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Abstract

We propose a new class of natural inflation models based on a hidden scale invariance.
In a very generic Wilsonian effective field theory with an arbitrary number of scalar
fields, which exhibits scale invariance via the dilaton, the potential necessarily contains
a flat direction in the classical limit. This flat direction is lifted by small quantum
corrections and inflation is realised without need for an unnatural fine-tuning. In the
conformal limit, the effective potential becomes linear in the inflaton field, yielding to
specific predictions for the spectral index and the tensor-to-scalar ratio, being respec-

tively: ns−1 ≈ −0.025
(

N⋆

60

)−1
and r ≈ 0.0667

(

N⋆

60

)−1
, where N⋆ ≈ 30−65 is a number of

efolds during observable inflation. This predictions are in reasonable agreement with cos-
mological measurements. Further improvement of the accuracy of these measurements
may turn out to be critical in falsifying our scenario.
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Introduction. Cosmic inflation is an attractive paradigm for the very early universe
that resolves some outstanding puzzles of the standard hot Big Bang cosmology, such
as the horizon and flatness problems [1, 2, 3] (for important precursor works see also
[4, 5, 6]). In addition, it provides a natural mechanism for generation of nearly scale-
invariant inhomogeneities through the quatum fluctuations of the inflaton field, that at
later stages result in the observed large scale structure of the universe [7]. Observations
on Cosmic Microwave Background (CMB) radiation and the large scale structure provide
a strong support for cosmic inflation.

The basic theory of inflation involves a scalar field, the inflaton (ϕ), which slowly
rolls down the potential hill. In order to reproduce the CMB anisotropy measurements
[8] and satisfy the requirement of sufficient inflation, the scale that defines the height
of the inflaton potential must be many orders of magnitude smaller than the scale that
defines its width, that is, the potential must be very flat. To maintain the hierarchy
between these two different scales under the quantum corrections a precise adjustment
of couplings is typically required. This is known as the fine-tuning problem of inflation.

Another potential source that may destabilise the delicate balance between the height
and slope of the inflaton potential is higher order operators, which start to contribute
significantly for large variations of the inflaton field during inflation. The effective field
theory approximation, which favours |ϕ| ≪ MP , breaks down in such cases and infla-
tionary predictions become unreliable.

A class of natural inflation models has been suggested in [10] as a symmetry-motivated
solution to the above fine-tuning problem. The inflaton in this class of models is a pseudo-
Goldstone boson of some spontaneously broken anomalous global symmetry. The flatness
of the pseudo-Goldstone potential is guaranteed by an approximate shift symmetry,
although the underlying global symmetry may be the subject of large explicit breaking
by non-renormalisable operators supposedly induced via quantum gravity. It seems,
however, that the simplest models of natural inflation are now disfavoured at 95% CL
[8].

In some earlier works [11, 12] and more recently in [13, 14] the scale invariance was
advocated as a possible symmetry which is also capable of explaining the hierarchy
of different scales without fine-tuning. A variety of specific scale-invariant inflationary
models have been presented in recent years [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. In
[16] a universality class of models has been identified within the conformal supergravity
framework [see also Ref. [18]]. The importance of the underlying scale invariance for
natural inflation models has also been stressed in [20].

In this paper we would like to propose a new class of natural inflation models based
on a hidden scale invariance, realised through the pseudo-Goldstone boson of a sponta-
neously broken anomalous scaling symmetry, the dilaton. Our key observation is that
in a very generic scale-invariant model, with an arbitrary number of scalar fields and
non-renormalizable operators in the scalar potential, there always exists a direction in
field space which is absolutely flat in the classical limit. This flat direction is lifted upon
quantum corrections being taken into account. Inflation proceeds along this direction,
while other fields reside in their respective (meta)stable minima. As will be shown be-
low, in the conformal coupling limit within the leading perturbative approximation, the
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generic model is reduced to a one-field model with a potential linear in the inflaton field,
V (ϕ) ∼ ϕ, with the linear term being radiatively induced. In this regime, the model
predicts a characteristic relation between the spectral index ns and the tensor-to-scalar
ratio r:

ns ≈ 1− 3

8
r (1)

This relation is in a reasonable agreement with the currently available data [8, 9]. Further
improvement on the accuracy of ns and/or r measurements may confirm or falsify our
scenario.

Description of the model. Consider a Wilsonian effective field theory that describes
the Standard Model, or its extension, coupled to gravity at an ultraviolet scale Λ:

SΛ =

∫

dx4
√
−g

[(

M2
P

2
+

N
∑

i=1

ξi(Λ)φ
2
i

)

R− 1

2

N
∑

i=1

∂µφi∂
µφi − V (φi) + ...

]

, (2)

where MP ≈ 2.4 · 1018 GeV and we use the mostly positive signature for the metric
tensor. Here we have displayed only the scalar sector, which comprises of a set of N
scalar fields {φi} (i = 1, 2, ..., N) that includes the Standard Model Higgs boson. The
scalar potential V (φi) is a generic polynomial of the scalar fields {φi} respecting the
relevant symmetries of the theory:

V (φi) =
∑

{in}

λi1,...,in(Λ)φi1...φin . (3)

where λi1,...,in(Λ) is a coupling of mass dimension (4−n) defined at the Wilsonian cut-off
Λ, while ξi(Λ) is a dimensionless non-minimal coupling of the scalar field φi to gravity.
The scale invariance is explicitly broken in (2) by the ultraviolet cut-off Λ, the Einstein-
Hilbert term ∼ M2

PR and dimensionful couplings σi1,...,in (n 6= 4).
We suppose that the underlying theory exhibits a hidden (spontaneously broken) scale

invariance, which in the effective low-energy theory is implemented in the (nonlinear)
pseudo-Goldstone boson, the dilaton χ. A simple way to incorporate the dilaton field χ
is to rescale the dimensionful parameters in (2) by the respective powers of χ/f , f being
the dilaton “decay constant”. More specifically:

Λ → Λ
χ

f
≡ λχ , M2

P → M2
P

(

χ

f

)2

≡ ξχ2 , (4)

λi1,...,in(Λ) → λi1,...,in(Λχ/f)

(

χ

f

)4−n

≡ σi1,...,in(λχ)χ
4−n (5)

Thus, instead of (2) we consider a new action:

Sλχ =

∫

dx4
√
−g

[(

ξχ2 +

N
∑

i=1

ξi(λχ)φ
2
i

)

R− 1

2
∂µχ∂

µχ− 1

2

N
∑

i=1

∂µφi∂
µφi − V (φi, χ) + ...

]

,

V (φi, χ) =
∑

{in}

σi1,...,in(λχ) χ
(4−n)φi1...φin . (6)
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This action is manifestly scale invariant in the classical limit, the scale invariance being
broken at the quantum level through the renormalisation group (RG) running of the

couplings, i.e.,
∂σi1,...,in

∂χ
6= 0, etc.

It is convenient to use a ‘hyperspherical’ representation for the set of scalar fields
{φi, χ}:

φi = ρ cos (θi)
i−1
∏

k=1

sin (θk) , (i = 1, 2, ..., N)

χ = ρ

N
∏

k=1

sin (θk) . (7)

Expressing the action (6) through the fields in the above representation, we observe that
the modulus field ρ factors out. That is, the first term in the action and the scalar
potential presented in Eq. (6) can be written as ∼ ρ2ζ(θi)R and ∼ ρ4U(θi), respectively,
in which

ζ(θi) = ξ(λχ)
N
∏

k=1

sin2 (θk) +
N
∑

i=1

ξi(λχ) cos
2 (θi)

i−1
∏

k=1

sin2 (θk) , (8)

U(θi) =
N
∏

k=1

sin4−n (θk)
∑

{in}

σi1,...,in(λχ) cos (θi1)

i1−1
∏

k=1

sin (θk) ... cos (θin)
in−1
∏

k=1

sin (θk) .(9)

We further assume that θi fields are relaxed in their stable or sufficiently long-lived
(with lifetime longer than the duration of the observable inflation) minima 〈θi〉 = θci at
very early stages in the evolution of the universe. Hence, their dynamics is of no interest
to us in what follows and, instead of the full action (6), we consider the following reduced
one:

S̄ρ =

∫

dx4√−g

[

ζ(ρ)ρ2R − 1

2
∂µρ∂

µρ− V (ρ)

]

, (10)

V (ρ) = σ(ρ)ρ4 , (11)

where ζ ≡ ζ(θci ) and σ ≡ U(θci ). Hence, we arrive at an effective single-field model with
a quartic potential and non-minimal coupling [26], but without the standard Einstein-
Hilbert term. It resembles also the large field limit of the Higgs inflation model [27].

In order to reproduce the Einstein-Hilbert term in (10) the modulus field ρ has to
develop non-zero vacuum expectation value, 〈ρ〉 ≡ ρ0. If the vacuum configuration
{ρ0, θci} describes the current vacuum state of the universe, than ρ0 = MP√

2ζ(ρ0)
with

ζ(ρ0) ≡ ζ0 > 0. Furthermore, the vacuum energy density,
σ(ρ0)M4

P

4ζ2
0

, in this case must

be vanishingly small to satisfy the observations. That is, the scalar potential must be
tuned so that σ(ρ0) ≡ σ0 ∼ 12ζ20H

2
0/M

2
P ≈ 0, where H0 is the present value of the Hubble

parameter. However, inflation may end in a metastable state, which subsequently decays
into the current vacuum state. Hence, we keep ρ0 and σ0 as a free parameters.
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The ρ−dependence of dimensionless couplings in Eq. (10, 11) are determined by
computing the quantum-corrected effective potential. We use the closed form effective
potential computed in Ref. [28] to obtain in the 1-loop approximation:

ζ(ρ) = ζ0 +
(12ζ0 + 1)σ0

8π2
ln

(

ρ

ρ0

)

, (12)

σ(ρ) = σ0 +
9σ2

0

2π2
ln

(

ρ

ρ0

)

. (13)

In the classical limit ζ and σ are ρ-independent constants and the action (10) is scale-
invariant. The field ρ represents a flat direction, i.e., the potential (11) is constant for
any value of ρ in the Einstein frame. Furthermore, for the special value ζ0 = −1/12 (the
conformal coupling), ρ is a fictitious degree of freedom which disappears from action in
the Einstein frame. In this case, the action (10) is in fact describes pure Einstein gravity
with a cosmological constant.

The classical scale invariance is broken by radiative corrections, which is illustrated
in the ρ dependence of couplings, Eqs. (12,13). Note that σ0 → 0 is a conformal fixed-
point of the theory, since the ρ dependence disappears in Eqs. (12,13) in this limit.
The conformal coupling ζ0 = −1/12 is also a fixed-point as ζ(ρ) = ζ0. Hence, having
σ small or ζ close to −1/12 near the respective fixed points is natural in the technical
sense. All these attractive features motivate us to consider scale invariance as an essential
symmetry for natural inflation, with ρ being the inflaton field.

Predictions of the model. To compute inflationary observables we first take the
action (10) to the Einstein frame via Weyl rescaling:

gµν → Ω2gµν , Ω2 =
2ζρ2

M2
P

(14)

We also bring the kinetic term for the inflaton field ρ to the canonical form by making
the following field redefinition:

ρ = ρ0 exp





√

ζ̃

MP

ϕ



 , (15)

where ζ̃ = 2ζ
1+12ζ

with ζ > 0 or ζ < −1/12. With this the action (10) in the Einstein
frame reads:

S̄ϕ =

∫

dx4
√
−g

[

M2
P

2
R − 1

2
∂µϕ∂

µϕ− V (ϕ)

]

, (16)

V (ρ(ϕ)) =
M4

P

4

σ(ρ(ϕ))

ζ2(ρ(ϕ))
. (17)
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Given the potential (17), the slow roll parameters can be computed using:

ǫ⋆ ≡ M2
P

2

(

Vϕ

V

)2
∣

∣

∣

∣

∣

ϕ=ϕ⋆

, (18)

η⋆ ≡ M2
P

Vϕϕ

V

∣

∣

∣

∣

ϕ=ϕ⋆

. (19)

The power spectrum of scalar perturbations, Ps, the tensor-to-scalar ratio, r, and the
spectral index ns are then given by:

Ps =
1

24π2M4
P

V⋆

ǫ⋆
, (20)

r = 16ǫ⋆ , (21)

ns = 1− 6ǫ⋆ + 2η⋆ , (22)

All quantities with subscript ‘⋆’ in the above equations are evaluated at a field value
ϕ = ϕ⋆ that corresponds to a number of e-folds of the ‘visible’ inflation, N⋆ ≈ 30− 65:

N⋆ ≃
1

MP

∫ ϕ⋆

0

dϕ√
2ǫ

. (23)

In order to proceed with the actual calculations of the above observables, we plug
Eqs. (12,13) into Eq. (17) and using Eq. (15) we express the effective potential in terms
of inflaton field ϕ in the Einstein frame. Next, let us consider now the conformal limit
where σ0 → 0 and ζ0 → −1/12. The latter limit implies that ζ evolves slowly, ζ ≈ ζ0.

Assuming further, σ2
0

√

2ζ0
1+12ζ0

approaches to some constant C, the potential (17) is well

approximated by a potential which is linear in the inflaton field ϕ1:

V (ϕ) ≈ 162C

π2
M3

Pϕ . (24)

The linear potential (24) can be used to compute inflationary observables (18-23). This
immediately implies η = 0 and hence the relation in Eq. (1). In terms of observable
efolds N⋆ the predictions read:

ns − 1 ≈ −0.025

(

N⋆

60

)−1

, (25)

r = 0.0667

(

N⋆

60

)−1

. (26)

Ps ≃ 10−9 in turn implies C ≈ 5.5 · 10−12
(

N⋆

60

)−3/2
. The predictions in Eq. (25) are in a

reasonable agreement with the most recent analysis of the cosmological data [9], which
suggests:

ns = 0.9669± 0040 (68%C.L.) , (27)

r0.01 < 0.0685 (95%C.L.) , (28)

1A linear potential was obtained in a different limit of the non-minimally coupling in [29]
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for Λ−CDM+r model. Further improvement of the accuracy of cosmological measure-
ments will be critical for our scenario.

Note that for large (ξ → ∞) and small (ξ → 0) non-minimal couplings ns & 1, and
thus the model is excluded by observation in these limits.

Conclusion. We have proposed a new class of natural inflation models with hidden
scale invariance realised via the dilaton field. A very generic Wilsonian potential with
an arbitrary number of scalar fields contain a flat direction in the classical limit, which is
lifted by quantum corrections. Thus inflation can naturally, without fine-tuning, proceed
when the inflaton field evolves along this direction. We find that in the conformal limit,
the inflaton potential is linear, yielding to the specific predictions in Eqs. (25) and
(26). While they are still in agreement with observations, more accurate cosmological
measurements may turn critical in falsifying our scenario.
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