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Abstract

We discuss Drell-Yan production of dileptons at high energies in forward rapidity region

in a hybrid high-energy approach. This approach uses unintegrated gluon distributions in

one proton and collinear quark/antiquark distributions in the second proton. Corresponding

momentum-space formula for the differential cross sections in high-energy approximation has

been derived and will be presented. The relation to the commonly used dipole approach is

discussed. We conclude and illustrate that some results of the dipole approaches are too

approximate, as far as kinematics is considered, and in fact cannot be used when comparing with

real experimental data. We find that the dipole formula is valid only in very forward/backward

rapidity regions (|y| > 5) that cannot be studied experimentally in the moment. We performed

calculations of some differential cross sections for low-mass dilepton production by the LHCb

and ATLAS collaborations. In distinction to most of dipole approaches, we include all of the

four Drell-Yan structure functions, although the impact of interference structure functions is

rather small for the relevant experimental cuts. We find that both side contributions (g + q/q̄

and q/q̄+g) have to be included even for the LHCb rapidity coverage which is in contradiction

with what is usually done in the dipole approach. We present results for different unintegrated

gluon distributions from the literature (some of them include saturation effects). We see no

clear hints of saturation even at small Mll when comparing with the LHCb data.
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I. INTRODUCTION

The Drell-Yan process of inclusive lepton-pair production is one of the important

sources on the partonic structure of protons [1–3]. It was proposed some time ago that

the Drell-Yan production of low invariant masses of dileptons in forward directions could

be another good place in searching for the onset of (gluon) saturation [4, 5]. A number

of different approaches have recently been used to calculate Drell-Yan processes in the

small-x region.

In particular in recent applications for LHC much attention has been paid to the

color-dipole approach [6–9], in which the main ingredient is the color dipole-nucleon

cross section [10] parametrized as a function of dipole size and collision energy or a

similar equivalent kinematical variable.

Alternatively a kT -factorization approach is used to describe dilepton production.

Here the recent works [11–13] are based on quark and antiquark unintegrated distribu-

tions. This formulation however is not adequate to address the nonlinear effects in the

gluon distribution dubbed “saturation”. Another approach relates the small-x uninte-

grated quark density explicitly to the unintegrated gluon distribution [14].

Most of the above calculations, especially in the color-dipole framework do not address

lepton momentum and angular distributions, but rather concentrate on a few observables,

such as the dilepton invariant mass, rapidity and transverse momentum. All of these

observables can be expressed through the inclusive production cross sections of a virtual

heavy photon, which carries either transverse or longitudinal polarization.

For the full description of lepton distributions this is however not enough– there are

interferences between transverse and longitudinal and different transverse polarization

to be taken into account. The complete description of the Drell-Yan process therefore

requires four structure functions [15–17].

In this paper we shall also start from the impact parameter representation, but we will

perform the Fourier transformation to transverse momentum space. What then emerges

[4] is a hybrid collinear/kT -factorization, in which the main ingredients will be collinear

quark/antiquark and unintegrated gluon distributions (see e.g. [18] for predictions of

forward jets in such an approach). The dominant processes captured by this approach
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are shown in Fig.1. The present approach allows for explicit treatment and control of

momenta of individual leptons (e+e− or µ+µ−) and therefore a comparison to existing

experimental data. Below, we will also use unintegrated gluon distribution functions

(UGDFs) equivalent to the dipole-nucleon cross sections known from the literature. Then

a direct comparison of results from different dipole models/UGDFs with experimental

data [19–21] will be possible.

FIG. 1: The diagrams relevant for forward and backward production of dilepton pairs.

II. INCLUSIVE LEPTON PAIR PRODUCTION: KINEMATICS, FRAMES,

STRUCTURE FUNCTIONS

The cross section for inclusive l+l− production (Drell-Yan process) can be presented

as

(2π)4
dσ(pp→ l+(k+)l−(k−)X)

d4q
=

(4παem)2

2SM4
·WµνL

µν · dΦ(q, k+, k−) . (1)

Here q = k+ + k− is the four-momentum of the virtual photon, q2 = M2 is the invariant

mass of the lepton pair. The lepton-tensor Lµν , is known explicitly:

Lµν = 4 ·
(

k+µk−ν + k−µk+ν −
M2

2
gµν

)

. (2)
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All dynamical information on the production process of the virtual photon is contained

in the hadronic tensor

Wµν =
∫

d4x exp(−iq · x) 〈p1p2|Jem
µ (0)Jem

ν (x)|p1p2〉 . (3)

One conventionally decomposes the hadronic tensor introducing four structure functions

[15, 16]:

Wµν = (x̂µx̂ν + ŷµŷν)WT + ẑµẑνWL + (ŷµŷν − x̂µx̂ν)W∆∆ − (x̂µẑν + ẑµx̂ν)W∆ , (4)

where the covariant directions x̂µ, ŷµ, ẑµ define the spatial axes in a rest frame of the

dilepton pair (or the massive photon).

The individual structure functions can be projected out by contraction with helicity

states of the massive photon as

WT = W µνǫ(+)
µ ǫ(+)∗

ν , WL = W µνǫ(0)µ ǫ(0)ν ,

W∆ = W µν(ǫ(+)
µ ǫ(0)ν + ǫ(0)µ ǫ(+)∗

ν )
1√
2
,W∆∆ = W µνǫ(+)

µ ǫ(−)∗
ν .

(5)

Here, the helicity states are defined as

ǫ(±)
µ = − 1√

2
(±x̂µ + iŷµ) , ǫ(0)µ = ẑµ . (6)

It is furthermore useful to introduce the time direction

t̂µ =
1

M
qµ , t̂

2 = +1 , (7)

and the “spatial unit matrix”

− g̃µν ≡ x̂µx̂ν + ŷµŷν + ẑµẑν = −gµν + t̂µt̂ν = −gµν +
qµqν
M2

, (8)

To fully define the frame, we should relate the vectors x̂µ, ŷµ, ẑµ to the momenta of

measured particles. From now on, we will use a dilepton rest-frame, in which the z-axis

points along the momentum of one of the incoming protons (we choose the momentum

p2) in that frame. Such a frame is often called a Gottfried-Jackson frame. For a useful
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discussion of different frame choices, see [17]. Explicitly, we have

ẑµ =
M

q · p2
(

p2µ −
q · p2
M2

qµ
)

=
M

q · p2
p̃2µ ,

x̂µ =

√

−q2⊥
q · p2

(

p2µ −
q · p2
q2⊥

q⊥µ

)

=
M

√

−q2⊥(p1 · p2)

(

(p2 · ẑ)p̃1µ − (p1 · ẑ)p̃2µ
)

,

ŷµ = εµαβγ x̂αẑβ t̂γ =
1

√

−q2⊥
εµαβγn

+
αn

−
β q⊥γ . (9)

Here we used the notation

p̃iµ ≡ g̃µνpiν = piµ −
(pi · q)
M2

qµ , i = 1, 2 , (10)

as well as

n+
µ =

√

2

S
p1µ , n

−
µ =

√

2

S
p2µ ,

q⊥µ =
(

gµν − n+
µn

−
ν − n−

µ n
+
ν

)

qν . (11)

Notice, that q⊥µ is the transverse momentum of the virtual photon in the pp-center of

mass frame. Below, boldface letters will denote the two-dimensional transverse momenta,

so that e.g. q2⊥ = −q2. We will also use the notation qT ≡ |q| for the absolute values of

two-dimensional vectors.

Now, performing explicitly the contraction of leptonic and hadronic tensor expressed

in the chosen basis, we obtain the inclusive dilepton cross section as

dσ(pp→ l+l−X)

dx+dx−d2k+d2k−

=
αem

(2π)2M2

xF
x+x−

{

ΣT (xF , q,M
2)DT

(x+
xF

)

+ ΣL(xF , q,M
2)DL

(x+
xF

)

+Σ∆(xF , q,M
2)D∆

(x+
xF

)( l

|l| ·
q

|q|
)

+Σ∆∆(xF , q,M
2)D∆∆

(x+
xF

)(

2
( l

|l| ·
q

|q|
)2 − 1

)}

. (12)

We use the light-cone parametrization of particle momenta:

k±µ = x±

√

S

2
n+
µ +

k2
±

x±
√

2S
n−
µ + k±⊥µ ,

qµ = xF

√

S

2
n+
µ +

M2 + q2

xF
√

2S
n−
µ + q⊥µ . (13)
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so that

xF = x+ + x−, q = k+ + k− . (14)

We also need the light-cone relative transverse momentum

l =
x+
xF

k− − x−
xF

k+ . (15)

The functions Di, i ∈ {T, L,∆,∆∆} come from the contractions of the leptonic tensor

and describe the γ∗ → l+l− transition. They are given by

DT (u) = 4
(

u2 + (1 − u)2
)

,

DL(u) = D∆∆(u) = 8u(1 − u) ,

D∆(u) = 4
√

u(1 − u) (2u− 1) . (16)

Finally, the functions Σi(xF , q,M
2), i ∈ {T, L,∆,∆∆} parametrize the density matrix

of production of the massive photon. Expressed in terms of helicity eigenstates, we have

for the density matrix

ρλλ′

dσ(pp→ γ∗(M2)X)

dxFd2q
=

1

xF

αem

8π2S
Wµνǫ

(λ)
µ ǫ(λ

′)∗
ν . (17)

Or

ρλλ′ =
Wµνǫ

(λ)
µ ǫ(λ

′)∗
ν

2WT +WL

, ρ++ + ρ−− + ρ00 = 1 . (18)

Above we used the components

Σi(xF , q,M
2) = ρi

dσ(pp→ γ∗(M2)X)

dxFd2q
≡ 1

xF

αem

8π2S
Wi, i ∈ T, L,∆,∆∆ . (19)

III. THE PARTON LEVEL PROCESS: qp → γ∗X

Let us now turn to the parton-level description of the Drell-Yan process. What we

ultimately need are the hadron-level density matrix elements for the pp→ γ∗X process.

As we are interested in the “forward region” of phase space, it is reasonable to assume

that the most important degrees of freedom will be quarks and antiquarks from one of

the protons and small-x gluons from the second one. Our parton level subprocess will
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therefore look like an excitation of the γ∗q-Fock state of an incoming quark in the small-x

gluon field of the second hadron.

We follow the notation and normalization of [22], and can write down the density-

matrix for production of the virtual photon in the qp→ γ∗X process as

ρ̂λλ′

dσ̂(qp→ γ∗(z, q)X)

dzd2q
=

1

2(2π)2
∑

σ,σ′

∫

d2rd2r′ exp[−iq(r − r′)]ψ
(λ)
σσ′(z, r)ψ

(λ′)∗
σσ′ (z, r′)

×
(

σ(x2, zr) + σ(x2, zr
′) − σ(x2, z(r − r′))

)

. (20)

The light-front wave functions for the qσ → γ∗λq
′
σ transition (here σ, σ′, λ denote the

helicities of particles) read:

ψ
(λ)
σσ′(z, r) =

∫

d2q

(2π)2
exp[−irq]ψ

(λ)
σσ′(z, q)

= eq
√

z(1 − z)
∫

d2q

(2π)2
exp[−irq]

ūσ′(1 − z,−q)ǫ(λ)∗µ γµuσ(1, 0)

q2 + ε2
, (21)

with ε2 = (1 − z)M2 + z2m2
q .

To derive the momentum-space kT -factorization representation, we use the relation

of the dipole cross section with the unintegrated gluon distribution

σ(x, r) =
1

2

∫

d2κ f(x,κ)(1 − exp[iκr])(1 − exp[−iκr]) . (22)

Where f(x,κ) is

f(x,κ) =
4παS

Nc

1

κ4

∂G(x,κ2)

∂ logκ2
. (23)

Inserting (21) and (22) into Eq. (22), we obtain:

ρ̂λλ′

dσ̂(qp→ γ∗(z, q)X)

dzd2q
=

1

2(2π)2
∑

σ,σ′

∫

d2κf(x2,κ)

(

ψ
(λ)
σσ′(z, q) − ψ

(λ)
σσ′(z, q − zκ)

)(

ψ
(λ′)
σσ′ (z, q) − ψ

(λ′)
σσ′ (z, q − zκ)

)∗
(24)

From here, we obtain the impact-factor representation for the elements of the density

matrix of production Σi, where i = T, L,∆,∆∆,

Σ̂i(z, q,M
2) = ρ̂i

dσ̂(qp→ γ∗(z, q)X)

dzd2q
=
e2qαem

2Nc

∫

d2κ

πκ4
αS(q̄2)F(x2,κ

2) Ii(z, q,κ) ,

(25)
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with

IT (z, q,κ) =
1 + (1 − z)2

z
|Φ|2 + z3m2

qΦ
2
0 ,

IL(z, q,κ) =
4(1 − z)2M2

z
Φ2

0 ,

I∆(z, q,κ) =
2(2 − z)(1 − z)M

z

( q

|q| ·Φ
)

Φ0 ,

I∆∆(z, q,κ) =
2(1 − z)

z

(

|Φ|2 − 2
( q

|q| ·Φ
)2)

, (26)

where

Φ(z, q,κ) =
q

q2 + ε2
− q − zκ

(q − zκ)2 + ε2
,

Φ0(z, q,κ) =
1

q2 + ε2
− 1

(q − zκ)2 + ε2
. (27)

A brief comment on our kT -factorization form of the Drell-Yan cross section is in

order. An important property of Eq.(25) is its linear dependence of the unintegrated

glue. This linear dependence remains valid even in the presence of multiple scattering

effects which become important in the presence of a large saturation scale. In fact

all possible saturation effects get absorbed into the nonlinear evolution [23, 24] of the

unintegrated gluon distribution.

The origin of this simplification is the fact, that the emitted photon does not couple

to the exchanged gluon [25]. Indeed for the analogous q → qg transition relevant to the

production of forward jets, the linear kT -factorization is strongly violated, and the rele-

vant saturation effects are not exhausted by the nonlinear evolution of the unintegrated

glue [26].

In a language, where interactions of the fast quark with the target is described by the

correlators of Wilson lines, see e.g. [27], the above simplification manifests itself through

the fact that the cross section depends only on the correlator of two fundamental Wilson

lines. Higher order correlation functions, which would have their own evolution equations

[28], do not appear.

Therefore there is a sound theoretical motivation behind the search for saturation

effects on the unintegrated glue by means of the forward Drell-Yan process.
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IV. kT -FACTORIZATION FORM OF THE DILEPTON CROSS SECTION AT

THE HADRON LEVEL

To go to the hadron level, we will assume the collinear factorization on the quark side

and write, choosing a factorization scale µ2 ∼ q2 + ε2:

Σi(xF , q,M) =
∑

f

∫

dx1dz δ(xF − zx1)
[

qf (x1, µ
2) + q̄f (x1, µ

2)
]

Σ̂i(z, q,M
2) .

=
∑

f

e2fαem

2Nc

∫ 1

xF

dx1
[

qf(x1, µ
2) + q̄f (x1, µ

2)
]

∫

d2κ2

πκ4
2

F(x2,κ
2
2)αS(q̄2)Ii

(xF
x1
, q,κ2

)

.

(28)

The full dilepton cross section is then

dσ(pp→ l+l−X)

dy+dy−d2k+d2k−

= x+x−
dσ(pp→ l+l−X)

dx+dx−d2k+d2k−

=
α2
em

8π2NcM2

∑

f

e2f

∫ 1

xF

dx1
[

x1qf(x1, µ
2) + x1q̄f(x1, µ

2)
]

∫

d2κ2

πκ4
2

F(x2,κ
2
2)αS(q̄2)

{xF
x1
IT

(xF
x1
, q,κ2

)

DT

(x+
xF

)

+
xF
x1
IL

(xF
x1
, q,κ2

)

DL

(x+
xF

)

+
xF
x1
I∆

(xF
x1
, q,κ2

)

D∆

(x+
xF

)( l

|l| ·
q

|q|
)

+
xF
x1
I∆∆

(xF
x1
, q,κ2

)

D∆∆

(x+
xF

)(

2
( l

|l| ·
q

|q|
)2 − 1)

}

. (29)

If we also want to include the recoiling jet, we can do this by inserting the delta-

functions

dxJδ(xJ + xF − x1) d
2kJ δ

(2)(κ2 − q − kJ) . (30)

This gives us the fully differential spectrum

dσ(pp→ l+l−X)

dy+dy−dyJd2k+d2k−d2kJ

=
α2
em

8π3NcM2

xFxJ
xF + xJ

×
∑

f

e2f
[

qf (xF + xJ , µ
2) + q̄f (xF + xJ , µ

2)
]αS(q̄2)F(x2, q + kJ)

(q + kJ)4

×
{

IfT
( xF
xF + xJ

, q, q + kJ

)

DT

(x+
xF

)

+ IfL
( xF
xF + xJ

, q, q + kJ

)

DL

(x+
xF

)

+ If∆
( xF
xF + xJ

, q, q + kJ

)

D∆

(x+
xF

)( l

|l| ·
q

|q|
)
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+ If∆∆

( xF
xF + xJ

, q, q + kJ

)

D∆∆

(x+
xF

)[

2
( l

|l| ·
q

|q|
)2 − 1

]}

. (31)

Rapidities are obtained as:

yi = log
(xi

√
S

√

k2
i

)

↔ xi =

√

k2
i

S
· eyi , i = +,−, J . (32)

The longitudinal momentum fractions x1, x2 entering the quark and gluon distribu-

tions are then

x1 = xF + xJ = x+ + x− + xJ =

√

k2
+

S
ey+ +

√

k2
−

S
ey− +

√

k2
J

S
eyJ ,

x2 =

√

k2
+

S
e−y+ +

√

k2
−

S
e−y− +

√

k2
J

S
e−yJ . (33)

For completness the invariant mass of the dilepton system is

M2 = m2
⊥+ +m2

⊥− + 2m⊥+m⊥− cosh(y+ − y−) − q2 , m⊥± =
√

k2
± +m2

± . (34)

V. FIRST RESULTS

In the present paper we shall use different UGDFs known from the literature. The

Kimber-Martin-Ryskin distributions [29] make a simple link to collinear distributions. In

this approach the transverse momentum distribution of “initial” gluons originates from

the last emission in the ladder. In the present calculations we use MSTW08 distributions

[30] to generate the KMR unintegrated gluon distributions. Here we use numerical

implementation by Maciu la and Szczurek used e.g. in the production of charm and

double charm [31]. For the forward emissions considered here rather low longitudinal

momentum fractions enter into the calculations. In this region a nonlinear effects and

onset of saturation may be, at least potentially, important. The nonlinear effects were

implemented e.g. in Ref.[32]. These distributions give a nice description of forward

exclusive production of J/ψ mesons [33]. In addition, for reference, we shall use also a

simple Golec-Biernat and Wüsthoff (GBW) parametrization [34] and unintegrated gluon

distribution obtained from a dipole-nucleon cross section solving the Balitsky-Kovchegov

equation [23, 24], published in [35] which we will name in the present paper AASM UGDF

for brevity. See the appendix for a description of the numerical procedure.
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For the quark and antiquark distributions we use MSTW08 leading-order distributions

[30]. For most of the calculations we used M2
ll both as a factorization and renormalization

scales. We have also tried:

µ2
R = max

(

κ2⊥, q
2
⊥ + ε2

)

,

µ2
F = q2⊥ + ε2 . (35)

The corresponding results turned out to be almost identical.

A. Full rapidity range

Before going to predictions for particular experiments we wish to discuss the general

situation for the whole phase space, i.e. in the broad range of lepton rapidities.

In Fig.2 we show a two-dimensional distribution in rapidities of positively and nega-

tively charged leptons. One can observe that the contribution of the (q/q̄)g → l+l−(q/q̄)

process extends into a quite broad range, also into the region of negative rapidities

of positively (y+) and negatively (y−) charged leptons. Similar contribution of the

g(q/q̄) → l+l−j subprocess would be trivially symmetric around the (y+ = 0, y− = 0)

point. The calculation was done with the leading-order MSTW08 quark/antiquark dis-

tributions and the Kimber-Martin-Ryskin UGDF [29]. The figure clearly shows that

including only one of the contributions is not sufficient but we wish to stress that this is

routinely done in the dipole approach (see e.g.[7, 8]).

The rapidities of both leptons are strongly correlated i.e. y+ ≈ y−. Distribution

in rapidity of the dileptons may be particularly interesting. In Fig.3 we show such

distributions for different UGDFs from the literature. Quite different results are obtained

for different UGDFs. It is obvious that at the rapidity of the lepton pair y∗ ≈ 0 both

side mechanisms (gq/q̄ or q/q̄g) must be included. At y∗ =0 they give exactly the same

contribution. This is not correctly treated in the dipole approaches where only one side

contribution is included.

In contrast to leading-order collinear approach, in our approach dileptons have finite

transverse momenta. In Fig.4 we show two-dimensional distributions in rapidity and

transverse momentum of dileptons. One can see that at large (positive) rapidities the

11



FIG. 2: Two-dimensional (y+, y−) distribution for
√
s = 7 TeV and kT+, kT− > 3 GeV for

MSTW08 PDF and KMR (left) and KS (right) UGDFs.

span of transverse momenta is significantly broader. This effect was not discussed so far

in the literature. In our case the effect is inherently related to the models of UGDFs

used in the calculation. Practically all models of UGDFs predict such an effect. It would

be interesting to observe/verify such an effect experimentally at the LHC.

In the traditional dipole approach the produced jet (quark or antiquark) is not taken

into account explicitly into the kinematics of the process. In our calculations it en-

ters in the calculation of parton momentum fractions: x1 (gluon distribution) and x2

(quark/antiquark distribution). In Fig.5 we demonstrate the effect when the part of xi

corresponding to the jet emission (see Eq.(33)) is neglected. The largest effect is obtained

when y∗ is large i.e. when both charged leptons are produced very forward. This is also

the region when saturation, or more generally nonlinear effects, are expected. Therefore

one should be very careful in interpreting agreement or disagreement of any calculation

in this region. We shall return to the problem in the context of LHCb kinematics.

In the calculations performed so far both valence and sea quark/antiquark collinear

distributions are included. Fig.6 demonstrates the role of valence quark distributions

(compare the solid (all components) and the dashed (valence quarks only) lines). The

contribution related to valence quark distributions is concentrated at y∗ > 0. Only
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FIG. 3: Distribution in rapidity of the dileptons for
√
s = 7 TeV and kT+, kT− > 3 GeV for

MSTW08 PDF and different UGDFs: KMR (solid), KS (dashed), AAMS (dotted) and GBW

(dash-dotted).

the sea quark/antiquark contribution extends to the region of y∗ < 0. This region is

neglected in the most dipole model approaches in the literature. The LHCb region is

dominated by the valence component. We do not need to mention in this context that

the valence quark distributions are well known and therefore in this region of rapidities

one can test models of UGDFs, provided kinematics of the process is correctly taken into

account as discussed already above.

B. LHCb

In this subsection we show results relevant for the LHCb collaboration results [19].

The LHCb configuration, due to its specificity (2.0 < η < 4.5), allows to test very

asymmetric longitudinal momentum fractions of partons. This is potentially interesting
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FIG. 4: Two-dimensional (y∗, qT ) distribution for
√
s = 7 TeV and kT+, kT− > 3 GeV for

MSTW08 PDF and KMR (left) and KS (right) UGDF.

FIG. 5: Distribution in y∗ for exact (solid) and approximate (dashed) formula for calculating

x1 and x2 for
√
s = 7 TeV and kT+, kT− > 3 GeV for MSTW08 PDF and KMR UGDF. In the

right panel we show the ratio of the two distributions.

in the context of searches for onset of nonlinear effects and/or saturation which are
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FIG. 6: Distribution in rapidity of the dileptons for
√
s = 7 TeV and kT+, kT− > 3 GeV for

MSTW08 valence quark distributions and KMR UGDFs.

expected to occur in the region of very small-x of gluons.

Dilepton invariant mass distribution is traditionally the most popular observable in

the context of Drell-Yan processes. In Fig.7 we show invariant mass distribution for

different UGDFs from the literature.

In naive leading-order collinear calculation charged leptons are produced back-to-

back. In the kT -factorization approach presented here this is dramatically different. In

Fig.8 we discuss correlations in lepton transverse momenta. For the KMR UGDF the

transverse momenta are much less correlated than e.g. for the KS or AAMS UGDFs. In

the letter cases they are enhanced for kT+ = kT−.

The same effect can be demonstrated in one-dimensional distribution in transverse

momentum of the dilepton pairs. Very different distributions are obtained for differ-

ent UGDFs. It would be interesting to compare the results of our calculations with

experimental data.
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FIG. 7: Invariant mass distribution (only the dominant component) for the LHCb cuts: 2

< y+, y− < 4.5, kT+, kT− > 3 GeV for different UGDFs: KMR (solid), Kutak-Stasto (dashed),

AAMS (dotted) and GBW (dash-dotted).

FIG. 8: Two-dimensional (kT+, kT−) distribution for
√
s = 7 TeV and kT+, kT− > 3 GeV for

MSTW08 PDF and KMR (left), KS (middle) and AAMS (right) UGDFs.

In Fig.10 we show the invariant mass distribution as well as the T and L contributions

separately. We see that the T contribution is significantly larger than the L contribution,
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FIG. 9: Dilepton transverse momentum distribution (only the dominant component) for the

LHCb cuts: 2 < y+, y− < 4.5, kT+, kT− > 3 GeV for different UGDFs: KMR (solid), Kutak-

Stasto (dashed), AAMS (dotted) and GBW (dash-dotted).

especially for large dilepton invariant masses.

Now we wish to illustrate the role of the interference terms. Let us define the quantity:

Rint =
dσall − dσT+L

dσall
. (36)

As an example in Fig.11 we show the so-defined quantity as a function of dilepton

invariant mass for the LHCb kinematics. One can observe very small effect of including

interference terms of the order of 1 %. The fluctuations of the theoretical curve are due

to the Monte Carlo method and smallness of the effect.

So far we have considered only g+ q/q̄ contribution. Now we wish to discuss how im-

portant is the second-side (subdominant) q/q̄+ g contribution for the LHCb kinematics.

In Fig.12 we show both the dominant (dashed) and subdominant (dotted) contributions

as well as their sum (solid). Clearly the subdominant contribution is not negligible.

.
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FIG. 10: The T and L contributions to the dilepton invariant mass distribution for the LHCb

kinematics: 2 < y+, y− < 4.5, kT+, kT− > 3 GeV. KMR UGDF was used here.

C. ATLAS

In this subsection we show similar results for the low-Mll ATLAS data [21]. The

ATLAS detector covers more central rapidity range (-2.4 < y+, y− < 2.4 ) and imposes

a slightly larger lower cut on the dilepton transverse momenta kT+, kT− > 6 GeV.

The invariant mass distribution for the ATLAS kinematics is shown in Fig.13. We

get relatively good agreement with the ATLAS data for dilepton invariant masses Mll at

the threshold. At larger dilepton invariant mass some strength is clearly missing. Here

longitudinal momentum fractions are typically x1, x2 ∼ 0.01-0.1. This is a region where

antiquark distributions are dominated by the meson cloud effects (see e.g. [36]). Some

effects of the type of qq̄ annihilation are clearly not included in the present approach (as

well as in the dipole approach), at least for the considered range of x1, x2.

The transverse momenta of leptons are correlated as shown in Fig. 14. We observe a
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FIG. 11: The Rint as a function of Mll for the LHCb kinematics: 2 < y+, y− < 4.5, kT+, kT− >

3 GeV. KMR UGDF was used here. The fluctuations are due to insufficient statistics of our

Monte Carlo calculation.

clear ridge along kT+ = kT− and enhancements when either kT+ or kT− are small.

Distributions in transverse momentum of the dilepton pairs are shown in Fig.15 for

the different UGDFs. This plot reminds corresponding plot for the LHCb kinematics.

VI. SUMMARY AND CONCLUSIONS

In the present paper we have considered Drell-Yan production of dileptons in the

forward rapidity region in a hybrid high-energy approach. In this approach the main

ingredients are collinear quark/antiquark distributions and unintegrated gluon distri-

butions. Corresponding formula for matrix element in high-energy approximation has

been derived and presented. The relation to the commonly used dipole approach has

been discussed. In contrast to the dipole approach our formulation correctly treats the

kinematic of the process and can be applied to the analysis of real experimental data
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FIG. 12: Contributions of the second-side component for the LHCb kinematics: 2 < y+, y− <

4.5, kT+, kT− > 3 GeV. KMR UGDF was used here.

including their specific kinematic cuts. In our more general formula we have obtained

four terms instead of two (T, L) in the standard dipole model.

A corresponding program including underlying 2 → 3 subprocess matrix elements

(g + q/q̄ → l+l−j or q/q̄ + g → l+l−j), PDFs and UGDFs has been constructed. To

illustrate our approach we have performed calculations of differential cross sections cor-

responding to recent experimental results for low-mass dilepton production by the LHCb

and ATLAS collaborations. In the first calculation we have used different UGDFs from

the literature and MSTW08 quark/antiquark distributions. Relatively good agreement

with the experimental data has been achieved for small Mll. Some strength at larger Mll

is missing which is probably due to lack of meson cloud effects, not included here.

In contrast what was done in the literature, we have found that both side contributions

have to be included even for the LHCb configuration. For the ATLAS kinematics this

gives half of the cross section.
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FIG. 13: Invariant dilepton mass distribution for the ATLAS kinematics: -2.4 < y+, y− < 2.4,

kT+, kT− > 6 GeV. Here both gq/q̄ and q/q̄g contributions have been included.

FIG. 14: Lepton transverse momentum correlations for the ATLAS kinematics: -2.4 < y+, y− <

2.4, kT+, kT− > 6 GeV. The left panel is for the KMR UGDF, the middle panel for the KS

UGDF and the right panel for the AAMS UGDF.

We have found that the contribution of individual terms (i = T, L, ...) strongly

depends on kinematical variables (such as Mll) as well as on cuts. We have quantified
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FIG. 15: Transverse momentum distribution of dileptons for the ATLAS kinematics: -2.4

< y+, y− < 2.4, kT+, kT− > 6 GeV for MWST08 PDF and for different UGDFs: KMR (solid),

KS (dashed), AAMS (dotted) and GBW (dash-dotted).

the effect of the new interference terms not present explicitly in the dipole approach.

We have found that the missing strength at larger Mll could be due to e.g. meson

cloud effects and the perturbative gluon component alone considered here may be not

sufficient.

We do not see clear hints of saturation at small Mll. We wish to stress also that this

region of the phase space is potentially difficult for extracting the Drell-Yan contribution

due to potential contamination of double semi-leptonic decays of charmed and/or bottom

mesons or baryons which is slightly model (Monte Carlo) dependent.
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Appendix A: Unintegrated gluon distribution from dipole cross sections

The dipole cross section is related to the unintegrated glue as

σ(x, r) =
4π

Nc

∫

d2κ

κ4
αSF(x,κ)

{

1 − exp(iκr)
}

. (A1)

The parametrizations of [35] are presented in the form

σ(x, r) = σ0 ·N(x, r) , (A2)

with N(x, r) → 1 at large r. We can therefore easily obtain, that

αSF(x,κ)

κ4
=
σ0Nc

4π

∫

d2r

(2π)2
exp(−iκr)

[

1 −N(x, r)
]

, (A3)

or

F(x,κ) =
σ0Nc

8π2

κ2

αS(κ2)

∫ ∞

0
rdrJ0(κr)

[

1 −N(x, r)
]

, (A4)

where J0(x) is the Bessel function. The Fourier-Bessel (or Hankel-) transform (A4) can

pose severe numerical problems, if values at large κ2 are required. For the evaluations

of these integrals we use therefore a dedicated code FFTLog [37] which is based on the

algorithm of [38].
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