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Abstract

We investigate the continuum spectrum of the SU(2) gauge theory with N f = 2 flavours of

fermions in the fundamental representation. This model provides a minimal template which is

ideal for a wide class of Standard Model extensions featuring novel strong dynamics that range

from composite (Goldstone) Higgs theories to several intriguing types of dark matter candidates,

such as the SIMPs. We improve our previous lattice analysis [1] by adding more data at light

quark masses, at two additional lattice spacings, by determining the lattice cutoff via a Wilson

flow measure of the w0 parameter, and by measuring the relevant renormalisation constants

non-perturbatively in the RI’-MOM scheme. Our results for the lightest isovector states in the

vector and axial channels, in units of the pseudoscalar decay constant, are mV/FPS ∼ 13.1(2.2) and

mA/FPS ∼ 14.5(3.6) (combining statistical and systematic errors).

In the context of the composite (Goldstone) Higgs models, our result for the spin-one resonances

are mV > 3.2(5) TeV and mA > 3.6(9) TeV, which are above the current LHC constraints. In the

context of dark matter models, for the SIMP case our results indicate the occurrence of a compressed

spectrum at the required large dark pion mass, which implies the need to include the effects of

spin-one resonances in phenomenological estimates.
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I. INTRODUCTION

New composite dynamics is often invoked to construct extensions of the Standard

Model (SM) physics that can address one or several of the SM shortcomings.

For example, composite extensions have been suggested to replace the SM Higgs

sector, to suggest natural dark matter (DM) candidates and, more recently, to explain

[2–4] the observed tantalizing excess in the diphoton decay channel or earlier diboson

excesses [5, 6] recorded by the CMS and ATLAS experiments [7–9]. Time-honoured

classes of fundamental electroweak composite dynamics are Technicolor (TC) [10, 11] and

composite Goldstone Higgs models [12, 13].

In TC models the Higgs boson is the lightest scalar excitation of the fermion condensate

responsible for electroweak (EW) symmetry breaking [14–18]. The physical Technicolor

Higgs mass can be light due to near conformal dynamics [14, 19] and the interplay between

the TC sector and the SM fermions and electroweak gauge bosons [20].

In composite Goldstone Higgs models [12, 13], the new sector has an underlying

fundamental dynamics with larger global symmetry group than the one strictly needed

to break the EW symmetry. In this case the Higgs state can be identified with one of the

additional Goldstone Bosons (GB), and it is therefore naturally light. However, to break

the EW symmetry, typically radiative corrections are not enough and yet another sector

is required to induce the correct vacuum alignment for the EW gauge bosons and for the

Higgs to acquire the observed mass.

The underlying fundamental theory studied here constitutes the ultra minimal com-

posite template for any natural UV completion that simultaneously embodies both the

TC and composite Goldstone Higgs models [21–24]. It is also well known that fermion

mass generation constitutes a challenge for any composite dynamic extension. For the

present theory an extension that makes use of chiral gauge theories [25–27] has been put

forward recently in [28]. The constructions yield distinctive experimental signatures and

can be used universally for both types of model building.

Novel composite dynamics has also been advocated to construct natural candidates for

DM stemming from a composite EW sector. In fact, several asymmetric DM candidates

were put forward which are stable baryons in TC models [29, 30] or Goldstone bosons of

a new strong sector [22, 31–33].
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Another interesting class of DM models, unrelated to the composite EW scenario,

was recently revived in [34]. Here an alternative mechanism [35, 36] is employed for

achieving the observed DM relic density. It uses 3 → 2 number-changing processes

that should occur in the dark sector involving strongly interacting massive particles

(SIMPs). Compared to the WIMP paradigm, where the dark matter particles typically

are expected to be around the TeV scale, this model can yield dark matter particles

with masses of a few 100 MeVs. In [37, 38] a realisation of the SIMP paradigm was

introduced in terms of composite theories for which the model investigated here again

provides the minimal template. In this realisation, the pions constitute the dark matter

particles and the topological Wess-Zumino-Witten (WZW) term [39–41] introduces a 5-

point pion interaction, making it an ideal candidate for the 3 → 2 annihilation process.

The most minimal realisation of this breaking pattern comes indeed from the underlying

Sp(2)=SU(2) gauge group (but can be generalised to any Sp(Nc) gauge group). The

first consistent investigation of the phenomenological viability of this construction, that

properly takes into account important next-to-next-leading-order corrections via chiral

perturbation theory, appeared in [38]. Here it was shown that higher order corrections

substantially increase the tension with phenomenological constraints. Because the energy

scale of the SIMP is very light, it is especially relevant to know at which energy scale dark

spin-one resonances will appear, or more generally to understand its spectroscopy [42].

Furthermore the new states will modify the scattering at higher energies introducing

possible interesting resonant behaviours [43] and, as it is the case for ordinary QCD, will

impact on a number of dark-sector induced physical observables.

In this work we investigate the SU(2) gauge theory with N f = 2 flavours of Dirac

fermions in the fundamental representation. One important feature of this minimal SU(2)

template model is that, due to the pseudo-reality of the fundamental representation, the

flavour symmetry is upgraded to an SU(4) (locally isomorphic to SO(6)) symmetry which

is expected to break spontaneously to Sp(4) (locally isomorphic to SO(5)), thus leading to

5 Goldstone bosons.

The theory has previously been studied on the lattice, and in particular, it has been

shown that the expected pattern of spontaneous chiral symmetry breaking is realised [44].

A first estimate, affected by large systematic errors, of the masses of the vector and axial-

vector mesons, in units of the pseudoscalar meson decay constant, have been obtained
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in [1]. The scattering properties of the Goldstone bosons of the theory have also been con-

sidered [45], and the model has furthermore been investigated in the context of possible

DM candidates related to the EW scale [46, 47]. Other groups have also investigated the

spectrum of this model on the lattice [48, 49] concluding that chiral symmetry is broken,

although no continuum extrapolation was attempted as the focus of both works was on

the comparison with the six flavours theory to understand the approach to the conformal

window in SU(2) gauge theories.

Here we extend our previous analyses by improving our control on the systematics.

Our simulations achieve smaller fermion masses, include two additional lattice spacings,

and we also perform a precise determination of the lattice spacings used. Finally we

determine the relevant renormalisation constants non-perturbatively.

The paper is organised as follows. We first describe the lattice setup in section II and

the procedure to set the lattice spacing through the Wilson Flow observable w0 in section

III. In section IV we discuss the calculation of the renormalisation constants using the RI’-

MOM scheme. Finally we provide in section V an improved estimation of the spectrum

of the theory.

II. LATTICE SET-UP

We simulate the SU(2) gauge theory with two Dirac fermions in the fundamental rep-

resentation discretised using the (unimproved) Wilson action for two mass-degenerate

fermions u, d and the Wilson plaquette action for the gauge field. The numerical simula-

tions have been performed using an improved version of the HiRep code first described

in [50]. The fermionic part of the action reads:

SF =
∑

x

ψ(x)(4 + am0)ψ(x)

−1

2

∑

x,µ

(

ψ(x)(1 − γµ)Uµ(x)ψ(x + µ̂) + ψ(x − µ̂)(1 + γµ)U†µ(x)ψ(x)
)

, (1)

where Uµ is the gauge field, ψ is the doublet of u and d fermions, and am0 is the 2 × 2

diagonal mass matrix proportional to the identity.

Our simulation are performed at four values of the inverse lattice gauge coupling β, for

various fermion masses and on several volumes. This is needed in order to perform the
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β Volume am0

1.8 163 × 32 -1.00, -1.089, -1.12, -1.14, -0.15, -1.155∗

1.8 323 × 32 -1.155 -1.557

2.0 163 × 32 -0.85, -0.9, -0.94, -0.945, -0.947∗

2.0 324 -0.947, -0.949, -0.-952,-0.957,-0.958

2.2 163 × 32 -0.60, -0.65, -0.68 -0.70, -0.72∗, -0.75∗

2.2 243 × 32 -0.75∗

2.2 324 -0.72,-0.735, -0.75

2.2 484 -0.76

2.3 324 -0.575,-0.60,-0.625,-0.65,-0.675, -0.685

TABLE I. Parameters used in the simulations. Runs with ∗ are used only to study finite size effects.

All the others runs are referred to in the text as “large volume runs”.

required extrapolations to the chiral limit and infinite volume and to give an estimate of

the systematic errors stemming from such extrapolations. We detail the procedure used

in the following sections.

The bare parameters of our simulations are summarised in Table I. We have extended

our previously published dataset considerably, in particular towards the chiral regime and

by adding two additional lattice spacings at β = 1.8, 2.3. As we will discuss in more detail

below, note that the lightest quark masses now reach, in some cases, the decay threshold

for the vector meson resonance. The simulations in Table I denoted with an asterisk, are

only used to study the systematic errors due to finite size effects. The remaining runs will

be referred to as “large volume runs” in this paper. This is justified as for all these lattices

we have mPS L ≥ 5 which implies a systematic error of about 5% for the quantities studied

here [1].

For convenience, we define the following operators:

O(Γ)

ud
(x) = u(x)Γd(x) , (2)

where Γ denotes any product of Dirac matrices.

We extract the meson masses from zero-momentum two-point correlation functions

fΓ(t) =
∑

~x

〈

O(Γ)

ud
(t, ~x )†O(Γ)

ud
(0)

〉

. (3)
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The quantities of interest in this study are the pseudoscalar Γ = γ5, vector Γ = γk

(k = 1, 2, 3), and axial vector Γ = γ0γ5γk mesons. We use Z2×Z2 single time slice stochastic

sources [51] to estimate the meson 2-point correlators. From those, we define an effective

mass meff
(Γ)

(t) as in [52, 53] by the solution of the implicit equation:

fΓ(t − 1)

fΓ(t)
=

e−meff
(Γ)

(t)(T−(t−1))
+ e−meff

(Γ)
(t)(t−1)

e−meff
(Γ)

(t)(T−t)
+ e−meff

(Γ)
(t)t

, (4)

where T is lattice time extent. At large Euclidean time, meff
(Γ)

(t) approaches the value of

the mass of the lightest state with the same quantum numbers as the operator O(Γ)

ud
. In the

following, we will denote the pseudoscalar meson mass mPS, and the isovector vector and

axial-vector meson mass mV and mA respectively.

In addition to the meson masses above, we will use in the present analysis two other

quantities: the current quark mass mPCAC and the Goldstone boson decay constant FPS.

We define the quark mass through the Partially Conserved Axial Current (PCAC) relation

mPCAC = lim
t→∞

1

2

∂t fAP(t)

fγ5
(t)

, (5)

where

fAP(t) =
∑

~x

〈

O(γ0γ5)

ud
(t, ~x )†O(γ5)

ud
(0)

〉

. (6)

The Goldstone boson decay constant can be calculated as:

FPS =
2mPCAC

m2
PS

GPS, (7)

where GPS is obtained from the asymptotic form of fγ5
(t) at large t:

fγ5
(t) ∼ −

G2
PS

mPS
exp [−mPSt] . (8)

On a lattice of finite temporal extent, we use the same definitions as in [52, 53].

The (bare) values in lattice units for mPCAC, mPS, FPS, mV and mA corresponding to the

large volume lattices considered in this paper are reported in table VII in appendix A.

To convert the lattice quantities to physical units, we determine the lattice spacing for

our simulations and the appropriate non-perturbative renormalisation constants.

It is well known that for Wilson fermions, the pseudoscalar decay constant renormalises

multiplicatively with the scale independent renormalisation constant ZA and that the bare

PCAC mass renormalises with the ratio ZA/ZP(µ2).
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The lattice spacing, in a generic composite model, is fixed by the requirement that the

renormalised Goldstone boson decay constant has a given value specified for the physical

model considered. For example in the case of composite dynamics at the electroweak

scale, a value of 246 GeV yields the correct mass for the electroweak gauge bosons. For

the more general fundamental composite Goldstone Higgs scenario described in [24] the

scale is still set by the same requirement, but the constraint on the renormalised Goldstone

boson decay constant now reads FPS sin(θ) = 246 GeV. The actual value of the parameter

θ in this model depends on the electroweak gauge bosons corrections, the top corrections

as well as the effects of other possible sources of explicit breaking of the initial SU(4)

symmetry. The Technicolor limit is recovered for θ = π/2 while the composite pGB Higgs

case corresponds to small, but non-vanishing θ. Any other value of θ is also allowed and

the resulting model thus interpolates between these two limits. For the details we refer

to [24].

Another case of immediate interest is the SIMPlest composite model [37] for DM where,

as shown in [38], it is important to control the underlying dynamics. By stretching chiral

perturbation theory to its limit of validity, the interesting phenomenological values for

the pion decay constant would be as low as 10 MeV with pion masses of the order of

100 MeV. Besides the rescaling the pion decay constant, another major difference, when

compared to composite dynamics at the electroweak scale, resides in the fact that the

SIMP requires quite massive pions.

For definiteness, below we present our results in units of the EW scale with sin(θ) = 1

but the dependence on θ can be reinstated when needed. At the end we will also comment

on the results for the SIMPlest case.

III. SCALE SETTING

Following [54], we consider the following “Wilson flow” equation for the gauge fields:

d

dt
Vt(x, µ) = −g2

0 {∂x,µSG(Vt)}Vt(x, µ) with Vt=0(x, µ) = U(x, µ) , (9)

where t denotes the fictitious flow “time”, U(x, µ) are the gauge links, and SG is the

plaquette gauge action. One important property is that correlation functions at flow

time t > 0 are finite, when the four-dimensional theory is renormalised as usual, and the
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flow thus maps gauge fields into smooth, renormalised gauge fields [55]. Observables at

non-zero flow time can, in particular, be used to define a scale, as shown in [54].

Two different scale-setting observables have been introduced in the literature, known

as t0 [54] and w0 [56]. In terms of E(t), the action density at flow time t, they are defined

through the following equations:

E(t) = t2E(t) , E(t0) = Eref , (10)

W(t) = t
d

dt
E(t) , W(w2

0) = Wref , (11)

where Eref and Wref are two dimensionless reference values. In this work we will use w0

to set the scale. The value of w0 obtained for each quark mass needs to be extrapolated to

the chiral limit to obtain a scale wχ
0

for each lattice spacing.

We investigated finite volume errors in w0 at the chosen reference value Wref by com-

paring two simulations performed on spacial sizes L = 16 (mPS L ∼ 5.1) and L = 32

(mPS L ∼ 8.4) at bare parameters m0 = −0.75 and β = 2.2 . These values of the bare parame-

ters were chosen to correspond to one of the lightest points in our dataset, at a fine lattice

spacing. The values of w0 obtained are w0(L = 16) = 3.39(6)a and w0(L = 32) = 3.36(10)a

which agree well within statistical errors, indicating that finite volume effect for w0 can

be safely neglected for mPS L > 5 within our numerical precision.

A. Determination of wχ
0

In Fig. 1 (left panel) we show our results for w0/a for the four lattice spacings considered

in this study as a function of y2, where y = w0(mPCAC) mPS. Here the reference value chosen

is Wref = 1. For all the points in Fig. 1 we have mPS L > 5.5 and are thus safe from finite

volume effects.

In order to extrapolate to the chiral limit, we use the NNLO expansion in terms of m2
PS

which reads [57]:

w0(m2
PS) = wχ

0

(

1 + k1

m2
PS

(4πF)2
+ k2

m4
PS

(4πF)4
log

m2
PS

µ2

)

, (12)

where F is the pseudoscalar decay constant and k1, k2 are dimensionless low energy

constants. Note that the chiral logarithm enters only at NNLO. In practice we fitted our

data at each β with the following ansatz :

w0(m2
PS) = wχ

0

(

1 + Ay2 + By4 log y2
)

, (13)
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FIG. 1. Chiral behaviour of w0 as a function of y2 in unit of the lattice spacing (left panel) and in

unit of wχ
0

(right panel) for Wref = 1. The data at four lattice spacings are displayed.

where A, B and wχ
0

are free parameters with the choice wχ
0
µ = 1.

The fit is performed for each of the four β-values independently and the gray bands

indicate the 1σ error regions. The best fit parameters and their statistical errors are

reported in Table II. In the left panel of Fig. 1, the red dotted vertical line indicates the

upper limit of the y2 region used in the NNLO fit.

For three of our data sets we have also performed a fit to the NLO expression. The

black vertical dotted line indicates the upper limit of the y2 region included in the NLO fit.

Due to lack of data, we cannot perform this fit for β = 2.3. For the three remaining lattice

spacings available, the results of the NLO and NNLO fits agree well within uncertainties.

β wχ
0
/a A B χ2/ndof

1.8 2.066(16) -0.169(12) 0.022(6) 5.5/4

2.0 2.675(20) -0.223(10) 0.036(4) 14.8/6

2.2 4.311(49) -0.224(12) 0.036(8) 1.0/1

2.3 6.202(477) -0.205(39) 0.018(9) 2/1

TABLE II. Summary of the NNLO fits for w0/a for each value of the lattice spacing. We chose

Wref = 1 as reference value.
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In the right panel of Fig. 1 we show w0/w
χ
0

for all four lattice spacings. The deviation

from a universal curve of such a quantity is a measure of lattice discretisation errors. As

can be seen, these are small in the w0 observable for our three finest lattice spacings. The

same conclusion can also be reached by looking at the dimensionless coefficient A and B

as determined from the fits, given in Table II.

IV. NON-PERTURBATIVE RENORMALISATION CONSTANTS

A. RI’-MOM scheme

In this section we describe the method used to determine the non-perturbative renor-

malisation constants of the isovector vector (V), axial (A), and pseudoscalar (P) bilinear

operators. They are needed for the renormalisation of the pseudoscalar decay constant

FPS and of the quark mass mPCAC.

We use the RI’-MOM scheme (regularisation invariant momentum scheme) as in [58].

We define the following bilinear operators :

OΓ(x) = ψ(x)τ3Γψ(x), with Γ ∈ {P,V,A, S} ≡
{

γ5, γµ, γ5γµ, 1
}

, (14)

and the fermion propagator :

S(x, y) = 〈ψ(x)ψ(y)〉, and S(p) =
∑

p

eip(x−y)S(x, y). (15)

Note that we have omitted to write explicitly spin and color indices. We also define the

following Green’s function:

GΓ(p) = 〈ψ(p)OΓ(p)ψ(p)〉 (16)

and we will denote the corresponding vertex function by:

ΠΓ(p) = S(p)−1GΓ(p)S(p)−1, (17)

where S−1(p) is the inverse propagator in spin and color space. The RI’-MOM scheme [58]

is then defined by imposing the conditions that in the chiral limit and at a given scale p2 =

µ2, the inverse propagator and amputated Green’s function ΠΓ(p) satisfy the following

equations:

Z−1
q

−i

4Nc

tr













γµ sin(apµ)

sin2(apµ)
S−1(p)













∣

∣

∣

∣

∣

∣

p2=µ2

= 1, and Z−1
q ZΓ

1

4Nc

tr
[

PΓΠΓ(p)
]

∣

∣

∣

∣

p2=µ2
= 1 , (18)
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where the trace is over spin and color indices and the projectors PΓ are defined as follows:

PΓ ∈ {PP,PV,PA,PS} ≡
{

γ5,
γµ

4
,
γµγ5

4
, 1

}

. (19)

For convenience we define:

Λq(p
2) =

−i

4Nc
tr













γµ sin(apµ)

sin2(apµ)
S−1(p)













, (20)

ΛΓ(p
2) = −i

tr
[

γµ sin(apµ)

sin2(apµ)
S−1(p)

]

tr
[

PΓΠΓ(p)
] , (21)

ΛP/S(µ2) = ΛP(p2)/ΛS(p2) , (22)

such that in the chiral limit:

Λq(µ
2) = Zq(a, µ2), ΛΓ(µ

2) = ZΓ(a, µ
2) and ΛP/S(µ2) = ZP(a, µ2)/ZS(a, µ2) . (23)

B. Evaluation of the correlators

Following the approach introduced in [59], we use momentum sources. This approach

has the advantage to be computationally inexpensive and to have a high statistical accu-

racy. We will shortly summarise the procedure.

The vertex functions defined in Eq. (17) are not gauge invariant, and must be computed

in a fixed gauge. We chose the Landau gauge by minimising a functional proposed in [60].

We introduce S(y, p) defined to be the solution of the following linear equation

∑

y

D(x, y)S(y, p) = 1 eipx , (24)

where 1 stands for the identity matrix in spinor and color indices. It is straightforward to

obtain that

GΓ(p) =
1

V

∑

z

γ5 S′(z, p)†γ5 S′(z, p), where S′(z, p) = e−ipzS(z, p) (25)

and

S(p) =
1

V

∑

x

e−ipxS(x, p) . (26)
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C. Twisted boundary conditions

In order to interpolate easily between the lattice momenta we use twisted boundary

conditions [61, 62] by imposing :

q(x + L) = eiBxq(x) with Bµ =
πθµ

Lµ
, (27)

where Lµ=1,2,3 = L and L4 = T and θ is the twist angle. The boundary conditions are

imposed by modifying the Dirac operator in the valence only. The accessible momenta

are then pµ =
2π
Lµ

nµ +
π
Lµ
θµ. Eq. (25) and (26) of sect. IV B can be generalised in the case of

twisted boundary conditions.

In practice the propagator S(p) and the Green’s function GΓ(p) are evaluated for

nµ = l (1, 1, 0, 0) and θµ = l′
1

2
(1, 1, 0, 0) , (28)

for every pair (l, l′) with l ∈ [[1, . . . , lmax]] and l′ ∈ [[−l′max, . . . , l
′
max]]. Note that we also use

negative values for l′ in order to obtain the same values of p2 from twisting with different

initial momentum. This is useful in order to estimate cut-off effects. From Fig. 2 it is clear

that they are small. Finally, note that we choose “non-democratic” momenta in Eq. (28).

D. Results & Analysis

The vertex functions ΛX for X ∈ {P,V,A,P/S} at a fixed quark mass, as a function of

momentum (ap)2, are shown for β = 2.0 and β = 2.2 in Fig. 2. The filled symbols are

obtained with twist angle θ = 0, while the empty symbol denotes the results obtained for

θ , 0.

In order to determine the value of the renormalisation constants, the first step is to

extrapolate the result in the chiral limit. At fixed p2 the behaviour of the vertex functions,

which do not involve the pseudoscalar density, is expected to be polynomial in (ambare
PCAC

)2.

Concerning the pseudoscalar vertex functions, it is well known that special care must

taken due to the presence of the Goldstone bosons pole [58, 63, 64]. In that case, we use

the following ansatz to perform pion-pole subtraction :

ΛP(p2) =A(p2) +B(p2)mPCAC +
C(p2)

mPCAC
, (29)
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FIG. 4. ZX=P,V,A,P/S as function of the renormalisation scale (w0µ)2 = (w0p)2 for β = 2.0 (left panel)

and β = 2.2 (right panel).

whereA,B and C are functions of p2. The subtraction is performed for each p2 by fitting

the data at a given β, and we will denote Λsub
P

(p2) = ΛP(p2) − C(p2)

mPCAC
the subtracted vertex

function at a given fermion mass.

We illustrate the chiral extrapolation at fixed p2 in Fig. 3, where we show ΛX(p2 = 1/a2)

as a function of (ambare
PCAC

)2. In the plot we also included the Goldstone boson subtracted

vertex function for X = P and P/S. The chiral extrapolation is obtained by fitting a second

order polynomial in (ambare
PCAC

)2 to the data. The vertical dashed-dotted line indicates the

extent of the region included in the fit. The best fit curve and its statistical error are

included in the figure. The typical χ2/ndof for these fits are larger than one, because of

the small statistical error bars on ΛX. Given our target accuracy of a few percent, those

effects are negligible, however.

We show in Fig. 4 the dependence of the chirally extrapolated vertex function ΛX

as a function of (w0p)2. In the continuum, ZV, ZA and ZP/ZS are renormalisation scale

independent, the observed scale dependence is a manifestation of discretisation effects.1

In order to have meaningful estimates of ZX(p2), one relies on the existence of a renor-

malisation window: Λ < p < O(a−1). The lower bound guarantees that the Goldstone pole

contamination is small and that the Wilson coefficient entering in the operator product

1 Note that we do not subtract perturbative O(a) effects, and we do not convert ZP(µ2) to the MS scheme.
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β ZA ZV ZP/ZS ZRI′
P

(p2 = 7/w2
0
)

1.8 0.7791(4)(9) 0.5599(4)(40) 0.2809(48)(45) 0.2051(36)(66)

2.0 0.8072(3)(5) 0.6356(2)(26) 0.4080(25)(27) 0.2907(16)(72)

2.2 0.8267(2)(23) 0.6973(2)(30) 0.5655(16)(121) 0.3803(8)(49)

2.3 0.8449(23)(72) 0.7280(19)(80) 0.6799(260)(440) 0.4201(136)(13)

TABLE III. Renormalisation constant obtained using (w0p)2 = 7 as a reference scale

expansion, which relates the physical process and the matrix element, can be computed

in perturbation theory. The upper bound guarantees small lattice artefacts. In our case,

reformulating the inequality in unit of w0 , and setting wχ
0
Λ ∼ wχ

0
mV ∼ 1 we have:

(wχ
0
mV)2 ∼ 1 <

(

wχ
0
p
)2
< O

(

(wχ
0
/a)2

)

. (30)

Since the smallest value wχ
0
/a obtained at β = 1.8 is wχ

0
/a ∼ 2, we would have 1 <

(

wχ
0
p
)2
<

O (4). This is the famous window problem occurring at coarser lattice spacing. We thus

have to relax the upper bound of the inequality and introduce larger cut-off effects for our

coarser lattices. In practice we chose (wχ
0
p)2 = 7, which corresponds to the lattice cutoff at

β = 2.0.

In the following we will check that this particular choice of the reference scale does

not affect scale-independent quantities, by using a second reference momentum, at the

higher end of the sensible momenta range, namely: (wχ
0
p)2 = 17. As shown below, our

final results are very stable and do not depend, within errors, on the particular choice of

reference momentum.

We summarise the values of the renormalisation constants, defined at our reference

scale (wχ
0
p)2 = 7, for the four β values, in Table III.

V. SPECTROSCOPY

A. Effective Masses

We compute the mass of the lightest (isovector) pseudoscalar, vector and axial-vector

meson resonances using two-point correlators. As explained in Section II, the mass can

be extracted using the large time behaviour of the effective mass as decribed by Eq. (4).
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This approach is justified if the state is stable. We illustrate effective masses for various

ensembles in Fig. 5, 6, 7 and 8.

The effective masses are fitted on a given plateau range, which is determined for each

state by individual inspection. Systematic errors introduced by the choice of the plateaux

are small for the pseudoscalar and vector resonances, and for this reason we will neglect

them in the following. The best fit value for the effective mass is plotted for each state in

the figures together with its statistical error. The masses of the vector and pseudoscalar

mesons are clearly determined for all ensembles. For the axial vector correlator we do

not observe long plateaux, due to the much worse signal-to-noise ratio as a function of

Euclidean time separation. This results in significantly larger systematic errors, which

are not yet fully under control.

In each plot, we also show the two- and three-pion thresholds. This shows that the

vector meson resonance, whose main decay channel is expected to be the decay in two

pions, is stable for almost all of our simulations. In a few cases, our most chiral points

at β = 1.8 and β = 2.0 are at kinematical threshold. A similar conclusion can be drawn

for the isovector axial-vector meson, whose main decay channel is expected to be three

pions.

B. mPS and FPS

The continuum expressions for mPS and FPS have been worked out in [65] at next-to-

leading order in chiral perturbation theory:

m2
PS

mf

= 2B

[

1 +
3

4
x log

2Bmf

µ2
+ bMx +O(x2)

]

, (31)

FPS = F

[

1 − x log
2Bmf

µ2
+ bFx +O(x2)

]

, (32)

where x = 2Bmf

(4πF)2 and mf is the renormalised fermion mass at a given scale. In the conven-

tions of [65], the condensate is given by Σ ≡ −2BF2. Note that F and B appear in both

expressions. The range of applicability of the effective theory is not known a priori. In

order to make the fits more stable, we will rewrite the expansion in a new parameter,

x̃ =
m2

PS

(4πF)2 . At this order Eq. (31) and Eq. (32) remain unchanged (this is, however, not true
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for the four lattice spac-

ings. The curves correspond to the best fit pa-

rameters obtained fitting only β = 2.0, β = 2.2

and β = 2.3 (subset S2) and drawn for the cor-

responding lattice spacing. The black curve

indicate the continuum results.
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at NNLO) and read:

m2
PS

mf
= 2B

[

1 +
3

4
x̃ log

m2
PS

µ2
+ bMx̃ +O(x̃2)

]

, (33)

FPS = F

[

1 − x̃ log
m2

PS

µ2
+ bFx̃ +O(x̃2)

]

. (34)

From this result we observe that the expansion of FPS now is independent of B, which will

allow us to perform the fit in two steps: first a fit to FPS to obtain F and then using it as an

input for a second fit to m2
PS
/mf to obtain B.

The renormalised values for FPS and m2
PS
/mf at four values of the lattice spacing are

shown as function of m2
PS

in Fig. 9 and 10. All the lattices included in the fit satisfy

mPSL ≥ 5.6. The fermion mass is given by mf(p
2) = mPCAC ZA/ZP(p2) and the renormalised

pseudoscalar decay constant is FPS = F(bare)

PS
ZA. As a reference scale for the renormalisation

constants we use p =
√

7 /wχ
0
. As can be seen, significant cut-off effects are observed. In

order to estimate the low energy constants F and B in the continuum, discretisation effects
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type coef. S1 S2 S3 S4

NLO global F 0.066(6) 0.066(6) 0.049(5) 0.049(5)

NLO global bF 0.0038(2) 0.0038(2) 0.0028(1) 0.0028(1)

NLO global δF 0.05(1) 0.05(1) 0.09(1) 0.09(1)

NLO global γF 0.05(1) 0.051(9) 0.072(6) 0.069(6)

NLO global aF 0.22(3) 0.21(2) 0.19(1) 0.18(1)

NLO global χ2/ndof 9.7/8 13./10 83./14 91./16

NLO global cut 5 5 5 5

NLO global B 2.9(1) 2.9(1) 3.0(1) 3.0(1)

NLO global bM 0.0005(1) 0.0005(1) 0.00028(8) 0.00029(8)

NLO global δM -0.7(1) -0.74(9) -0.84(7) -0.85(6)

NLO global γM -0.25(7) -0.25(7) -0.24(5) -0.24(5)

NLO global aM 0.00(1) 0.00(1) 0.003(5) 0.003(5)

NLO global χ2/ndof 10./8 14./10 27./14 30./16

NLO global cut 5 5 5 5

TABLE IV. Results of the global fits of m2
PS
/mf and FPS on subset S1,2,3,4 using (w0p)2 = 7 as a

reference renormalisation scale.

19



type coef. β = 1.8 β = 2.0 β = 2.2 β = 2.3

NLO fixed β F 0.096(4) 0.088(3) 0.086(3) 0.09(4)

NLO fixed β aF 0.41(2) 0.27(1) 0.211(9) 0.1(1)

NLO fixed β bF 0.0093(1) 0.0066(1) 0.0052(1) 0.004(1)

NLO fixed β χ2/ndof 4.1/4 9.3/7 6.8/4 1.1/1

NLO fixed β cut 12 12 12 12

NLO fixed β B 1.7(1) 2.18(8) 2.38(4) 3.1(7)

NLO fixed β aM -0.02(6) -0.00(2) 0.025(7) 0.01(9)

NLO fixed β bM -0.0004(7) 0.0000(3) 0.0007(1) 0.000(1)

NLO fixed β χ2/ndof 4.0/4 8.2/7 5.0/4 1.0/1

NLO fixed β cut 12 12 12 12

TABLE V. Results of the fixed lattice spacing fits for each β value using (w0p)2 = 7 as a reference

renormalisation scale.
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must then be taken into account. In order to obtain a reliable estimate, we will use two

different strategies.

The first strategy (strategy I) is based on fitting the pseudoscalar mass and decay

constant using several lattice spacings simultaneously together with a given model for

the lattice discretisation effects:

m2
PS

mf
= 2B

[

1 − aMx̃ log
m2

PS

µ2
+ bMx̃ + δM

a

wχ
0

+ γMm2
PS

a

wχ
0

]

, (35)

FPS = F

[

1 − aFx̃ log
m2

PS

µ2
+ bFx̃ + δF

a

wχ
0

+ γFm2
PS

a

wχ
0

]

. (36)

Here the new fitting parameters δM,F and γM,F control the discretisation effects. Note that

the two coefficients aF,M are fixed in the continuum, but here we consider them as free

parameters.

To control the stability of the fit, we consider four subsets of our data S1 = {β = 2.0, 2.2},
S2 = {β = 2.0, 2.2, 2.3}, S3 = {β = 1.8, 2.0, 2.2} and S4 = {β = 1.8, 2.0, 2.2, 2.3} and perform

the fit on each of these subsets. The result of the fit for the S2 subset is shown in Fig. 9 and

10.

The second strategy (strategy II) consists of fitting each of the lattice spacings indepen-

dently, to obtain the coefficients B, F, aF,M and bF,M, while setting to zero the coefficients

δM,F, γM,F in Eq. (35) and (36). In a second step, lattice discretisation effects can be assessed

by studying the dependence of the coefficients as a function of the lattice spacing.

In all fits we use wχ
0
µ = 1 as a scale. The results of the fits, including their χ2 per degrees

of freedom, are summarised in Table IV for strategy I and Table V for strategy II. The fits

are performed on a given range of values for (wχ
0
mPS)2 below the “cut” given in the tables.

Strategy II allows us to extract an estimate of wχ
0
F and wχ

0
B for each lattice spacing.

This is shown in Fig. 11, where the value of B has been re-scaled by a factor of 20

for convenience. The scaling towards the continuum limit is compatible with a linear

behaviour and no O(a2) effects are visible. On the plot we also show the results obtained

directly in the continuum using the first strategy for the subset of gauge ensembles S1 and

S2. The results obtained with strategy I for the subsets S3 and S4 have a χ2/ndof ∼ 10 and

thus do not describe the data well.

Our final estimates for the chiral parameters are wχ
0
B = 2.88(15)(17) and wχ

0
F =

0.078(4)(12). The central value and statistical error comes from the linear extrapola-
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FIG. 11. Values of the chiral parameters B and F in units of the reference lattice scale wχ
0

as extracted

using strategy II described in the text. In this plot B has been rescaled by a factor of 20 for graphical

convenience.

tion to the continuum of the fits at fixed beta (strategy I). The systematic error is obtained

by computing the maximal difference between the results obtained by strategy I and II.

By setting the scale to F = 246 GeV one arrives at the result wχ
0
= 6.3(3)(9) · 10−5 fm. The

value of the condensate then reads Σ1/3/F = 4.19(26) (statistical and systematical errors

have been combined).

We repeated a similar analysis using p =
√

17/wχ
0

as reference scale, which is shown

in appendix B. As claimed in the previous section, we do not observe any statistically

significant change in the continuum values of F and B.

C. Heavier states

In this section we report our results for the mass of two heavier isotriplet meson

resonances, namely the vector in Fig. 12 and the axial-vector in Fig. 13. All the masses are

presented in units of wχ
0

as functions of (wχ
0
mPS)2. In each figure we present a global fit,

including all the available data at four lattice spacings, to the following fit ansatz:

wχ
0
mX = wχ

0
mχ

X
+A(wχ

0
mPS)2 + B(wχ

0
mPS)4 + C

a

w0
. (37)
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FIG. 12. Combined chiral and continuum extrapolation of the vector meson mass mV. Our data

for four lattice spacings is presented together with the best fit at each lattice spacing. The grey

band is our result for the continuum extrapolation and its 1-σ confidence region.
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FIG. 13. Combined chiral and continuum extrapolation of the axial vector meson masss mA. Our

data for four lattice spacings is presented together with the best fit at each lattice spacing. The

grey band is our result for the continuum extrapolation and its 1-σ confidence region.
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coef. Vector Axial

wχ
0
mX 1.01(3) 1.1(1)

A 0.47(3) 0.8(1)

B -0.039(6) -0.09(3)

C -0.05(7) 2.1(3)

χ2/ndof 23/16 20/16

cut 4 4

TABLE VI. Results of the polynomial fits of the vector and axial resonances.

The fit range for each channel is shown by the vertical dotted line in the plot. The gray

band indicate the 1σ error band for the continuum prediction, obtained by setting a = 0

with our best fit parameters. The results of the fit for the axial and vector meson are

summarised in Table VI.

For the vector meson the fit describes our data well and the observed cutoff effects

are small. We find wχ
0
mχ

V
= 1.01(3) with a χ2/ndof = 23/16. Note that for our data mV is

always less than 2mPS, except maybe for the most chiral point used in the fit, so that the

vector meson is expected to be stable and its mass can be reliably extracted from the large

(Euclidean) time behaviour of the appropriate two-point function.

For the mass of the axial-vector meson, our data is more noisy already at the level of

the effective masses and we therefore have larger systematic uncertainties. The ansatz

Eq. (37) fits the data well, within large errors, and the resulting value for the mass is:

wχ
0
mχ

A
= 1.1(1) with χ2/ndof = 20/16. In units of FPS we have mV/FPS ∼ 13.1(2.2) and

mA/FPS ∼ 14.5(3.6).

VI. CONCLUSION

We analysed the SU(2) gauge theory with N f = 2 flavours of fermions in the fundamen-

tal representation using lattice techniques. Dynamical simulations have been performed

at four lattice spacings and a number of volumes and masses to asses systematic effects

and to carry out the necessary extrapolations. We determined non-perturbatively, in

the RI’-MOM scheme, the relevant renormalisation constants and performed a detailed
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analysis of the mass and decay constant of the pseudoscalar Goldstone bosons, including

an extrapolation to the chiral and continuum limits to take into account the lattice cutoff

effects present in our computation. We use a conservative estimate of all systematic un-

certainties to obtain a reliable estimate of FPS. Finally we analysed the mass of the spin-1

bound states and determined the ratios mV/FPS = 13.1(2.2) and mA/FPS = 14.5(3.6) for

the continuum theory in the chiral limit, using similar extrapolation methods. Our final

results are consistent with, and improve upon, previous results for this model, which

were performed with only two lattice spacings, at much larger quark masses and using a

perturbative estimate of the renormalisation constants.

In the context of the fundamental composite (Goldstone) Higgs dynamics [24] our

results predicts new resonances of mass:

mV =
3.2(5)

sinθ
TeV, and mA =

3.6(9)

sinθ
TeV , (38)

which are beyond the present LHC constraints, even in the Technicolor limit [6] where

θ = π/2.

In the context of dark matter models, in paticular for the SIMPlest case, because the

dark pion is estimated to be around ten times its decay constant [38], we cannot use the

estimate above. Nonetheless, a preliminary result can be obtained from our simulations

reported in the first line of Table VII, at β = 2, which yield mPS/FPS ≈ 7.5, mV/FPS ≈ 8.3 and

mA/FPS ≈ 13.7. Although these results need crucial refinement they immediately show

that for such large values of the dark pion mass one cannot neglect the effects of higher

mass states since the overall spectrum is much more compressed than in the case of the

chiral limit.
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Appendix A: Numerical results

We report in this section our numerical results for the main spectroscopy quantities

studied in this article. The column “stat” reports the number of thermalised configurations

used in the analysis, while the column “Nrep” is the number of “replicas” runs used, i.e.

number of independent runs with the same bare parameters.

β L T m0 Nrep stat. mPSL m
(bare)
PCAC

mPS F
(bare)
PS

mV mA

1.8 16 32 1 1 1562 17.85136 0.2133(2) 1.115(1) 0.231(1) 1.221(1) 2.20(3)

1.8 16 32 1.089 2 19986 13.27994 0.11638(7) 0.8299(3) 0.1842(3) 0.9831(9) 1.7(1)

1.8 16 32 1.12 1 3168 10.78498 0.0758(2) 0.674(1) 0.155(1) 0.857(4) 1.6(2)

1.8 16 32 1.14 1 1225 8.386688 0.0454(5) 0.524(3) 0.127(2) 0.73(1) 1.5(1)

1.8 16 32 1.15 1 1517 6.51176 0.0267(5) 0.406(4) 0.106(2) 0.65(2) 1.3(1)

1.8 24 32 1.155 1 3316 7.696368 0.0163(3) 0.320(3) 0.092(1) 0.58(2) 1.2(2)

1.8 24 32 1.157 1 1447 5.70156 0.0088(7) 0.23(1) 0.081(4) 0.55(3) 1.34(9)

2 16 32 0.85 2 46057 14.64522 0.1669(1) 0.9153(5) 0.1524(3) 1.0050(8) 1.64(3)

2 16 32 0.9 2 20316 11.37803 0.1046(2) 0.711(1) 0.1244(5) 0.824(1) 1.39(5)

2 16 32 0.94 2 9377 7.160768 0.0434(3) 0.447(2) 0.086(1) 0.598(6) 1.07(7)

2 16 32 0.945 1 3760 6.399184 0.0343(6) 0.399(4) 0.078(1) 0.56(1) 1.07(7)

2 32 32 0.947 2 1826 11.96282 0.0309(3) 0.373(2) 0.0765(9) 0.535(7) 1.01(7)

2 32 32 0.949 4 1633 11.10832 0.0266(3) 0.347(2) 0.072(1) 0.51(1) 0.96(7)

2 32 32 0.952 1 2005 9.80432 0.0208(3) 0.306(3) 0.067(1) 0.48(1) 0.94(8)

2 32 32 0.957 1 711 6.762944 0.0096(5) 0.211(6) 0.054(2) 0.40(4) 0.95(5)

2 32 32 0.958 1 957 5.772608 0.0070(6) 0.18(1) 0.049(3) 0.38(5) 0.84(9)

2.2 16 32 0.6 1 256 14.10846 0.2008(3) 0.881(1) 0.107(1) 0.925(2) 1.31(2)

2.2 16 32 0.65 1 512 11.71451 0.1489(3) 0.732(1) 0.0949(7) 0.787(2) 1.17(4)

2.2 16 32 0.68 1 2894 8.716016 0.0914(2) 0.544(1) 0.0764(6) 0.613(2) 0.92(3)

2.2 16 32 0.7 1 2148 8.660944 0.0909(3) 0.541(2) 0.0760(7) 0.610(3) 0.91(4)

2.2 32 32 0.72 2 4437 14.31942 0.0660(4) 0.4474(7) 0.0663(4) 0.521(1) 0.81(1)

2.2 32 32 0.735 4 1257 11.55728 0.0456(2) 0.361(1) 0.0567(4) 0.446(3) 0.72(3)

Table continued on next page
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β L T m0 Nrep stat. mPSL m
(bare)
PCAC

mPS F
(bare)
PS

mV mA

2.2 32 32 0.75 5 196 8.477056 0.0257(4) 0.264(1) 0.0456(6) 0.362(4) 0.62(3)

2.2 48 48 0.76 1 1409 7.70736 0.0101(1) 0.160(1) 0.0337(4) 0.271(8) 0.45(7)

2.3 32 32 0.575 2 717 19.54832 0.1327(2) 0.610(1) 0.0715(5) 0.648(2) 0.89(2)

2.3 32 32 0.6 2 4750 16.98768 0.1066(1) 0.5308(6) 0.0651(1) 0.5731(9) 0.82(1)

2.3 32 32 0.625 2 1233 14.10864 0.0793(2) 0.440(1) 0.0575(4) 0.489(2) 0.72(1)

2.3 32 32 0.65 2 2296 10.75213 0.0506(2) 0.336(1) 0.0475(2) 0.394(2) 0.62(1)

2.3 32 32 0.675 2 1436 6.560576 0.0199(3) 0.205(3) 0.0323(5) 0.291(4) 0.38(5)

TABLE VII: Numerical results for large volume runs used in

the analysis presented in this paper.
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Appendix B: Systematic error due to the choice of renormalisation scale

In this appendix we report the dependence of our continuum extrapolation results for

the low energy constants F and B on the choice of renormalisation scale (wχ
0
p)2. The main

result in the text are obtained using (wχ
0
p)2 = 7 as the reference momentum scale. Here we

present the same analysis for another value of the reference momentum scale: (wχ
0
p)2 = 17.

This corresponds to a much higher scale where lattice cutoff effects are expected to become

more relevant. We show below in Figs 14, 15 and 16 the analysis of mPS, f ps and the scaling

plot F and B using (wχ
0
p)2 = 17. The corresponding results for the chiral parameters read

wχ
0
B = 3.32(24)(8) and wχ

0
F = 0.075(5)(12). Setting the scale to be F = 246 GeV, one thus

deduce wχ
0
= 6.0(4)(9) · 10−5 fm. The value of the condensate then read Σ1/3/F = 4.48(28)

(statistical and systematical errors have been combined). Although the dependence on
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FIG. 14. FPS versus m2
PS

for four lattice spacing,

using (wχ
0
p)2 = 17 for the renormalisation scale.

The curves correspond to the best fit parameters

obtained fitting only β = 2.0, β = 2.2 and β = 2.3

(subset S2) and drawn for the corresponding lat-

tice spacing. The black curve indicate the contin-

uum results.

0 5 10 15

0
2

4
6

8
1

0
1

2

( w0

χ
 mPS )

2

w
0χ
 m

P
S

2
 m

f

0 5 10 15

0
2

4
6

8
1

0
1

2

( w0

χ
 mPS )

2

w
0χ
 m

P
S

2
 m

f

0 5 10 15

0
2

4
6

8
1

0
1

2

( w0

χ
 mPS )

2

w
0χ
 m

P
S

2
 m

f

0 5 10 15

0
2

4
6

8
1

0
1

2

( w0

χ
 mPS )

2

w
0χ
 m

P
S

2
 m

f

0 5 10 15

0
2

4
6

8
1

0
1

2

( w0

χ
 mPS )

2

w
0χ
 m

P
S

2
 m

f

0 5 10 15

0
2

4
6

8
1

0
1

2

( w0

χ
 mPS )

2

w
0χ
 m

P
S

2
 m

f

0 5 10 15

0
2

4
6

8
1

0
1

2

( w0

χ
 mPS )

2

w
0χ
 m

P
S

2
 m

f

0 5 10 15

0
2

4
6

8
1

0
1

2

( w0

χ
 mPS )

2

w
0χ
 m

P
S

2
 m

f

β = 1.8
β = 2.0
β = 2.2
β = 2.3

FIG. 15. m2
PS
/mf versus m2

PS
for four lattice spac-

ing, using (wχ
0
p)2 = 17 for the renormalisation

scale. The curves correspond to the best fit pa-

rameters obtained fitting only β = 2.0, β = 2.2 and

β = 2.3 (subset S2) and drawn for the correspond-

ing lattice spacing. The black curve indicate the

continuum results.

28



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
00

0.
05

0.
10

0.
15

0.
20

a w0
χ

w
0χ  F

 &
 w

0χ  B
/2

0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
00

0.
05

0.
10

0.
15

0.
20

a w0
χ

w
0χ  F

 &
 w

0χ  B
/2

0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
00

0.
05

0.
10

0.
15

0.
20

a w0
χ

w
0χ  F

 &
 w

0χ  B
/2

0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
00

0.
05

0.
10

0.
15

0.
20

a w0
χ

w
0χ  F

 &
 w

0χ  B
/2

0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
00

0.
05

0.
10

0.
15

0.
20

a w0
χ

w
0χ  F

 &
 w

0χ  B
/2

0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
00

0.
05

0.
10

0.
15

0.
20

a w0
χ

w
0χ  F

 &
 w

0χ  B
/2

0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
00

0.
05

0.
10

0.
15

0.
20

a w0
χ

w
0χ  F

 &
 w

0χ  B
/2

0

w0
χ F

w0
χ B 20

continuum extrapol.
global fit results S1
global fit results S2

FIG. 16. Analogue of Fig. 11 obtained for reference momentum (wχ
0
p)2 = 17 .

the reference scale is clear at finite lattice spacing, the continuum extrapolated results are

almost insensitive on this choice within our errors and they are therefore in agreement

with the ones obtained in the main text.

Appendix C: Topology

Besides an efficient way of setting the scale, fields smoothed at non-zero flow time

allows for a convenient definition of the topological charge, in terms of the straightforward

discretisation of the topological charge density.

We plot in Fig. 17 the topological charge as a function of the Monte Carlo time for two

β values at the lightest quark mass for a fixed value of c =
√

8t/L ≈ 0.5. In general, we

observe that the average topological charge is compatible with zero for all our runs and

that the fluctuations decrease with the fermion mass, as expected. Even if we observe

larger correlation times for the topological charge at smaller quark masses, our simulations

still explore all topological sectors with a good efficiency. The corresponding distribution

of the topological charge are approximately Gaussian as shown in Fig. 18.
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FIG. 17. History of the topological charge for the most chiral run at β = 2.0 (left) and β = 2.2 (right)

as the function of the Monte Carlo time tHMC.
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FIG. 18. Histogram of the topological charge for the same run as in Fig. 17 for β = 2.0 (left) and

β = 2.2 (right).
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