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Abstract

We elaborate on how to build, in a systematic fashion, two–field Abelian extensions of the
Born–Infeld Lagrangian. These models realize the non–trivial duality groups that are allowed
in this case, namely U(2), SU(2) and U(1)×U(1). For each class, we also construct an explicit
example. They all involve an overall square root and reduce to the Born–Infeld model if the
two fields are identified, but differ in quartic and higher interactions. The U(1) × U(1)
and SU(2) examples recover some recent results obtained with different techniques, and we
show that the U(1)× U(1) model admits an N = 1 supersymmetric completion. The U(2)
example includes some unusual terms that are not analytic at the origin of field space.
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1 Introduction

The Born–Infeld (BI) theory [1] is described by the Lagrangian

L = f 2

[
1 −

√
1 +

1

2 f 2
(F · F) − 1

16 f 4

(
F · F̃

)2 ]
, (1.1)

where Fmn is an electromagnetic field strength in the standard four–component notation.

It was initially put forward as an elegant refinement, based on the determinant of ηmn +

1

f
Fmn, of an earlier proposal [2] enforcing a dynamical upper bound on the electric field of a

point charge. Both Lagrangians involve a square root, and both models do entail the same

dynamical bound, much as occurs for the speed in Special Relativity. However, the choice

of eq. (1.1) is particularly interesting, precisely due to the last term inside the square root.

Schrödinger soon noticed [3], indeed, that the non–linear BI field equations afford a subtle

and surprising realization of electric–magnetic duality in an interacting system, or if you will

in a non–linear relativistic medium.

The BI theory made a striking and unexpected comeback in String Theory [4], in the

1980’s, when Fradkin and Tseytlin [5] first linked it to the dynamics of open strings in a

constant electromagnetic background. The phenomenon is of utmost interest, since it is

an exact manifestation of the deformed spectra [6] of D–branes [7], the extended objects

that populate orientifold vacua [8]. However, two types of corrections affect it. The first

is the generic presence of interactions involving derivatives of Fmn, while the second is the

non–abelian extensions that manifest themselves when D-branes are superposed. Both types

of effects are unfortunately not fully understood (for a review see [9]), but the BI theory

remains an important benchmark for all these searches.

A second, related reason of interest on the BI theory, has to do with the partial breaking

of supersymmetry. When completed by the addition of gaugino interactions [10, 11], the

model of eq. (1.1) conceals indeed a second, non–linearly realized supersymmetry [12–17],

while f defines the supersymmetry breaking scale. The superspace formulation rests on

N = 2 constrained superfields, much along the lines of what happens for the Volkov–Akulov

model [18], and thus for the N = 1 → N = 0 breaking [19]. This is nicely consistent with the

link between BI and D-branes, where partial breaking found originally a proper setting [20].

Partial breaking of supersymmetry affords an alternative realization in models of N = 1

global supersymmetry with non–renormalizable [21] (magnetic) superpotential terms and

Fayet–Iliopoulos [22] terms. In decoupling limits, one can recover multi–field extensions of
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the BI theory depending of N field strengths F i
mn, i = 1, ..N with [13–15,17]: they involve

in general multiple square–roots and have been fully classified up to cases with three gauge

fields. It would be interesting to clarify their possible links with D-branes. At any rate, in

these multi-field models the duality group does not extend beyond the BI case.

Eventually one would like to extend the BI construction to Supergravity [23], which

would provide a low–energy characterization of D-brane systems with (partially) broken

supersymmetry. D-branes typically do bring along, in general, non–linear realizations of

supersymmetry [24], since for one matter their presence in the vacuum breaks some trans-

lational symmetries, which affect their low–energy modes via shifts of scalars. The coupling

of constrained multiplets to Supergravity [25] has led to a resurgence of these ideas [26], also

in connection with “brane supersymmetry breaking” [27] and the KKLT construction [28].

In this case supersymmetry is fully broken, but it is extremely important to explore and

characterize similar types of systems allowing for partial breaking, in various dimensions.

All in all, the non–BPS combinations of BPS objects of brane supersymmetry breaking are

possibly the simplest entry point into the intricate dynamics of non–supersymmetric brane

systems (for a recent review see [29]).

As we have anticipated, a key missing ingredient of present constructions are the gen-

eralized electric–magnetic dualities that play a central role in extended supergravity [30].

Duality symmetries for systems of Abelian field strengths were characterized, in general, by

Gaillard and Zumino (GZ) [31]. Drawing some inspiration from [30, 32], they showed that,

with N Abelian field strengths F i
mn the maximal possible duality group is U(N), which can

extend at most to Sp(2N,R) in the presence of scalars, and is accompanied by chiral rota-

tions if fermions are present. The simplest example of this type is pure N = 4 supergravity,

whose duality group is SU(4) × Sp(2, R), where the latter also acts on the axion–dilaton

system [33]. These results were analyzed in depth and extended in a number of works fol-

lowing [31], which include [34, 35]. The GZ formulation also raised the natural question

of building corresponding extensions of the BI theory. The problem was set up in general

in [37], but no analytic solutions were found for N > 1. Non linear deformations of N = 2

Electrodynamics that are U(1) duality invariant were also investigated. However, they were

not proven to be non–linear realisations of a higher N = 4 supersymmetry Ref. [35, 36].

During the last decade, Ivanov and Zupnik (IZ) were responsible for a major independent

line of development, which rests on the combined use of master actions and tensor auxil-
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iary fields [38, 39]. Master actions combining field strengths and their duals are a familiar

tool to investigate electric–magnetic dualities, and in connection with scalar auxiliary fields

they make Legendre transforms simple and elegant for the BI theory [16]. While duality

transformations mix, in general, the field strengths F i
mn and their duals Gi

mn, which are

non–linear functions of them, the IZ tensor auxiliary fields transform linearly under duali-

ties, in a universal way that is independent of the dynamics. All bona fide interactions that

are duality invariant can be expressed solely in terms of them, which makes a systematic

search for extended dualities possible. However, the reversal to the ordinary field strengths

is typically difficult, and thus no simple closed–form multi–field examples were found.

In this paper we build, along the lines traced by IZ, three prototype analytic extensions of

the BI model involving two field strengths F i
mn (i = 1, 2) that realize the possible extended

duality groups, namely U(2), SU(2), U(1)×U(1). All these models reduce to the BI theory

when the two field strengths are identified. The U(2) model is new, but includes a peculiar

term that is not analytic at the origin of field space, while the others reproduce results that

we had previously presented in [40]. In the weak–field limit, all these models reduce to two

copies of the Maxwell theory. Moreover, they all rest on one and the same expression in

terms of auxiliary variables, which emerges naturally and is essentially the same that, for

N = 1, determines the BI theory. For more than two fields we have not found, so far,

examples of comparable simplicity.

The plan of the paper is as follows. In Section 2 we review the previous construction [38,39]

of models with a single field strength. In Section 2.2 we present a one–parameter deformation

of the BI theory that is also invariant under U(1) duality and contains some contributions

that are not analytic at the origin of field space. In Section 3 we turn to the two–field case,

and the following subsections describe the construction of our three prototype examples,

with duality groups U(2), SU(2) and U(1) × U(1). The first model contains non–analytic

terms that are akin to those met in Section 2.2. In Section 4 we discuss the possibility of

extending the prototype models in order to accommodate N = 1 supersymmetry. Finally,

Section 5 contains some concluding remarks.
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2 One–Field Models: BI Theory and a Family of Extensions

Master actions combining field strengths with their duals are a familiar tool to approach

dualities via Legendre transforms, but they can be very useful also to address the solution

of the GZ constraints [31] and the continuous duality symmetries of field equations.

The approach that will concern us here originates from the work of IZ [38, 39]. Their

key step was the introduction of tensorial counterparts Vαβ and V α̇β̇ of the Maxwell field

strengths Fαβ and F α̇β̇. We shall adopt this two–component notation to a large extent,

reserving to Section 5 the translation of final results into the four–component form.

The authors of [38] first considered the redefinitions

Fαβ =

(
1 + V 2

1− V 2 V 2

)
Vαβ , F α̇β̇ =

(
1 + V 2

1− V 2 V 2

)
V α̇β̇ . (2.1)

Also in view of the following sections, let us define the scalar quantities

φ = F 2 , φ = F
2
, (2.2)

ν = V 2 , ν = V
2
, a = ν ν . (2.3)

The first two involve Fαβ and its complex conjugate, while the others involve the auxiliary

field V . Lorentz invariance constrains the Lagrangian to depend on the variables of eq. (2.2),

and the standard BI action reads

SBI =

∫
d4x

[
1 −

√
1

4

(
φ − φ

)2
+
(
φ + φ

)
+ 1

]
. (2.4)

Interestingly, however, the redefinitions of eq. (2.1) result in the far simpler, rational form

SBI = − 2

∫
d 4x

Re [ν] + a

1 − a
, (2.5)

an expression that will recur in the following sections.

Schrödinger readily noticed [3] that the BI field equations

∂βα̇ P
β
α − ∂αβ̇ P

β̇

α̇ = 0 , (2.6)

where

P αβ(x) = i
δS

δFαβ(x)
, P

α̇β̇
(x) = − i

δS
δF α̇β̇(x)

(2.7)
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are complicated non–linear functions of the Fαβ and F α̇β̇ determined via the “constitutive

relations” (2.7), together with the Bianchi identities

∂βα̇ F
β
α − ∂αβ̇ F

β̇
α̇ = 0 , (2.8)

are covariant under the duality rotations

δFαβ = η Pαβ , δPαβ = − η Fαβ , (2.9)

in analogy with the free Maxwell system.

The natural mixing of eqs. (2.6) and (2.8) is indeed strikingly compatible with the origin

of P and P from the BI action via eq. (2.7). This crucial consistency condition and its

multi–field extensions were later formulated systematically by GZ in [31] and in [34]. In the

single–field case there is a single constraint,

F 2 + P 2 − F 2 − P
2
= 0 , (2.10)

which holds identically, as one can verify, for the BI theory.

The relevance of the tensor auxiliary variables Vαβ and V α̇β̇ goes well beyond the simplifi-

cations evident in eq. (2.5). While other options have been explored to linearize the BI action,

as in [16], the auxiliary fields Vαβ, V α̇β̇ possess a special virtue: duality transformations act

linearly on them, according to

δVαβ = −i η Vαβ, δV α̇β̇ = i η V α̇β̇ , (2.11)

in a universal fashion that is independent of the dynamics. These relations, whose origin we

are about to review, clearly imply that a in eq. (2.3) is invariant under the duality, and thus

retain their form even if Vαβ and V α̇β̇ are rescaled by an arbitrary function “lapse function”

h(a).

The reader should appreciate the sharp contrast between eq. (2.11) and the effect of

duality transformations on the ordinary variables, since the actual nature of the Pαβ and

P α̇β̇ reflects the specific form of the Lagrangian. The striking simplification inherent in

eq. (2.11) makes it possible to address dualities and corresponding generalizations of the BI

theory in a systematic fashion.
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2.1 The Master Action

In addressing generalized dualities, it is convenient to rely on “master actions” that combine

the dynamical curvature Fαβ and the auxiliary field Vαβ with their complex conjugates. For

the one–field systems of interest in this section, these are built integrating over space time

the Lagrangians

L =
1

2

(
φ+ φ

)
− 2 h

(
F · V + F · V

)
+ h2 (ν + ν) + E

(
ν, ν

)
. (2.12)

These rest on generic Lorentz–invariant interaction terms E
(
ν, ν

)
, and extend slightly the

result of the second paper in [39], since they also involve the duality–invariant scalar “lapse

function” h
(
a
)
, which will prove very useful in the following. The BI action is a special case,

and is recovered if

E = 2 a
1 + a

(1 − a)2
, (2.13)

h =

√
2

1 − a
. (2.14)

In the following we would like to characterize, following IZ [39], the subset of actions whose

equations of motion are invariant under the duality (2.10), where now

Pαβ(F, V ) = i (Fαβ − 2 hVαβ) , (2.15)

and to display a deformation of the BI example. Let us notice aforehand that, when combined

with eq. (2.9), this relation implies the universal linear duality transformations for Vαβ and

V α̇β̇ of eq. (2.11).

The equations of motion resulting from the Lagrangian (2.12) and the corresponding

Bianchi identities can be duality–covariant only for suitable choices of the interaction E (ν, ν).

The restriction, embodied in the constraint (2.10), can be recast in a form that makes its

group-theoretical meaning quite transparent.

The equations linking Fαβ to Vαβ and V α̇β̇ play a key role in the formalism. They obtain

since the Lagrangian L(V, F ) is to be stationary with respect to variations of the auxiliary

fields, and read

Fαβ =

(
h +

2 ν ∂ah (ν ∂ν E − ν ∂ν E) + h ∂ν E

h (4 a ∂ah + h)

)
Vαβ (and c.c.) . (2.16)
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They relate, for any dynamical model, φ and φ to the quantities listed in eq. (2.3). Using

this result and definition of P in eq. (2.15), one can recast eq. (2.10) in the form

ν ∂ν E − ν ∂ν E = 0 . (2.17)

This first–order equation demands that E depend on the auxiliary fields only via the scalar

a of eq. (2.3), which is clearly invariant under the U(1) duality.

If E = E(a), eq. (2.16) simplifies considerably and reduces to

Fαβ = (h + p ν) Vαβ (and c.c.) , (2.18)

where

p =
Ea

4 a ∂ah + h
, (2.19)

and eq. (2.18) implies the two useful results

F · V = (h + p ν) ν (and c.c.) , (2.20)

φ = (h + p ν)2 ν (and c.c.) . (2.21)

In terms of the auxiliary variables, the Lagrangian (2.12) reduces to

L = − 1

2
(ν + ν)

(
h2 − a p2

)
+ I(a) , (2.22)

where

I(a) = E − 2 a h p , (2.23)

and on account of eq. (2.19) I is determined by the differential equation

∂aI = − h p + 2 a (p ∂ah − h ∂ap) . (2.24)

Any choice of I(a) yields a duality invariant model, but one must eventually return to

the standard variables Fαβ and F α̇β̇, and thus, on account of Lorentz invariance, to φ and φ

of eq. (2.2). The relevant information is contained in eq. (2.21), but the inversion problem

is typically complicated and closed–form expressions for the Lagrangian obtain only in a

limited number of cases.
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2.2 Explicit Solutions

To begin with, in the weak limit for the interactions

p ≃ 0 , (2.25)

and one recovers the Maxwell Lagrangian, which in two–component notation reads

L = − 1

2

(
F 2 + F 2

)
. (2.26)

Formally, one might also contemplate the opposite limit

h ≃ 0 , (2.27)

which amusingly leads to the Lagrangian

L =
1

2

(
F 2 + F 2

)
, (2.28)

where the roles of electric and magnetic fields are somehow interchanged.

In general, if both h and p are nonzero, it proves convenient to choose the gauge

h = p . (2.29)

The important step, as we have stated already, is to find a in terms φ and φ, and to this end

let us note the two consequences of eq. (2.21),

ν + ν =
φ + φ − 4 a h2(a)

h2(a)(1 + a)
, (2.30)

φ φ (1 + a)2 = a
[
h2(a) (1 − a)2 + φ + φ

]2
. (2.31)

Making use of eq. (2.30), the Lagrangian can be recast in the form

L = − 1

2

(
φ+ φ

) 1 − a

1 + a
+ 2 a h2

1 − a

1 + a
+ I(a) , (2.32)

where

∂a I = − h2(a) . (2.33)

The transition to the final form in terms of space–time fields rests on the elimination of a

via eq. (2.31), which is simple only for special choices of the “lapse function” h(a), and thus

of the interaction terms I(a) or E(a).
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The family of choices

h2 =
β + α

√
a + γ a√

a (1− a)2
, (2.34)

with α, β and γ three constants leads to simple solutions of eq. (2.31) for a. Indeed, while

it would turn eq. (2.31) into a fourth–order equations, the latter is the perfect square of
√
φ φ (1 + a) =

√
a
[
h2(a) (1 − a)2 + φ + φ

]
, (2.35)

which can be easily solved for all this choices, with the end result

I = δ − α + (β + γ)
√
a

1− a
− (β − γ) ArcTanh

(√
a
)
. (2.36)

In terms of auxiliary variables, the corresponding Lagrangians read

L = − 1

2

β + α
√
a + γa√

a (1− a)
(ν + ν) + I , (2.37)

and the appropriate Maxwell limit obtains provided one chooses β = 0, α = 2 and the

integration constant δ = 2. Doing this and solving eq. (2.30) for a yields

L = f 2


1 −

√√√√
(
1 +

F 2 + F
2

2 f 2

)2

− 1

f 2

√
F 2 F 2

(
1

f 2

√
F 2 F 2 − γ

)
(2.38)

+ γArcTanh



1 + F 2+F

2

2 f2 −
√(

1 + F 2+F
2

2 f2

)2
− 1

f2

√
F 2 F 2

(
1

f2

√
F 2 F 2 − γ

)

1

f2

√
F 2 F 2 − γ





 ,

where we have also reinstated the scale f of eq. (1.1). Notice that these models involve the

combination
√
F 2 F 2, which is not analytic at the origin of field space. Still, one can argue

on the basis of standard theorems of Calculus that their behavior is regular enough to grant

a well–defined Cauchy problem. This type of feature will show up again in the following

section. The choice γ = 0 clearly recovers the standard BI action, whose form in auxiliary

variables was already given in (2.5).

3 Two–field Models with Extended Dualities

We can now move on to a less explored territory. Our next aim is to construct examples

of non–linear Lagrangians for a pair of field strengths F i
αβ , F

i

α̇β̇ , (i = 1, 2). As we have

anticipated, we shall rely on a slight generalization of the approach spelled out in the last
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paper in [39], which will rest again on a “lapse function” h. Our main result will be a new

explicit solution with U(2) duality, but the same techniques will also recover, in a clear

fashion, other models that we had recently obtained less systematically in [40], with SU(2)

and U(1) × U(1) duality groups. On the other hand, the model in eq. (3.13) of [40] with

manifest U(1) symmetry does not belong to this list, despite its double self–duality under

Legendre transforms of both F and G. It lacks in fact the simultaneous presence of electric

and magnetic duality generators, which is instrumental in making the IZ method particularly

effective.

We shall restrict again our attention to Lagrangians

L(F k, F
l
) (k, l = 1, 2) (3.1)

that are manifestly invariant under Lorentz transformations and under the O(2) transfor-

mation

δξF
k
αβ = ξkl F l

αβ , δξF
k

α̇β̇ = ξkl F
k

α̇β̇ , ξkl = −ξlk . (3.2)

As in the previous section (see eq. (2.2)), Lorentz invariance leads one to define complex

scalar variables, which are now the matrices

φkl = F k · F l , φ
kl

= F
k · F l

, (3.3)

and to regard the Lagrangian as a real function of them. The resulting non–linear equations

of motion

Ek
αα̇ ≡ ∂β̇

α P
k

α̇β̇(F ) − ∂
β
α̇ P k

αβ(F ) = 0 (3.4)

involve the dual nonlinear field strengths

P k
αβ(F ) ≡ i

∂L

∂F kαβ
= 2 i F l

αβ

∂L

∂ϕkl
(and c.c.) , (3.5)

while the ordinary field strengths F k
αβ , F

k

α̇β̇ obey the Bianchi identities

Bk
αα̇ ≡ ∂β̇

αF
k

α̇β̇ − ∂
β
α̇F

k
αβ = 0 . (3.6)

As in the last paper in [39], the master actions for these manifestly U(1) invariant La-

grangians rest on complex auxiliary tensor fields V k
αβ , V

k

α̇β̇ . However, here they also depend

on a “lapse function” h, and read

L =
1

2

(
φt + φt

)
− 2 h

(
F k · V k + F

k · V k
)

+ h2 (νt + νt) + E
(
νkl, νkl

)
, (3.7)
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where

νkl = V k · V l , νt = Tr (ν) , (and c.c.) . (3.8)

From now on, the suffix t will identify, for brevity, a trace of the corresponding matrix.

Eq. (3.7) implies that

P k
αβ = i

(
F k
αβ − 2 hV k

αβ

)
, (3.9)

and in all these constructions the function h will be invariant under the full duality at stake.

The algebraic equations for V k
αβ , V

k

α̇β̇ obtain varying L(V, F ) with respect to V k
αβ , V

k

α̇β̇,

define the ordinary field strengths in terms of the auxiliary tensors, and are of the form

F k = hV k + gkn V n , (and c.c.) , (3.10)

where

gkn =
1

h

[
∂E

∂νkn
− R

∂h

∂νkn

]
, (3.11)

with

R =
νml ∂E

∂νml + νml ∂E

∂νml

νml ∂h
∂νml + νml ∂h

∂νml + 1

2
h
. (3.12)

Depending on the actual duality symmetry, the following “magnetic” GZ constraints

Mkl ≡ (P kP l) + (F kF l) − c.c. = 0 , (3.13)

or at least some combinations thereof, will hold. On the other hand, the “electric” GZ

constraint

Ekl ≡ (F kP l) − (F lP k) − c.c. = 0 , (3.14)

which is unique in the two–field case, will always hold as a result of the manifest U(1)

symmetry that we have assumed for the Lagrangians. In detail, this U(1) symmetry means

that all terms in the Lagrangian can only depend, a priori, on the five independent variables

νt ≡ Tr (ν) , νt ≡ Tr (ν) , at ≡ Tr (A) , νd ≡ Det (ν) , νd ≡ Det (ν) , (3.15)

where the Hermitian matrix A is defined as the product of the two matrices ν and ν:

A = ν ν , ad = Det (A) . (3.16)

Clearly the determinant of A, which we shall call ad in the following, is not an independent

quantity. Rather, it is simply the product of νd and νd.
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These results can be understood as follows. To begin with, eqs. (3.2), (3.9) and (3.10)

imply that the “electric” U(1) transformations within U(2) act on V k
αβ and V

k

α̇β̇ according

to

δV k
αβ = ξkl V l

αβ (and c.c.) , (3.17)

and therefore

δν = [ξ, ν] , (3.18)

so that νt, νd and at and, a fortiori, ad, are all invariant under the “electric” U(1).

Making use of eqs. (3.9) and (3.10), the GZ constraints take the form

Mkl ≡
(
gkn νnl + gln νnk

)
− c.c. = 0 , (3.19)

Ekl ≡
(
gkn νnl − gln νnk

)
+ c.c. = 0 . (3.20)

Notice also that, on account of the manifest U(1) “electric” duality symmetry, the matrix g

reduces to

gkn = p νkn + q
(
ν−1
) kn

+ r δkn , (3.21)

where p is a real function while q = q1+ i q2 and r = r1+ i r2 are complex functions, all built

out of derivatives of the “interaction” term E and of the “lapse function” h with respect to

the five invariants of eq. (3.15). In detail:

p =
1

h

[
∂E

∂at
− R

∂h

∂at

]
, q =

νd

h

[
∂E

∂νd
− R

∂h

∂νd

]
, r =

1

h

[
∂E

∂νt
− R

∂h

∂νt

]
. (3.22)

At this point, the “electric” GZ (3.20) constraint is identically satisfied while the three

“magnetic” GZ constraints (3.19) can be cast in the convenient form

M12 ∼ r1 Im [ν
12] + r2 Re [ν

12] , (3.23)

M11 + M22 ∼ 2 q2 + r1 Im [νt] + r2 Re [νt] , (3.24)

M11 − M22 ∼ r1 Im [ν
11 − ν22] + r2 Re [ν

11 − ν22] , (3.25)

where the second of these equations only involves invariants of the “electric” U(1) duality

group. More in detail, the second constraint corresponds to the U(1) generator in U(2)

that commutes with all others, while the first and third constraints correspond to the two

generators that close, together with the “electric” generator, into the SU(2) algebra.

These equations merely identify the types of the solutions, which fall into three classes

associated with U(2), SU(2) and U(1)×U(1) duality symmetry. Arriving at explicit examples
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entails a main complication, the inversion problem to recover their forms in terms of standard

variables.

3.1 A Model with U(2) Duality

In order to attain U(2) duality, all three equations of the system (3.23)–(3.25) must be

satisfied for generic values of the νij . Thus, r1, r2 and q2 must vanish, and these conditions

imply that h and E can only depend on at, the trace of A, and on its determinant ad.

One can also state, equivalently, that two–field models admitting the maximal U(2) du-

ality symmetry must be also compatible with three “magnetic” transformations realized

as

δηF
k
αβ = ηklP l

αβ , δηP
k
αβ = − ηklF l

αβ . (3.26)

Here the symmetric matrix ηkl encodes three real parameters, and the equations of mo-

tion (3.4) and the Bianchi identities (3.6) are to be covariant under eq. (3.26). The U(2)

transformations for the auxiliary tensor fields V k
αβ and V

k

α̇β̇ read

δV k
αβ =

(
ξkl − i ηkl

)
V l
αβ , δV

k

α̇β̇ =
(
ξkl + i ηkl

)
V

l

α̇β̇ , (3.27)

where the antisymmetric matrix associated to the “electric” U(1) was introduced in eq. (3.2).

These transformations imply corresponding ones for the complex scalar variables νkl, νkl,

which can be summarized in the compact matrix form

δν = [ξ, ν]− i{η, ν} , δν = [ξ, ν] + i{η, ν} . (3.28)

Consequently, the Hermitian matrix A transforms as

δA = [ξ + i η,A] , (3.29)

and one can indeed recover the two U(2) invariants that we had identified starting from

eqs. (3.23)–(3.25), the trace at of A and its determinant ad.

Eqs. (3.23)–(3.25) all vanish for this class of models, and as we have explained r = 0 and

q is purely real and equal to q1. As a result, the field strengths F k
αβ and their duals P k

αβ can

be represented as

F k
αβ =

(
h δkl + p νkl + q1 ν

−1 kl
)
V l
αβ , (3.30)

P k
αβ =

(
−h δkl + p νkl + q1 ν

−1 kl
)
V l
αβ . (3.31)
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where p and q1 take the form

p =
1

h

h ∂atE + 8 ad (∂adh ∂atE − ∂ath ∂adE)

4 at ∂ath + 8 ad ∂adh + h
, (3.32)

q1 =
1

h

h ad ∂adE − 4 ad at (∂adh ∂atE − ∂ath ∂adE)

4 at ∂ath + 8 ad ∂adh + h
. (3.33)

Notice that q1 is a key new ingredient, which had no analogue in the one–field case. One is

thus led to Lagrangians of the form

L =

[
1

2

(
−h δkn + p νkn + q1 ν

−1 kn
) (

h δnl + p νnl + q1 ν
−1nl

)−1
ϕlk + c.c.

]
+ I , (3.34)

where

I = E − 2 at p h− 4 q1 h (3.35)

is to satisfy the two conditions

∂atI = − h p + 2 at (p ∂ath − h ∂atp) + 4 (q1 ∂ath − h ∂atq1) , (3.36)

∂adI =
h q1

ad
+ 2 at (p ∂adh − h ∂adp) + 4 (q1 ∂adh − h ∂adq1) . (3.37)

In analogy with the one–field case, it is convenient to regard p and q1 as independent vari-

ables, but here one is also to verify the integrability condition

ad ∂adh [3 p + 4 (at ∂atp + 2 ∂atq1)] + ∂ath [q1 − 4 ad (at ∂adp + 2 ∂adq1)]

+ h (∂atq1 − ad ∂adp) = 0 . (3.38)

One can recast the Lagrangian in a form that only involves the auxiliary variables,

L =
1

2

(
−h2 + 2 p q1 + at p

2
)
(νt + νt) +

1

2

(
−p2 +

q21
ad

)
(νt νd + νt νd) + I , (3.39)

but the eventual conversion of L into normal variables rests on the possibility of solving the

algebraic equations

φkl =
(
h δkn + p νkn + q1 ν

−1 kn
)
νns

(
h δsl + p νsl + q1 ν

−1 sl
)

(3.40)

and their complex conjugates for the five variables of eq. (3.15).

So far we have been completely general, but our aim is to provide some instructive exam-

ples, and one can see that the Lagrangian (3.39) simplifies drastically if

q1 =
√
ad p . (3.41)
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Choosing, as in the one–field case, the gauge h = p, the self–consistency condition (3.38)

reduces to
√
ad ∂adh − ∂ath = 0 , (3.42)

which is simply solved provided h depends on at and ad only via the combination

a = at + 2
√
ad . (3.43)

Let us stress that the solution considered in [37] does not belong to this class. We shall

return to this point shortly.

All in all, in this fashion the Lagrangian (3.34) reduces to

L = − (1 − a)h(a)2 Re[νt] + I(a) , (3.44)

with

∂aI = − h2 , (3.45)

in striking analogy with eq. (2.32) for the one–field case.

Using the definition (3.40) of the matrix φ in terms of the auxiliary variables, one can set

up the inversion problem to ordinary field variables via the following relations:

φt = h2 [νt + a(νt + 2)] , (3.46)

Det(φ− φ) = h4 (1 − a)2 (νd + νd + a − νt νt − 2
√
ad)

= h4 (1 − a)2
[
(
√
νd −

√
νd)

2 + a − νt νt

]
, (3.47)

φd =
h4

νd
[νd(1 + νt) +

√
ad(νt + a)]

2

= h4
[√

νd(1 + νt) +
√
νd(νt + a)

]2
. (3.48)

Using these expressions, one thus arrives at the important equation

a
(
h2

1 + 2 Re [φt]
)2 − (1 + a)2

[
Det[φ− φ] + |φt|2 − 2

(
Re [φd] −

√
|φd|2

)]
= 0 , (3.49)

where

h1 = (1 − a) h , (3.50)

which is the counterpart of eq. (2.31) of the one–field case. Notice however the presence

of the square root in the last term, which brings this construction beyond the framework

considered by [37], and the implicit positivity condition on the last group of terms, which

will be important for the final Lagrangian that we are about to display.
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The simplest choice for h1 that makes it possible to solve eq.(3.49) analytically is

h1 =
√
2 −→ h =

√
2

1 − a
. (3.51)

In this case eq. (3.49) becomes quadratic, and the Lagrangian (3.44) takes again the form

that we already came across in eq. (2.5),

L = − 2

1 − a

(
Re [νt] + a

)
, (3.52)

where the choice in eq. (3.51) also guarantees the correct weak–field limit. This Lagrangian

is formally identical to the one previously considered in the last paper in [39] with reference

to the construction in [37], but for a crucial difference. We started from the condition

(3.41), which was motivated by the simplifications it brought about and led to identify the

combination a of eq. (3.43). On the other hand, the authors of [37] demanded that there

be no dependence on ad, which led to the identification of a with at and to the condition

that q1 vanish, as can be seen from eq. (3.33). All in all, it was then impossible, in [37], to

perform the inversion analytically.

With our choices one can now revert to the ordinary variables φkl, solving eq. (3.49) for

a with h1 as in (3.51) and substituting in the Lagrangian (3.52). The end result (with the

scale f of eq. (1.1) set to one for brevity),

L = 1 −
√

(1 + Re [φt])
2 − |φt|2 − Det[φ− φ] + 2

(
Re [φd] −

√
|φd|2

)
, (3.53)

has U(2) duality and reduces to the BI theory if the two Abelian field strengths coincide.

Notice the peculiar inner square root, whose argument is positive semi–definite but is not

analytic at the origin of field space. Notice also that, on account of eq. (3.49), the combination

of the last four terms inside the outer square root is bound to be negative, in analogy with

the standard BI case, which is recovered if the two fields are identified.

3.2 A Model with SU(2) Duality

In models with SU(2) duality, only eqs. (3.23) and (3.25) must be satisfied. This requires,

in general, the vanishing of r1 and r2, but not anymore the vanishing of q2. Alternatively,

the η matrix in the transformations of eq. (3.26) is now traceless, and one can see that the

remaining conditions imply that f and E can now depend on at and on the two combinations
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Re [νd] and Im [νd]. As a result, in the SU(2) case the field strength F k
αβ can still be represented

as

F k
αβ =

(
h δkl + p ν kl + q ν−1 kl

)
V l
αβ , (3.54)

but now q is complex.

In general, in auxiliary variables one is confronted with expressions of the form

L =

[
−h2 + p2 at + 2 p q1 − Re [νd]

(
p2 − q21 − q22

ad

)
+ 2 Im [νd]

q1 q2

ad

]
Re [νt]

+

[
2p q2 − Im [νd]

(
p2 − q21 − q22

ad

)
− 2 Re [νd]

q1 q2

ad

]
Im [νt] + I , (3.55)

I = E − 2 at h p − 4 h q1 , (3.56)

but in analogy with what we did in Section 3.1 we shall again restrict our attention to a

subclass of Lagrangians that are relatively simple, since they do not depend explicitly on

Im [νt]. This condition leads to a quadratic equation for q2, whose solutions are

q2 =
±
√
Re [νd]2 + Im [νd]2 + Re [νd]

Im [νd]

(
± p

√
Re [νd]2 + Im [νd]2 − q1

)
. (3.57)

Moreover, ratios disappear if one restricts the attention to a particular choice for q1,

q1 = Re [νd] p . (3.58)

Indeed, in this case eq. (3.57) reduces to

q2 = Im [νd] p , (3.59)

and the sign choice in it becomes immaterial.

Working again in the gauge h = p one ends up, once more, with the Lagrangian in terms

of auxiliary variables of eq. (3.44),

L = − (1 − a) h(a)2 Re [νt] + I(a) , ∂aI = − h2 . (3.60)

Now, however, a is the combination of SU(2) invariants

a = at + 2 Re [νd] , (3.61)

and taking, as in previous section,

h =

√
2

1 − a
, (3.62)
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the end result is again eq. (3.52) for the Lagrangian in terms of auxiliary variables. To

reiterate, the key difference between the U(2) and SU(2) examples that we are presenting

lies in the definition of a: in Section 3.1 it was the U(2)–invariant variable of eq. (3.43),

while here it is the SU(2)–invariant one of eq. (3.61).

Reverting to the field strengths, the Lagrangian takes finally the form

L = 1 −
√

(1 + Re [φt])
2 − |φt|2 −Det[φ− φ] . (3.63)

Notice how, in this two–field generalization of the BI theory with SU(2) duality, which also

reduces to it if the two Abelian field strengths coincide, the square root simply lacks the

last contribution present in eq. (3.53). This model was recently discussed in [40], where we

obtained it making a peculiar choice for the quartic terms.

3.3 A Model with U(1)× U(1) Duality

We can now turn to retrieve a Lagrangian with U(1) × U(1) duality. In this case only the

“magnetic” GZ equation (3.24) is to be satisfied, together with the “electric” one that we

enforced to begin with. Once more, our aim is displaying an example where the inversion

problem can be solved in closed form. To this end, a further simplification obtains setting

q2 zero, which leads to the constraint

r1 Im [νt] = − r2 Re [νt] . (3.64)

Solving it while taking into account the definitions (3.22), one ends up with a neat result:

with this choice the “interaction” function E and the “lapse function” h depend only on

ad, at and νt νt. As a further simplification, we shall assume that the expressions be also

independent of at and ad, which automatically implies the vanishing of p and q1. Choosing

the gauge h = r1, again with

h =

√
2

1− a
, (3.65)

where now

a = νt νt , (3.66)

one ends up, once more, with the Lagrangian (3.52) in terms of auxiliary fields. The difference

with respect to the preceding examples originates, once more, from the particular choice of

a variable, now given in eq. (3.66).
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In terms of the field strengths, the Lagrangian becomes

L = 1 −
√

(1 + Re [φt])
2 − |φt|2 . (3.67)

This is a two–field generalization of the BI theory with U(1)× U(1) duality, and reduces to

it if the two Abelian field strengths coincide. This model was also recently discussed in [40].

4 Supersymmetry

The construction that we have illustrated was driven by a search of simple examples realizing

the duality groups that are possible with two field strengths. We thus made some choices

along the way, which were aimed at attaining handy analytic forms in the inversion. One

may wonder whether the explicit Lagrangians that we have built afford a supersymmetric

extension. There is a convenient necessary (but not sufficient) condition for N = 1 super-

symmetry in multi–field Lagrangians depending on chiral field strengths W i
α ≡ D

2
Dα V and

their conjugates. This condition was spelled out in [11]: in a supersymmetric extension, the

quartic terms must be of the form

I4 =

∫
d4θ CijklW

αi W j
α W

α̇k
W

l

α̇ , (4.1)

and this expression is the supersymmetric completion of

IB4 =

∫
d4θ Cijkl

(
F 2

D

)ij (
F 2

A

)kl
, (4.2)

where the suffixes D and A identify (anti)self-dual combinations. In the two–component

notation of the preceding sections, these originate from F i
αβ (or F

i

α̇β̇). One can now verify

whether the quartic terms in eqs. (3.53), (3.63) and (3.67) are of this form.

In the N = 2 case, it is convenient to introduce complex combinations of the two field

strengths (here in two–component notation),

F± = F 1 ± i F 2 , (4.3)

or of the corresponding F1 and F2 in four–component notation, and then with a manifest

“electric” U(1) there are three possible quartic terms,

I++−−

4 =
(
F 2

D

)++ (
F 2

A

)−−
, (4.4)

I−−++

4 =
(
F 2

D

)−− (
F 2

A

)++
, (4.5)

I+−+−

4 =
(
F 2

D

)+− (
F 2

A

)−+
. (4.6)
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Notice that all these invariants are real, since

(
F+

D

)⋆
=
(
F−

A

)
,

(
F−

D

)⋆
=
(
F+

A

)
. (4.7)

Making use of the standard relations

F±

D =
1

2

(
F± + i F̃±

)
,

F±

A =
1

2

(
F± − i F̃±

)
, (4.8)

in four–component notation the three quartic terms compatible with supersymmetry read

I++−− =
1

4

[
F+ · F+ F− · F− + F+ · F̃+ F− · F̃−

+ i F+ · F̃+ F− · F− − iF+ · F+ F− · F̃−

]
(4.9)

I−−++ =
1

4

[
F+ · F+ F− · F− + F+ · F̃+ F− · F̃−

− i F+ · F̃+ F− · F− + iF+ · F+ F− · F̃−

]
(4.10)

I+−+− =
1

4

[
F+ · F− F+ · F− + F+ · F̃− F+ · F̃−

]
. (4.11)

Finally, if one demands the presence of an even number of F and F̃ , as in the BI Lagrangians,

only two combinations are left, I+−+− and the sum of the first two.

One can now verify that, while I+−+− reproduces the quartic term of the U(1) × U(1)

model, the other combination does not reproduce the corresponding term of the SU(2)

model, due to first contribution present in both eqs. (4.9) and (4.10). Similar considerations

apply to the quartic terms of the U(2) model, which also contains the peculiar last term

in eq. (3.53). The indications for the U(1) × U(1) model are consistent with [37], since a

BI of this type can be recovered, freezing the scalar, from the N = 1 case of their generic

U(N,N) models, and supersymmetric versions were also given there. In superspace, the

supersymmetric U(1)× U(1) model is indeed obtained replacing in [11] W αWα with

W 2+− ≡ W+αW−

α , (4.12)

so that the Lagrangian becomes of the form

L = Re

∫
d2θ W 2+− +

∫
d4θ W 2+− W

2+−

Ψ
(
D2W 2+− , D

2
W

2+−
)

. (4.13)

where Ψ is in principle an arbitrary function, to be adapted to the present case.
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5 Concluding remarks

We have displayed three two–field extensions of the BI theory that realize the possible duality

groups, namely U(2), SU(2) and U(1) × U(1). They were derived systematically from the

IZ formalism and all rest on the same expression depending on a single auxiliary variable a,

L = − 2

1 − a
(Re [νt] + a) , (5.1)

while different definitions of a give rise to the differences among the various cases:

a = Tr (ν ν) + 2
√
Det (ν ν) U(2) ; (5.2)

a = Tr (ν ν) + 2 Re [Det ν] SU(2) ; (5.3)

a = |Tr (ν)|2 U(1)× U(1) . (5.4)

Amusingly, the same type of expression entered, as we reviewed in Section 2, a similar

formulation of the standard BI theory that was first presented in [38].

Passing to the ordinary field strengths Fµν of the four–component formalism, via the

redefinitions (4.8) and their complex conjugates, one obtains well–distinct forms for the three

examples of Lagrangians. For the sake of brevity, let us now introduce complex combinations

of the four–component field strengths, as in Section 4,

F+mn = F 1 mn + iF 2 mn , F−mn = F 1 mn − iF 2 mn . (5.5)

The results that we have illustrated are then as follows (here we are not reinstating f):

1. Lagrangian with U(1)× U(1) duality:

L = 1 −
√

1 +
1

2
(F+ · F−) − 1

16

∣∣∣F+ · F̃−

∣∣∣
2

; (5.6)

2. Lagrangian with SU(2) duality:

L = 1 −
√

1 +
1

2
(F+ · F−) − 1

16

∣∣∣F+ · F̃+

∣∣∣
2

; (5.7)

3. Lagrangian with U(2) duality:
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L = 1 −
√[

1 +
1

4
(F+ · F−)

]2
− 1

32
C − 1

32

√
D , (5.8)

where

C =
∣∣∣
(
F+
)2∣∣∣

2

+
(
F+ · F−

)2
+
∣∣∣F+ · F̃−

∣∣∣
2

+
∣∣∣F+ · F̃+

∣∣∣
2

, (5.9)

D =

[(
F+ · F−

)2 −
(
F+ · F̃−

)2
+
∣∣∣F+ · F̃+

∣∣∣
2

−
∣∣∣F+2

∣∣∣
2
]2

(5.10)

+
[(
F+
)2 (F− · F̃−

)
+
(
F−
)2 (F+ · F̃+

)
− 2

(
F+ · F−

) (
F+ · F̃−

)]2
.

As we have seen in Section 2, in the single–field BI case L takes again the form in

eq. (5.1), with νt replaced by ν and a = ν ν. Moreover, in Section 2.2 we have displayed a

one–parameter family of one–field models compatible with U(1) duality, which also includes

some unusual terms that are not analytic at the origin of field space. We built this simpler

class of models since terms of a similar type also show up in our U(2) example. Their

emergence cannot be disentangled from the simplifying assumption of eq. (3.41), which on

the other hand was instrumental to arrive at a closed–form inversion. Clearly, we are not

excluding that more conventional U(2) solutions exist, but a closed–form inversion from IZ

variables seems unlikely in more general cases. Our results should thus be contrasted with

the earlier analysis in [37], which led to formal power–series presentations of models that

apparently lack this peculiarity.

Energy positivity is clearly an important feature, which we are investigating further in

these generalized BI constructions. While in the U(1) × U(1) and SU(2) models positivity

follows from the corresponding result for the BI theory, in the U(2) example (or in its simpler

one-field counterpart of eq. (2.38)) it is less obvious. U(2) duality ought to play a role in

these considerations for the more complicated U(2) model, but so far we have verified this

key property only in a number of special field configurations, finding however no problems.

Finally, we have explained how the U(1) × U(1) model allows a straightforward N = 1

supersymmetric completion, which can be simply deduced from [11] replacing in the standard

BI action W 2 with W 2+−, along the lines of what happens for its bosonic counterpart.

It would be interesting to explore point–like solutions in all these models with extended

duality. The extension to N–field Lagrangians with U(N) duality or subgroups thereof is

another interesting problem. It would rest on generalizations of the invariants described here

for the N = 2 case, but no similar simplifications have emerged, so far, for N > 2.
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