) provides the appropriate pQCD prediction with
which to compare, in which case

Q2Fπ(Q
2)

Q2=4GeV2

≈ 0.15 , (38)

The result in Eq. (38) is a factor of 2.7 smaller than the empirical value quoted at
Q2 = 2.45GeV2 [78]: 0.41+0.04

−0.03; and a factor of three smaller than that computed
at Q2 = 4GeV2 in Ref. [84]. At the time, Ref. [84] provided the only prediction for
the pointwise behaviour of Fπ(Q

2) that was both applicable on the entire spacelike
domain then mapped reliably by experiment and confirmed thereby.

In this case the perception of a mismatch and a real discrepancy are not
equivalent because, as we have just elucidated, one can argue that Q2 = 4GeV2

is not within the domain Λ2
QCD/Q

2 ≃ 0 upon which Eq. (5) is valid. This being so,
and given the successful prediction in Ref. [84], one is naturally led to ask whether
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Figure 9. Pictorial representation of Eq. (39),
which defines the RL truncation of the pion elastic
form factor. The unamputated photon quark vertex
χµ(kf , ki) = S(kf )Γµ(kf , ki)S(ki), where Γµ(kf , ki) is
the unamputated vertex, which is indicated by the dark-
shaded vertex. The pion Bethe-Salpeter amplitudes are
marked by the light-shaded vertices and the solid internal
lines are the dressed-quark propagators.

the methods used therein can address the issue of the ultimate validity of Eq. (2).
Until recently, the answer was “no”, owing to an over-reliance on brute numerical
methods in continuum bound-state calculations. That changed, however, with an
appreciation of the versatility inherent in the refinement of known techniques [244–
246] which enabled the computation of the pion’s light-front wave function reviewed
in Sec. 5. Those methods also enable a computation of the pion’s electromagnetic
form factor to arbitrarily large-Q2 and the correlation of that result with Eq. (2) using
the consistently computed distribution amplitude, ϕπ(x). This effort is detailed in
Ref. [83]; and we will summarise it here.

At leading-order in the DSE truncation scheme explained in Refs. [197–199], i.e.
in RL truncation, the pion form factor is given by the diagram in Fig. 9, which
corresponds to the following expression:

KµFπ(Q
2) = NctrD

∫

d4k

(2π)4
χµ(k + pf , k + pi)

× Γπ(ki; pi)S(k) Γπ(kf ;−pf) , (39)

where Q is the incoming photon momentum, pf,i = K ± Q/2, kf,i = k + pf,i/2, and
the remaining trace is over spinor indices. Isospin symmetry is assumed in Eq. (39), so
that Su = S = Sd; and χµ(kf , ki) is the unamputated dressed-quark-photon vertex,
which should also be computed in rainbow-ladder truncation. It is worth remarking
that the dominant effect of corrections to RL truncation is a modification of the
power associated with the logarithmic running in Eq. (2); but since that running
is slow, the diagrams omitted have no material impact on the main course of this
discussion. Notwithstanding that, it is possible to obtain a reliable estimate of their
impact following the method described in connection with Fig. 12 in Sec. 7.

The leading-order prediction for the pion form factor is determined once an
interaction kernel is specified for the rainbow gap equation. The authors of Ref. [83]
used the same form employed in Ref. [234] to produce the long-dashed (blue) curve in
Fig. 8 and hence the only new element in the computation of Fπ(Q

2) in Ref. [83] was
χµ(kf , ki). Instead of solving a Bethe-Salpeter equation for that vertex, Ref. [83] used
an Ansatz, which expedited completion of the Fπ(Q

2) computation. That is a valid
strategy so long as nothing essential to understanding the form factor is lost thereby.
This was established by noting that since the Ansatz is obtained using the gauge
technique [247], the vertex satisfies the longitudinal vector WGTI [144–146], is free
of kinematic singularities, reduces to the bare vertex in the free-field limit, and has
the same Poincaré transformation properties as the bare vertex. Moreover, numerical
solutions of the RL Bethe-Salpeter equation for the vertex [248] and algebraic analyses
of vertex structure [225, 249, 250] show that nonperturbative corrections to the bare
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vertex are negligible for spacelike momenta Q2 & 1GeV2. A deficiency of the Ansatz is
omission of explicit nonanalytic structures associated with the ρ-meson pole. However,
such features only have an impact on Q2r2π . 1, where rπ is the charged pion’s
electromagnetic radius, and are otherwise immaterial at spacelike momenta [251–253].
Furthermore, salient aspects thereof are included implicitly, e.g. their influence on pion
radii, as explained in connection with Eqs. (2.3.39), (2.3.40) in Ref. [253].

The electromagnetic pion form factor, computed from Eq. (39) using the elements
and procedures described above, is depicted as the solid curve in Fig. 2 and marked as
curve-A in the lower panel. It is evident from the upper panel that this prediction is
practically indistinguishable from that described in Ref. [84] on the spacelike domain
Q2 < 4GeV2, which was the largest value computable reliably in that study. Critically,
however, the new prediction extended to arbitrarily large momentum transfers: owing
to the improved algorithms, it describes an unambiguous continuation of the earlier
DSE prediction to the entire spacelike domain and thereby achieved a longstanding
goal. For comparison, the current status of lattice-QCD calculations of Fπ(Q

2) is
described in Refs. [254, 255]. Results with quantitatively controlled uncertainties are
beginning to become available. Within errors, the estimated charge radius matches
experiment; and simulations are also exploring a non-zero but still low Q2 domain
(0 < Q2 < 1GeV2). Various systematic uncertainties become more challenging with
increasing Q2, making access to a larger domain difficult at present [256].

The momentum reach of the improved continuum techniques for computation of
form factors is emphasised by the lower panel in Fig. 2. The prediction for Fπ(Q

2)
is depicted on the domain Q2 ∈ [0, 20]GeV2 but was computed in Ref. [83] out to
Q2 = 100GeV2. If necessary, reliable results could readily have been obtained at
even higher values. That is not required, however, because the longstanding questions
revolving around Fπ(Q

2), which we reiterated in opening this subsection, may be
answered via Fig. 2. In this connection, a key feature of the prediction for Q2Fπ(Q

2) is
the maximum at Q2 ≈ 6GeV2 that is evident in the right panel of Fig. 2. The domain
upon which the flattening of the curve associated with this extremum is predicted to
occur will be accessible to next-generation experiments [85, 86]; and, importantly, if
Ref. [86] achieves its full potential, then it will be possible to distinguish between the
theoretical prediction and the monopole fitted to data in Ref. [56].

A quick glance at the lower panel of Fig. 2 suggests that a maximum is necessary
if Q2Fπ(Q

2) is ever to approach the value predicted by pQCD, Eq. (2). In this
connection, too, Ref. [83] had something to add. The result in Eq. (38) is associated
with curve-D in the right panel of Fig. 2, which is typically plotted in such figures and
described as the prediction of pQCD. That would be true if, and only if, the pion’s
valence-quark distribution amplitude were well described by ϕcl(x) in Eq. (5) at the
scale Q2 ∼ 4GeV2. However, that is not the case, as we saw in Sec. 5.

The sensible comparison with pQCD should be drawn as follows. Using precisely
the interaction that was employed to compute Fπ(Q

2), one obtains the RL truncation
result described in Sec. 5, viz.

ϕπ(x; ζ
2
2 ) ≈ 1.74 [x(1− x)]0.29 . (40)

This amplitude provides a far better choice than ϕcl(x) when calculating the
pQCD prediction appropriate for comparison with contemporary experiments. That
computed result is drawn as curve-C in the lower panel of Fig. 2, i.e. this curve is the
pQCD prediction obtained when Eq. (40) is used in Eqs. (2)–(4).
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Stated simply, curve-C in the lower panel of Fig. 2 is the pQCD prediction
obtained when the pion valence-quark PDA has a form appropriate to the scale
accessible in modern experiments. Its magnitude is markedly different from that
obtained using the conformal-limit PDA in Eq. (5), viz. curve-D, which is only valid at
truly asymptotic momenta. The meaning of “truly asymptotic” is readily illustrated.
The PDA in Eq. (40) produces w 2

ϕ = 3.3, which is to be compared with the value
computed using the conformal-limit PDA: w asy

ϕ = 1.0. Applying leading-order ERBL
evolution [38–40] to the PDA in Eq. (40), one must reach momentum transfer scales
Q2 > 1000GeV2 before w 2

ϕ < 1.6, i.e. before w 2
ϕ falls below half its original value,

because ERBL evolution is logarithmic.
Given these observations, the near agreement between the pertinent perturbative

QCD prediction in Fig. 2 (lower panel, curve-C) and the continuum prediction for
Q2Fπ(Q

2) (lower panel, curve-A) is striking. It highlights that a single interaction
kernel for the continuum bound-state problem has completed the task of unifying the
pion’s electromagnetic form factor and its valence-quark distribution amplitude.

Moreover, this leading-order, leading-twist QCD prediction, obtained with a pion
valence-quark PDA evaluated at a scale appropriate to the experiment, Eq. (40),
underestimates the full continuum computation by merely an approximately uniform
15% on the domain depicted. The small mismatch is explained by a combination
of higher-order, higher-twist corrections to Eq. (2) in pQCD on the one hand, and
shortcomings in the RL truncation, which predicts the correct power-law behaviour for
the form factor but not precisely the right anomalous dimension in the strong coupling
calculation on the other hand. Hence, as anticipated earlier [164] and expressing a
result that can be understood via the behaviour of the dressed-quark mass-function in
Fig. 6, one should expect dominance of hard contributions to the pion form factor for
Q2 & 8GeV2. Expressed differently, on Q2 & 8GeV2, it is predicted that Fπ(Q

2) will
exhibit precisely the momentum-dependence anticipated from QCD, the power-law
behaviour plus logarithmic violations of scaling, but with the normalisation fixed by
a pion wave function whose dilation with respect to ϕcl(x) is a definitive signature of
DCSB, which is a crucial feature of the Standard Model.

Efforts to improve upon this calculation by using more sophisticated truncations,
such as the DB scheme, are underway. At present it seems that the most promising
route to success in this endeavour lies in calculating the pion’s light-front wave
function, using techniques similar to those that delivered the pion’s leading-twist
PDA; and therewith computing the elastic form factor via an overlap representation
[257, 258]. In this way, the pion form factor becomes a byproduct of calculating the
pion’s generalised parton distribution, as illustrated in Ref. [259].

6.2. Kaon

It is worth commenting briefly here on the kaon’s electromagnetic form factor, FK(Q2).
As noted in Sec. 2, scattering of high-energy charged kaons from atomic electrons has
delivered direct measurements of FK(Q2) out to Q2=0.10 GeV2 [102, 103]. This
data is displayed in the upper panel of Fig. 3 along with the prediction in Ref. [84].
That study provided a unified description of pion and kaon elastic form factors on
Q2 ∈ [0, 4]GeV2; but, owing to limitations in the numerical methods employed, it was
unable to produce a reliable result on Q2 > 4GeV2, something evident in the lower
panel of Fig. 3. The methods employed in Ref. [83] can surmount this difficulty and
the required analysis is underway. However, it is not yet complete. Herein, therefore,
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Figure 10. Predictions for the kaon’s twist-two valence-quark PDA, computed at
a resolving scale ζ = 2GeV=: ζ2: Solid curve (black) – DB truncation [260, 261];
dot-dashed (green) – PDA inferred from lQCD moments in Ref. [262] using the
method described in Refs. [238, 263]. The dashed (red) curve is the PDA discussed
in connection with Eq. (46); and the dotted (violet) curve is the conformal limit
result in Eq. (5).

we consider what might be learnt from the relevant hard-scattering formula [40], a
generalisation of Eq. (2):

∃Q̄0 > ΛQCD | Q2FK(Q2)
Q2>Q̄2

0≈ 16παs(Q
2)f2

Kw 2
K(Q2) , (41)

with [41] fK = 0.110GeV and, for the K+:

w 2
K = es̄w 2

s̄ + euw 2
u , (42a)

ws̄ =
1

3

∫ 1

0

dx
1

1− x
ϕK(x) , wu =

1

3

∫ 1

0

dx
1

x
ϕK(x) , (42b)

where eu = 2es̄ = (2/3) and ϕK(x) is the kaon’s twist-two PDA.
The large-Q2 behaviour is plainly determined by the shape of ϕK(x), information

about which is today available from DSE- and lattice-QCD analyses. The most
sophisticated DSE analyses produce a PDA that may be represented as [260, 261]:

ϕDSE
K (x; ζ22 ) = 3.29 x0.71(1− x)0.58 , (43)

which is a distribution whose peak lies at x > (1/2), i.e. is skewed to indicate that
the heavier s̄-quark in the K+ is carrying more of the bound-state’s momentum (see
Fig. 10). This PDA yields the first row in the following array:

〈(2x− 1)〉 〈(2x− 1)2〉
DSE [260, 261] 0.040 0.23
DSEmod 0.040 0.23× 1.1
lQCD [262] 0.036(2) 0.26(2)

. (44)

The third row in Eq. (44) reports the most recent information available from lQCD.
Analysed according to the method in Refs. [238, 263], it corresponds to

ϕlQCD
K (x; ζ22 ) = nαβ x

α(1−x)β , α = 0.48±0.15 , β = 0.38±0.15 , (45)

where nαβ = 1/B(1 + α, 1 + β).
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The moments in rows 1 and 3 of Eq. (44) do not appear too different; and the
corresponding PDAs agree, within errors, as highlighted by Fig. 10, although the
lQCD result exhibits greater dilation. Owing to the weighting factors in Eqs. (42b),
however, the seemingly small differences between these PDAs have a large impact.
This is apparent in the lower panel of Fig. 3: the long-dashed (black) and dot-dashed
(green) curves display the predictions of Eq. (41) obtained with Eqs. (43) and (45),
respectively; and the green band highlights the uncertainty introduced by the errors
on α, β in Eq. (45). Plainly, a reliable prediction for the behaviour of Q2FK(Q2) at
potentially accessible momenta using Eq. (41) depends very sensitively on the amount
of distortion and/or dilation in the kaon’s PDA. This fact materially increases the
importance of extending the direct calculation of Fπ(Q

2) in Ref. [83] to FK(Q2).
In order to elucidate further, we considered the impact of supposing that the DSE

predictions for the moments in Eq. (44) are only accurate to 10%, i.e. we considered
the effects of the replacements {0.040, 0.23} → {0.040± 10%, 0.23± 10%}. One finds
in this way that the variation in 〈(2x − 1)〉 is immaterial; but the small change in
〈(2x − 1)2〉 has a significant influence. Row 2 in Eq. (44) expresses a 10% increase in
〈(2x− 1)2〉; and this pair of moments yields the following PDA:

ϕDSEmod

K (x; ζ22 ) = 2.33 x0.51(1− x)0.39 , (46)

which, as evident in Fig. 10, is noticeably more dilated than the original PDA and, in
fact, almost indistinguishable from the central lQCD result: the curves lie almost atop
one another; and their predictions for Q2FK(Q2) are equivalent (see Fig. 3). Plainly,
data anticipated from JLab12 [113] can potentially contribute a great deal to forming
an accurate picture of the kaon’s internal structure.

Since Eqs. (2), (41) should also be valid for large timelike-Q2 = (−t), it is
worth considering the prediction they make for the ratio FK(t)/Fπ(t), which has
been measured in e+e− annihilation on a large domain, with an upper bound of
sU = 17.4GeV2 [88]: |FK(sU )|/|Fπ(sU )| = 0.92(5). According to Eqs. (2), (41):

FK(t)

Fπ(t)
=

f2
K

f2
π

w 2
K(t)

w 2
π(t)

. (47)

Plainly, on ΛQCD/|t| ≃ 0, this ratio has the value f2
K/f2

π = 1.43; a limit which Eqs. (2),
(41) predict is, at least initially, approached from below as t grows from zero because
the ratio is unity at t = 0. Working with the most sophisticated DSE results available,
Eqs. (37), (43), and using leading-order ERBL evolution, the result at t = sU is:

FK(sU )

Fπ(sU )
= 1.16 . (48)

If the PDAs in Figs. 8, 10 that were inferred from lQCD results are used to compute
this ratio, the midpoint value is 50% greater, owing largely to the increased dilation
of the kaon’s PDA.

There is some tension between the published empirical value [88] and Eq. (48),
which differ by . 5-standard-deviations. Whilst this is far less than the 9-
standard-deviation discrepancy with pQCD reported in Ref. [264], which arises if one
(misguidedly) uses the conformal limit result for both meson PDAs [Eq. (5)] in order
to evaluate the ratio, the mismatch is still cause for further consideration. The DSE
result for the kaon PDA in Eq. (43) only exhibits modest skewing and dilation; but
these distortions must be decreased even more, so that ϕK(x) quite closely resembles
ϕcl(x), without affecting ϕπ(x), if the value of the ratio in Eq. (48) is to be reduced.
In that case, however, the long-dashed curve in the lower panel of Fig. 3 shifts even
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further away from the prediction in Ref. [84], viz. toward the dotted (blue) curve. It is
possible that the normalisation of the FK,π(sU ) measurements should be reconsidered
[243]. There is certainly a puzzle, which can be highlighted by comparing the value of
Fπ(Q

2 = |sU |) = 0.42/|sU | computed in Ref. [265] and |Fπ(sU )| = 0.84(5)/sU reported
in Ref. [88]. The computation in Ref. [265] agrees with all available, reliable spacelike
data, and the calculated value of Fπ(|sU |) is a factor of four larger than the result
obtained from Eq. (2) using ϕcl(x). It is nevertheless still a factor of two smaller than
the reported timelike experimental value. Internally consistent calculations, capable of
generating predictions which connect the spacelike and timelike large-|Q2| behaviour of
FK,π , would be useful in answering this question; but reaching that goal is a challenging
task [266–271].

7. Electromagnetic Transition Form Factor

The neutral pion electromagnetic transition form factor, Gγ∗γπ0(Q2), is a very
particular expression of this meson’s internal structure. It is measured in the process
γ∗
Qγ → π0, which is fascinating because its complete understanding demands a

framework capable of simultaneously combining an explanation of the essentially
nonperturbative Abelian anomaly [35, 36, 272], which determines Gγ∗γπ0(Q2 ≃ 0),
with the features of perturbative QCD that govern the behaviour of Gγ∗γπ0(Q2) on
the domain of ultraviolet momenta, Eq. (7).

In the chiral limit, the Abelian anomaly entails that

2f0
πGγ∗γπ0(Q2 = 0) = 1 , (49)

where f0
π ≈ 0.09GeV is the chiral-limit value of the charged pion’s leptonic decay

constant; and thereby locks the rate of this transition to the strength of DCSB
in the Standard Model. Corrections to Eq. (49), arising from nonzero and unequal
light-quark masses, have been computed [273]: they are small; but, curiously, extant
measurements suggest that the calculations actually overestimate their size [50].

At the other extreme, as we have already seen, the property of factorisation in
QCD hard scattering processes leads to the inviolable prediction in Eq. (7); and at
this point it is natural to compare Eq. (7) with Eq. (2), the analogue for Fπ(Q

2).
With both normalised to unity at Q2 = 0, then on any momentum domain for which
the asymptotic limit of both is valid, the transition form factor is π/[2αs(Q

2)]-times
larger : at Q2 = 4GeV2, this is a factor of five.

The prediction in Eq. (7) and the manner by which it is approached are currently
receiving keen scrutiny (e.g. Refs. [274–283]) following publication of data by the
BaBar Collaboration [96]. Whilst those data agree with earlier experiments on their
common domain of momentum-transfer [97, 98], they are unexpectedly far above the
prediction in Eq. (7) on Q2 & 10GeV2. Numerous authors have attempted to reconcile
the BaBar measurements with Eq. (7), typically producing a transition form factor
whose magnitude on Q2 & 10GeV2 exceeds the ultraviolet limit, without explaining
how that limit might finally be recovered [274, 275, 283] or how their results might
be reconciled with modern measurements of Fπ(Q

2) [67–69, 78]. Others, however,
argue that the BaBar data is not an accurate measure of the transition form factor
[276–282]. Significantly, data subsequently published by the Belle Collaboration [99]
appear to be in general agreement with Eq. (7).

One can argue [284] that the limit in Eq. (7) should either be approached from
below or only exceeded marginally, with logarithmic approach to the ultraviolet limit
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from above in that event. It is worth recapitulating the reasoning here because it
uses algebraic examples to clarify what has been a complex issue. First consider the
possible behaviour of G(Q2) in the absence of QCD’s scaling violations. The transition
form factor involves only one off-shell photon; and therefore a vector meson dominance
(VMD) Ansatz for the Q2-dependence of the transition produces

2fπG(Q2) = m2
ρ/(m

2
ρ +Q2) . (50)

(N.B. The analogue for Fπ(Q
2) bounds the empirical data from above; but this is not

the case with the transition form factor.)
The expression in Eq. (50) yields a Q2 ≈ 0 slope for the transition form factor

(a neutral pion radius, rπ0) that is consistent with data [41]: rπ0 ≈ rπ+ , so this
expression must be a reasonable approximation on Q2 ≃ 0. However, as evident in
Fig. 11, it approaches an asymptotic limit of m2

ρ/[2fπ], which is just 90% of the result
associated with Eq. (7). Consequently, if G(Q2) is to approach the limit in Eq. (7)
from above in the absence of scaling violations, then it must be influenced by at least
three distinct mass scales: an infrared scale that fixes the transition radius, which
is smaller than the scale associated with the limit in Eq. (7); an intermediate scale,
marking the point at which nonperturbative aspects of the pion’s internal structure
begin to take full control of the transition so that the function’s fall-off rate may slow
and 2fπG(Q2) can thereafter evolve to lie above the ultraviolet limit; and finally an
ultraviolet scale, at which the fall-off rate increases again, as required if Q2G(Q2) is to
reach the limit in Eq. (7). In the absence of scaling violations, the existence of three
mass scales is unlikely, especially since just two scales are evident in predictions for
Fπ(Q

2) described in Sec. 6.1 and the active elements are identical: in both cases, one
off-shell photon and the pion wave function. If three mass scales were possible, they
would most probably appear in Fπ(Q

2) because the associated process is influenced by
two pion wave functions in contrast with the single wave function involved in G(Q2).

Scaling violations are, however, a feature of QCD. Thus a third scale may
appear in connection with the transition form factor, viz. that associated with the
progression to perturbative QCD, which is expressed in the appearance of an additional
logarithmic momentum dependence, [lnQ2/Λ2

QCD]
pG , that amends dimensional power-

law behaviour in the ultraviolet. The momentum scale for this progression in the
charged-pion form factor is Q2 ≈ 8GeV2 [Sec. 6.1]. Universality of pion structure in
related processes suggests that a similar scale should be active in the transition form
factor. Considering the neighbourhoodQ2 ≃ 8GeV2, all empirical results forQ2G(Q2)
lie below the limit in Eq. (7); and hence, if logarithmic evolution of Q2G(Q2) becomes
established on this domain, then the ultraviolet limit would still be approached slowly
from below. However, if the progression domain is broadened in this case, owing to
the presence of just one pion in the transition process, then Q2G(Q2) might grow
to marginally exceed 2fπ before pG(Q

2) finally acquires that asymptotic value which
describes a slow approach to the limit in Eq. (7).

It is this line of reasoning which leads to a picture of G(Q2) that involves
three mass scales: one associated with the radius, blending effects from the photon-
quark interaction and pion structure; another characterising the domain upon which
nonperturbative features of pion structure fully control the γ∗γ → π0 transition;
and a third typifying the region within which the magnitude of G(Q2) is still fixed
by nonperturbative physics but the momentum dependence of [Q2G(Q2) − 2fπ] has
acquired [lnQ2/Λ2

QCD]
pG -damping characteristic of scaling violations in QCD. One

should consequently expect that the limit in Eq. (7) will either be approached from
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Figure 11. Q2G(Q2)/(2π2), model results. Curves: dotted (purple) –
asymptotic limit, derived from Eq. (7); dashed (brown) – VMD result, derived
from Eq. (50); dot-dashed (green) – result obtained from Eq. (51) using a pion
Bethe-Salpeter amplitude that generates ϕcl(x) in Eq. (5) using Eqs. (32), (52);
long-dashed (blue) – result obtained from Eq. (51) using a pion PDA that
generates ϕπ(x; ζH ) in Eq. (37) using Eqs. (32), (52); solid (black) – result
obtained from Eq. (51) using a PDA that evolves from ϕπ(x; ζH ) in Eq. (37) to
ϕπ(x; ζ = Q) in Eq. (53) on Q > ζH . Data: BaBar [96] – circles (red); CELLO
[97] – diamonds (purple); CLEO [98] – squares (blue); Belle [99] – stars (green).

below or only exceeded slightly, perhaps on a broad domain, with logarithmic approach
to the ultraviolet limit in either case.

A unification of the γ∗
Qγ

∗
Q → π0, γ∗

Qγ → π0 transition and charged-pion elastic

form factors on 0 ≤ Q2 ≤ 4GeV2 was accomplished in Ref. [285]. In fact, the
γ∗
Qγ

∗
Q → π0 transition was computed to arbitrarily large Q2 and shown to approach its

QCD hard-photon limit uniformly from below. However, as explained in connection
with the elastic form factor in Sec. 6.1, using the simple algorithm employed in
Ref. [285] it is impossible to extend the γ∗

Qγ → π0 transition calculations into the
domain of momenta relevant to modern experiments. Again, that difficulty is overcome
using the methods introduced in Ref. [234] for computation of the pion’s leading-twist
PDA, which not only enable the computation of Fπ(Q

2) to arbitrarily large-Q2, as
described in Sec. 6.1, but also G(Q2).

The γ∗γ → π0 transition form factor is computed from Tµν(k1, k2) = Tµν(k1, k2)+
Tνµ(k2, k1), where the pion’s momentum P = k1 + k2, k1 and k2 are the photon
momenta; and, at the same order of truncation used for Fπ(Q

2) in Eq. (39),

Tµν(k1, k2) =
e2

4π2
ǫµναβ k1αk2β G(k21 , k1 · k2, k22)

=tr

∫

d4ℓ

(2π)4
iQχµ(ℓ, ℓ1) Γπ(ℓ1, ℓ2)S(ℓ2) iQΓν(ℓ2, ℓ) . (51)

Here ℓ1 = ℓ + k1, ℓ2 = ℓ − k2, Q = diag[eu, ed] = e diag[2/3,−1/3], where e is
the positron charge, and Γν is the amputated photon-quark vertex. The kinematic
constraints are k21 = Q2, k22 = 0, 2 k1 · k2 = −(m2

π + Q2); and the manner by
which Eq. (51) provides for a parameter-free realisation of Eq. (49) is detailed in
Refs. [156, 164, 252]. A pictorial representation of Eq. (51) may be drawn similar
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to Fig. 9, but with the rightmost pion Bethe-Salpeter amplitude replaced by the
amputated photon-quark vertex.

The computation of G(Q2) in Ref. [284] was deliberately formulated so as to
deliver a coherent picture of both the transition and elastic form factor, reviewed
in Sec. 6.1, and therefore used forms for all elements common to Eqs. (39) and (51)
that are consistent with those in Ref. [83]. Notably, whilst there is the appearance
of a difference between the representations of the photon-quark vertex in these two
studies, they are effectively equivalent. With all elements in Eq. (51) thus determined,
computation of G(Q2) is straightforward. Before proceeding to explain the complete
result, however, Ref. [284] used simple examples and reasoning to elucidate some
essential features of the transition form factor; a discussion which we summarise below.

Evolution of the pion’s PDA with the resolving scale ζ is logarithmic [38–
40]; and, as we indicated in Sec. 6, whilst Poincaré covariant computations using
a renormalisation-group-improved RL truncation produce the same matrix-element
power-laws as perturbative QCD, they fail to reproduce the full anomalous dimensions
[40]. Typically [83, 164, 234], the RL approximation to a matrix element
underestimates the rate of its logarithmic flow with the active momentum scale because
the approximation omits gluon-splitting diagrams. As observed in Ref. [284], owing
to Eq. (32), the pion’s Poincaré covariant Bethe-Salpeter wave function must evolve
with ζ in the same way as ϕπ, but this constraint had generally been overlooked
in computations of observables using continuum methods in QCD. Such evolution is
important: it enables the dressed-quark and -antiquark degrees-of-freedom, in terms
of which the wave function is expressed at a given scale ζ2 = Q2, to split into less well-
dressed partons via the addition of gluons and sea quarks in the manner prescribed by
QCD dynamics. These and similar processes are incorporated naturally in bound-state
problems when the complete quark-antiquark scattering kernel is used; but aspects
are lost when that kernel is truncated, and so it is with the RL truncation.

The impact of this realisation on G(Q2) may be illustrated by considering the
Bethe-Salpeter wave function constructed from

S(k) = 1/[iγ · k +M ] , (52a)

nπ Γπ(k;P ) = iγ5
M

fπ

∫ 1

−1

dz ρν(z)
M2

(k + zP/2)2 + Λ2
π

, (52b)

ρν(z) =
Γ(32 + ν)√
π Γ(1 + ν)

(1 − z2)ν . (52c)

Inserting these formulas into Eq. (32), then with ν = 1 the result is ϕcl(x) in Eq. (5),
i.e. the PDA associated with QCD’s conformal limit. Hence, a computation of the
transition form factor in Eq. (51) using Eqs. (52) with ν = 1 will yield a result definitive
of a conformal-limit pion Bethe-Salpeter wave function, viz. a wave function that is
frozen to produce Eq. (5) at all scales ζ. Such a calculation yields the dot-dashed
(green) curve in Fig. 11, which is a monotonically increasing, concave function that
approaches the asymptotic limit associated with Eq. (7) from below.

As emphasised in connection with Eq. (37), however, the PDA at any scale
realisable with contemporary facilities is very different from ϕcl(x). The concave,
dilated PDA in Eq. (37) is obtained from Eq. (32) by using ν = −1/2 in Eqs. (52).
This knowledge enables one to compute G(Q2) via Eq. (51) using a Bethe-Salpeter
wave function that is frozen to produce Eq. (37) at all scales ζ. The result is the
long-dashed (blue) curve in Fig. 11. Like the prediction obtained using ν = 1, this
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curve is monotonically increasing and concave, and approaches its asymptotic limit
from below. The difference is that the asymptotic limit is not that associated with
Eq. (7). Instead, this curve approaches (8/3)fπ as Q2 → ∞.

A last illustration enables a unifying thread to be drawn between the material
detailed above and analyses of the neutral pion transition form factor that have
attempted to reconcile the BaBar measurements with Eq. (7), e.g. Refs. [274, 275, 283].
Consider therefore 2ρν(z) = δ(1 + z) + δ(1 − z) in Eq. (52b). This gives ϕπ(x) = 1
via Eq. (32), which is also the result obtained using a translationally invariant
regularisation of a momentum-independent quark-quark interaction [276]. (Some
treatments of the Nambu–Jona-Lasinio model fall in this class.) With this input,
Eq. (51) yields Q2G(Q2) ∝ [lnQ2/M2]2, and the mass-scale M can be tuned to
reproduce the BaBar data in Fig. 11. Notwithstanding that, the complete curve is
also monotonically increasing and concave, and approaches its asymptotic limit from
below [276]. Notably, the BaBar data have often been used to justify a “flat-top”
pion PDA: ϕπ(x) ≈ 1. Employing the factorised hard-scattering formula in this
case, one finds Q2G(Q2) ∝ [lnQ2/M2], a result which highlights an observation made
above, viz. Poincaré covariant treatments of the triangle diagram expressed by Eq. (51)
typically yield the correct power-law but produce an erroneous value of the anomalous
dimension.

Evidently, any computation of G(Q2) via Eq. (51) which uses a Bethe-Salpeter
amplitude that does not evolve with the resolution scale, ζ2 = Q2, produces a curve
Q2G(Q2) which approaches its asymptotic limit from below; but the value of that
limit depends on the model used for the pion’s (frozen) Bethe-Salpeter wave function
[276].

Evolution of the interaction current and vertices in Eq. (51) is missing from such
model calculations [284]; but in the context of Eqs. (32), (52), it can be translated
into an evolution of ν in Eq. (52c), i.e. one can reproduce any concave PDA ϕπ(x; ζ),
obtained via ERBL evolution of ϕπ(x; ζH), by using a suitably chosen value of ν(ζ).
Solving for ν(ζ) is straightforward because at any ζ > ζH , the ERBL-evolved form of
ϕπ(x; ζH) is

ϕπ(x; ζ) = [x(1 − x)]α(ζ)/B(1 + α(ζ), 1 + α(ζ)) . (53)

On the domain α(ζ) ∈ (0.3, 0.8) that is relevant to contemporary experiment and
theory [284]:

ν(α(ζ)) = −[5.4− 6.6α(ζ)]/[5.9− 2.8α(ζ)] . (54)

Employing Eqs. (52), (54) in Eq. (51), one obtains a result for G(Q2) that
expresses the impact of a Bethe-Salpeter wave function which evolves and thereby
interpolates between ϕπ(x; ζH) in Eq. (37) and ϕcl(x) in Eq. (5). This is the solid
(black) curve in Fig. 11. Obtained this way, Q2G(Q2) is monotonically increasing
and concave on the domain depicted, and reaches a little above the asymptotic limit
associated with Eq. (7). The growth is logarithmically slow, however; and whilst the
curve remains a line-width above the asymptotic limit on a large domain, logarithmic
growth eventually becomes suppression, and the curve thereafter proceeds towards the
QCD asymptotic limit from above. One thus has a simple illustration and concrete
realisation of the picture drawn in the penultimate paragraph preceding Eq. (51).

These remarks acquire additional meaning within the context provided by the
leading-twist expression for the transition form factor [40]:

G(Q2) = 4π2fπ

∫ 1

0

dxTH(x,Q2, α(ζ); ζ)ϕπ(x; ζ) , (55)



The pion: an enigma within the Standard Model 38

Figure 12. Prediction for Q2G(Q2)/(2π2) . Curves: solid (black) – result
obtained from Eq. (51) using RL-truncation propagators, amplitudes and vertices,
and ERBL evolution of the pion Bethe-Salpeter amplitude; long-dashed (blue) –
result obtained without that evolution; dotted (purple) – asymptotic limit, derived
from Eq. (7). Data: BaBar [96] – circles (red); CELLO [97] – diamonds (purple);
CLEO [98] – squares (blue); Belle [99] – stars (green). The shaded (green) band
is described in Ref. [280].

where TH(ζ) is the photon+quark+antiquark scattering amplitude appropriate to the
scale ζ. On the domain ΛQCD/ζ ≃ 0, TH(ζ) = (e2u − e2d)/(xQ

2). However, this is
far from an accurate representation of the scattering amplitude at an hadronic scale,
ζ = ζH ≈ 2GeV, a fact made plain by Eq. (51), which involves nonperturbatively
dressed propagators and vertices. Indeed, from a light-front perspective, this dressing
corresponds to inclusion of infinitely many Fock-space components in the description
of the pion bound-state, its constituents and their interactions. Now, owing to
convergence issues connected with the need to extrapolate from ΛQCD/ζ ≃ 0 →
ΛQCD/ζH , a twist expansion cannot systematically connect Eq. (55) with Eq. (51). On
the other hand, if RL-truncation DSE solutions are used for the dressed propagators
and vertices in Eq. (51), then one arrives at Eq. (55) on ΛQCD/ζ ≃ 0, except for a
mismatch ∼ [lnQ2/Λ2

QCD]
pG . As we have explained, this discrepancy originates in the

failure of RL truncation to reproduce the complete array of gluon and quark splitting
effects contained in QCD and hence its failure to fully express interferences between
the anomalous dimensions of those n-point Schwinger functions which are relevant in
the computation of a given scattering amplitude. It is ameliorated by the procedure
discussed in connection with Eq. (53). Naturally, if a similar procedure is employed
in revisiting the kindred calculation of the pion form factor, described in Sec. 6.1, one
can also correct the lnQ2-evolution of the RL prediction for Fπ(Q

2).
The γ∗γ → π0 transition form factor calculated from Eq. (51), using propagators

and vertices that are consistent with those employed in computing Fπ(Q
2), is depicted

as the dashed (blue) curve in Fig. 12. The solid (black) curve in this figure is obtained
from the dashed curve via multiplication by a Q2-dependent evolution factor. That
factor is a ratio: the denominator is G(Q2) computed using Eqs. (51), (52) with a
frozen value of α = 0.3, representing the RL result in Eq. (40); and the numerator
is G(Q2) calculated using those same equations but with ν determined via Eq. (54)
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as α experiences one-loop ERBL evolution on Q2 > ζ2H . This solid curve expresses
what Ref. [284] judges to be its best prediction for the transition form factor. The
two salient features of the prediction are clear. Notwithstanding the fact that G(Q2)
was evaluated using a framework which produces a pion PDA that is a broad, concave
function at the hadronic scale ζH : the calculated transition form factor does not
materially exceed the asymptotic limit in Eq. (7); and this same approach explains
both existing measurements of Fπ(Q

2) and its hard-photon limit. Importantly, the
solid curve in Fig. 12 behaves in precisely the manner one would expect based on the
analyses of simple models described in connection with Fig. 11. Hence, one may argue
that the marked similarity between the solid curves in Figs. 11 and 12 means that
the simple model expressed by Eqs. (52), (54) contains all that is essential to fully
comprehend the nature of the transition form factor.

In the context of a survey of theoretical analyses of the γ∗γ → π0 transition [280],
the prediction in Ref. [284] is a member of that class of studies, denoted by the (green)
shaded band which are consistent with all non-BaBar data and confirm the standard
QCD factorisation result in Eq. (7). In particular, the solid (black) curve in Fig. 12
is similar to the light-cone sum rules result of Ref. [278] on their common domain:
sum rules analyses are restricted to Q2 & 1GeV2. It is worth remarking, too, that on
Q2 & 10GeV2, the solid (black) curve in Fig. 12 also matches the AdS/QCD model
result in Ref. [279].

One may contrast the scheme for calculating G(Q2) described above, which
connects a prediction for the pion’s PDA with the Q2-dependence of the transition
form factor, with the class of approaches that choose instead to infer a form of ϕπ

by requiring agreement with the BaBar data, e.g. Ref. [275]. A point of comparison
is provided by Table II therein, which lists Gegenbauer-3/2 moments associated with
the PDAs judged viable by this criterion. These moments are defined via

aj(ζ) =
2

3

2 j + 3

(j + 2) (j + 1)

∫ 1

0

dxC
(3/2)
j (2 u− 1)ϕπ(u; ζ) , (56)

where {C(3/2)
j , j = 1, . . . ,∞} are Gegenbauer polynomials of order α = 3/2. Using

the PDAs in Eqs. (37), (40) one finds (at ζH = 2GeV):

a2 a4 a6 a8 a10 a12
DB 0.15 0.057 0.031 0.018 0.013 0.0093
RL 0.23 0.11 0.066 0.045 0.033 0.025

. (57)

The root-mean-square relative-difference between these moments and those
determined in Ref. [275] is roughly 100%. Thus the PDA needed to reproduce the
BaBar data is irreconcilable with that determined in an ab initio computation that
unifies the electromagnetic form factors of the charged and neutral pions.

The computation of the γ∗γ → π0 transition form factor [284] reviewed here
completes a unified description and explanation of this transition with the charged pion
electromagnetic form factor, its valence-quark distribution amplitude, and numerous
other quantities [150, 200, 203, 253]. Importantly, it demonstrates that a fully self-
contained and consistent treatment can readily connect a pion PDA that is a broad,
concave function at the hadronic scale with the perturbative QCD prediction for the
transition form factor in the hard photon limit. As evident in Fig. 12, the prediction for
G(Q2) agrees with all available data, except that obtained by the BaBar collaboration,
and is fully consistent with the hard scattering limit. It is worth reiterating that
the normalisation of the γ∗γ → π0 transition form factor’s hard scattering limit is
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set by the pion’s leptonic decay constant, whose magnitude is fixed by the scale
of dynamical chiral symmetry breaking, a crucial feature of the Standard Model.
Therefore, in order to claim an understanding of the Standard Model, it seems critical
to obtain new, accurate and precise transition form factor data on Q2 > 10GeV2 so
that contemporary predictions can reliably be tested.

8. Epilogue

Our knowledge of the nature of the pion and its properties has evolved continuously
since its discovery almost seventy years ago; but, during the last fifteen years, our
ability to probe the pion’s interior and develop a clear picture of its internal structure
has received a great boost from experiments enabled by modern facilities. Almost
in tandem, there have been major advances in treating the continuum bound-state
problem in QCD so that new predictions have been made, which serve to motivate
further experiments at upgraded facilities. These new studies can potentially provide
conclusive answers to some longstanding questions and supply evidence needed to
incorporate the kaon into a gestalten whole. The road to complete understanding is
long. It has been and continues to be travelled by many wanderers; and it is too early
to say the end is in sight. Notwithstanding that, the journey has revealed a great deal
about the origin of visible mass in the Universe. The next steps must be to consolidate
the picture that has emerged; and to detail the role played by the pion, and Nambu-
Goldstone modes generally, in the confinement of systems constituted from quarks
and gluons.

Confinement is a key problem in modern physics and its solution is unlikely to
be found through theoretical analysis alone. A multipronged approach is required,
involving constructive feedback between experiment and theory in studies of, e.g.: the
production and spectrum of excited and exotic hadrons; hadron elastic and transition
form factors; generalised and transverse momentum dependent parton distributions,
and particularly fragmentation functions. Experimental data, and its correlation and
parametrisation using models will be essential in this interrelated effort. However,
as the discussion herein highlights, there is an overriding need for reliable, QCD-
connected calculations of all these quantities, for only following the comparisons that
such information enables can we truly begin to arrive at an understanding of QCD,
the strong interaction sector of the Standard Model.
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