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Basic features of nonstrange vector and axial vector mesons are analyzed in the frame-

work of a chiral quark model that includes nonlocal four-fermion couplings. Unknown model

parameters are determined from some input values of masses and decay constants, while non-

local form factors are taken from a fit to lattice QCD results for effective quark propagators.

Numerical results show a good agreement with the observed meson phenomenology.

I. INTRODUCTION

Given the nonperturbative character of quantum chromodynamics (QCD) in the low-energy

regime, the analysis of hadron phenomenology starting from first principles is still a challenge for

theoretical physics. Although substantial progress has been achieved in this sense through lattice

QCD (LQCD) calculations, this approach shows significant difficulties, e.g. when dealing with small

quark masses or with hadronic systems at nonzero chemical potentials. Thus it is important to

study the consistency between the results obtained through lattice calculations and those arising

from effective models for strongly interacting particles. For two light flavors it is believed that QCD

supports an approximate SU(2) chiral symmetry that is dynamically broken at low energies, where

pions play the role of the corresponding Goldstone bosons. The well-known Nambu−Jona-Lasinio
(NJL) model [1, 2], in which light mesons are described as fermion-antifermion composite states, is

a simple effective approach that shows these features. In the NJL model quarks interact through

a local four-fermion coupling, leading to relatively simple Schwinger-Dyson and Bethe-Salpeter

equations. Now, as a step toward a more realistic approach to low-energy QCD, it is worth it to

consider extensions of the NJL model that include nonlocal interactions [3]. In particular, this is

supported by lattice calculations, which lead to a given momentum dependence of both the mass

and the wave function renormalization (WFR) in the effective quark propagators [4, 5]. It is also

http://arxiv.org/abs/1602.06984v2


2

seen that nonlocal extensions of the NJL model do not exhibit some problems that are present in

the local theory. For example, nonlocal interactions regularize the model in such a way that the

effective interaction is finite to all orders in the loop expansion, thus model predictions are less

dependent on the parameterizations, and there is no need to introduce extra cutoffs [6].

Previous works on nonlocal NJL-like (nlNJL) models, focused on different aspects of strong

interaction physics, can be found in the literature. These include the study of vacuum hadronic

properties considering either two [7–14] or three [15] active quark flavors, and various nonlocal

form factor shapes. In addition, this framework has been used to describe the chiral restoration

transition for hadronic systems at finite temperature and/or chemical potential (see e.g. Refs. [16–

21]). In this work, following the proposal in Refs. [11, 13], we consider a model in which nonlocal

form factors lead to a momentum dependence of the mass and WFR in the quark propagator,

hence the actual shape of these form factors can be taken from the data obtained through lattice

calculations [13, 19]. We concentrate here in particular in the incorporation of explicit vector and

axial vector interactions. Therefore, besides the previously considered couplings between scalar

and pseudoscalar quark-antiquark currents, in our model we include couplings between vector and

axial vector nonlocal currents satisfying proper QCD symmetry requirements. In fact, nonlocal

models including vector and axial vector currents have been previously considered in Ref. [9].

However, those models do not include a momentum-dependent WFR of quark propagators, which

is required in order to perform the comparison with lattice QCD results. We dedicate the first part

of the paper to work out the formalism in order to derive analytical expressions for some basic

vector meson properties, such as masses and decay parameters. Then we present numerical results

obtained by taking the nonlocal form factors from a fit to lattice QCD data. It is seen that, after

fixing unknown coupling constants so as to reproduce some input meson observables, the model

provides an adequate phenomenological description of the considered vector meson properties.

The article is organized as follows. In Sect. 2 we introduce the model and derive the correspond-

ing gap equations at the mean field level. In Sect. 3 we describe the vector meson sector, obtaining

analytical results for meson masses and decay amplitudes. The numerical and phenomenological

analyses are included in Sect. 4, while in Sect. 5 we present a summary of our work. Finally, in

Appendixes A and B we collect some analytical expressions and describe the calculation procedure.
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II. MODEL

We consider a two-flavor chiral quark model that includes nonlocal vector and axial vector

quark-antiquark currents. Since our aim is to choose form factors that are in agreement with

LQCD calculations, it is convenient to work in Euclidean space, where nonlocal interactions are

well defined [3]. The corresponding effective action is given by

SE =

∫

d4x

{

ψ̄(x)(− i/∂ + m̂)ψ(x) − GS

2

[

jS(x)jS(x) +~jP (x) ·~jP (x) + jM (x)jM (x)
]

− GV

2

[

~j µV (x) ·~jV µ(x) +~j
µ
A (x) ·~jAµ(x)

]

− G0

2
j 0µV (x)j 0V µ(x)−

G5

2
j 0µA (x)j 0Aµ(x)

}

, (1)

where ψ(x) is the Nf = 2 quark doublet, ψ = (u d)T , and m̂ = diag(mu,md) is the current quark

mass matrix. We will work in the isospin symmetry limit, assuming mu = md, which will be called

from now on mc. The fermion currents are given by [13]

jS(x) =

∫

d4z g(z) ψ̄
(

x+
z

2

)

ψ
(

x− z

2

)

,

jaP (x) =

∫

d4z g(z) ψ̄
(

x+
z

2

)

i γ5 τ
aψ

(

x− z

2

)

,

jM (x) =
1

2κ

∫

d4z f(z) ψ̄
(

x+
z

2

)

i
←→
/∂ ψ

(

x− z

2

)

,

jaV µ(x) =

∫

d4z h(z) ψ̄
(

x+
z

2

)

τaγµψ
(

x− z

2

)

,

jaAµ(x) =

∫

d4z h(z) ψ̄
(

x+
z

2

)

τaγµγ5ψ
(

x− z

2

)

,

j 0V µ(x) =

∫

d4z h0(z) ψ̄
(

x+
z

2

)

γµψ
(

x− z

2

)

,

j 0Aµ(x) =

∫

d4z h5(z) ψ̄
(

x+
z

2

)

γµγ5ψ
(

x− z

2

)

, (2)

where τa, a = 1, 2, 3, are the Pauli matrices, while u(x′)
←→
∂ v(x) ≡ u(x′)∂xv(x) − ∂x′u(x′)v(x).

Eqs. (2) include the usual scalar (I = 0) and pseudoscalar (I = 1) quark-antiquark currents [11, 12],

as well as vector and axial-vector quark-antiquark currents that transform as either isospin singlets

or triplets. In addition, we consider a coupling between “momentum” currents jM (x) [11, 13], which

involve derivatives of the fermion fields. The presence of this interaction is naturally expected as

a correction arising from the underlying QCD dynamics. Whereas in a local theory, at the mean

field level, it would simply lead to a redefinition of fermion fields, in our nonlocal scheme it leads

to a momentum-dependent wave function renormalization of the quark propagator, in consistency

with LQCD analyses. For convenience, we have chosen to take a common coupling constant GS for

both the scalar/pseudoscalar and momentum quark interaction terms. Notice, however, that the

relative strength between these terms is controlled by the mass parameter κ in jM (x). Finally, the
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functions f(z), g(z), h(z), h0(z) and h5(z) are covariant form factors responsible for the nonlocal

character of the interactions. Notice that, in order to guarantee chiral invariance, the form factor

g(z) has to be equal for the scalar and pseudoscalar currents jS(x) and j
a
P (x), and the same applies

to the form factor h(z) entering the vector and axial vector currents jaV µ(x) and j
a
Aµ(x).

To work with mesonic degrees of freedom, we proceed to perform a bosonization of the fermionic

theory [3]. This is done in a standard way by considering the corresponding partition function

Z =
∫

D ψ̄Dψ exp[−SE], and introducing auxiliary bosonic fields σ1(x), σ2(x) [scalar, related

respectively to the currents jS(x) and jM (x)], πa(x) (pseudoscalar), v0µ(x), v
a
µ(x) (vector) and

a0µ(x), a
a
µ(x) (axial vector), where indices a run from 1 to 3. After integrating out the fermion

fields the partition function can be written as

Z =

∫

Dσ1Dσ2D ~πD v0µD a0µD ~vµD~aµ exp
[

−Sbos
E

]

, (3)

where Sbos
E stands for the Euclidean bosonized action. In momentum space, the latter is given by

Sbos
E = − log detA(p, p′) +

∫

d4p

(2π)4

{

1

2GS
[σ1(p)σ1(−p) + ~π(p) · ~π(−p) + σ2(p)σ2(−p)]

+
1

2GV
[~vµ(p) · ~v µ(−p) + ~aµ(p) · ~aµ(−p)] + 1

2G0
v0µ(p)v

0µ(−p) + 1

2G5
a0µ(p)a

0µ(−p)
}

, (4)

where the operator A(p, p′) reads

A(p, p′) = (2π)4δ(4)(p− p′)(−/p +mc) + g(p̄)

[

σ1(p
′ − p) + iγ5~τ · ~π(p′ − p)

]

+ f(p̄)
/̄p

κ

σ2(p
′ − p) + h(p̄) γµ

[

~τ · ~vµ(p′ − p) + γ5 ~τ · ~aµ(p′ − p)
]

+ h0(p̄) γ
µ v0µ(p

′ − p) + h5(p̄) γ
µγ5 a

0
µ(p

′ − p) , (5)

with p̄ ≡ (p + p′)/2. Here, the functions f(p), g(p), h(p), h0(p), and h5(p) stand for the Fourier

transforms of the form factors entering the nonlocal currents in Eq. (2). Without loss of generality,

the coupling constants can be chosen so that the form factors are normalized to f(0) = g(0) =

h(0) = h0(0) = h5(0) = 1.

Let us now consider the mean field approximation (MFA), in which the bosonic fields are

expanded around their vacuum expectation values, φ(x) = φ̄ + δφ(x). On the basis of charge,

parity and Lorentz symmetries, we assume that σ1(x) and σ2(x) have nontrivial translational

invariant mean field values σ̄1 and κ σ̄2, respectively, while the vacuum expectation values of the

remaining bosonic fields are zero (notice that σ̄2 is dimensionless, due to the introduction of the

parameter κ). Writing the operator A(p, p′) as A = A0 + δA, within this approximation one can

expand the logarithm of the fermionic determinant as

log detA = tr logA = tr logA0 + tr (A−1
0 δA) − 1

2
tr (A−1

0 δAA−1
0 δA) + . . . , (6)
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where

A0(p, p
′) = (2π)4δ(4)(p − p′)

{

−[1− σ̄2 f(p)] /p+mc + σ̄1 g(p)
}

, (7)

and the trace extends over Dirac, color, flavor and momentum spaces. In the same way, the

bosonized effective action in Eq. (4) can be expanded in powers of meson fluctuations as

Sbos
E = S MFA

E + Squad
E + . . . , (8)

where the mean field action per unit volume reads [13]

S MFA
E

V (4)
= −2NC

∫

d4p

(2π)4
Tr log[D−1

0 (p)] +
1

2GS

(

σ̄21 + κ
2σ̄22

)

, (9)

the trace acting just over Dirac space. From Eq. (7), the mean field effective quark propagator

D0(p) is given by

D0(p) =
z(p)

−/p+m(p)
, (10)

where the functions m(p) and z(p) —momentum-dependent effective mass and WFR— are related

to the nonlocal form factors and the vacuum expectation values of the scalar fields by

z(p) = [1 − σ̄2 f(p)]
−1 ,

m(p) = z(p) [mc + σ̄1 g(p)] . (11)

The mean field values σ̄1,2 can be found by minimizing the mean field Euclidean action. This

leads to the set of coupled gap equations [13]

σ̄1 = 8NC GS

∫

d4p

(2π)4
g(p)

z(p)m(p)

D(p)
,

σ̄2 = − 8NC GS

∫

d4p

(2π)4
p2

κ
2
f(p)

z(p)

D(p)
, (12)

where we have defined D(p) = p2 +m(p)2. The chiral quark condensates —order parameters of

the chiral restoration transition— are given by the vacuum expectation values 〈q̄q〉, where q = u, d.

The corresponding expressions can be obtained by differentiating the MFA partition function with

respect to the current quark masses. Away from the chiral limit, this leads in general to divergent

integrals. Since one is interested in the description of the nontrivial vacuum properties arising

from strong interactions, it is usual to regularize these integrals by subtracting the free quark

contributions (see e.g. Refs. [9, 11, 17, 18]). One gets in this way

〈q̄q〉 = − 4NC

∫

d4p

(2π)4

(

z(p)m(p)

D(p)
− mc

p2 +m2
c

)

. (13)
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III. MESON MASSES AND DECAY CONSTANTS

We are interested in the description of vector meson phenomenology, which requires going

beyond the MFA. In this section we derive analytical expressions to be used for the calculation

of basic measurable phenomenological quantities, such as meson masses and decay constants. It

is important to notice that pion observables, already calculated within this framework in previous

works [11, 13, 22], need to be revisited owing to the mixing between ~π and ~aµ fields.

A. Meson masses and mixing

In general, meson masses can be obtained from the terms in the Euclidean action that are

quadratic in the bosonic fields. When expanding the bosonized action we obtain

Squad
E =

1

2

∫

d4p

(2π)4

{

Gσ(p
2) δσ(p) δσ(−p) +Gσ′(p2) δσ′(p) δσ′(−p)

+ Gπ(p
2) δ~π(p) · δ~π(−p) + iGπa(p

2)
[

pµ δ~aµ(−p) · δ~π(p)− pµ δ~aµ(p) · δ~π(−p)
]

+ Gµν
0 (p2) δv0µ(p) δv

0
ν(−p) +Gµν

5 (p2) δa0µ(p) δa
0
ν(−p)

+ Gµν
v (p2) δ~vµ(p) · δ~vν(−p) +Gµν

a (p2) δ~aµ(p) · δ~aν(−p)
}

, (14)

where the functions GM (p2), M = σ, σ′, π, . . . are given by one-loop integrals arising from the

fermionic determinant in the bosonized action. In the case of the σ1, σ2 sector the expression in

Eq. (14) is given in terms of the fields σ and σ′, which are defined as linear combinations of σ1 and

σ2,

δσ = cos θ δσ1 − sin θ δσ2 , δσ′ = sin θ′ δσ1 + cos θ′ δσ2 . (15)

The mixing angles θ and θ′ are fixed in such a way that there is no σ−σ′ mixing terms at the level

of the quadratic action for p2 = −m2
σ(′) , where the minus sign is due to the fact that the action is

given in Euclidean space. Once cross terms have been eliminated, the functions GM (p2) stand for

the inverses of the effective meson propagators, thus scalar meson masses are obtained by solving

the equations Gσ(′)(−m2
σ(′)) = 0. Explicit expressions for the functions Gσ(′)(p2) can be found in

Ref. [13].

To analyze the vector meson sector one has to take into account the tensors Gµν
v , Gµν

a , Gµν
0 and

Gµν
5 . From the expansion of the fermionic determinant we obtain

Gµν
v (p2) = Gρ(p

2)

(

gµν − pµpν

p2

)

+ L+(p
2)
pµpν

p2
,

Gµν
a (p2) = Ga1(p

2)

(

gµν − pµpν

p2

)

+ L−(p
2)
pµpν

p2
, (16)
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where

G( ρ
a1
)(p

2) =
1

GV
− 8NC

∫

d4q

(2π)4
h2(q)

z(q+)z(q−)

D(q+)D(q−)

[

q2

3
+

2(p · q)2
3p2

− p2

4
±m(q−)m(q+)

]

, (17)

L±(p
2) =

1

GV
− 8NC

∫

d4q

(2π)4
h2(q)

z(q+)z(q−)

D(q+)D(q−)

[

q2 − 2(p · q)2
p2

+
p2

4
±m(q−)m(q+)

]

, (18)

with q± = q ± p/2. The functions Gρ,a1(p
2) and L±(p

2) correspond to the transverse and longitu-

dinal projections of the vector and axial vector fields, describing meson states with spin 1 and 0,

respectively. Thus the masses of the physical ρ0 and ρ± vector mesons (which are degenerate in

the isospin limit) can be obtained by solving the equation

Gρ(−m2
ρ) = 0 . (19)

In addition, in order to obtain the physical states, the vector meson fields have to be normalized

through

δvaµ(p) = Z1/2
ρ ṽaµ(p) , (20)

where

Z−1
ρ = g−2

ρqq =
dGρ(p

2)

dp2

∣

∣

∣

∣

p2=−m2
ρ

. (21)

Here gρqq can be viewed as an effective ρ meson-quark effective coupling constant. Regarding the

isospin zero channels, it is easy to see that the expressions for Gµν
0 (p2) can be obtained from those

for Gµν
v (p2), just replacing GV → G0 and h(q)→ h0(q). In this way, one can define for the ω vector

meson a function Gω(p
2), obtaining the ω mass and wave function renormalization as in Eqs. (19)

and (21). Similar relations apply to the axial vector sector, where Gµν
5 (p2) can be obtained from

Gµν
a (p2) by replacing GV → G5 and h(q) → h5(q). The lightest physical state associated to this

sector (quantum numbers I = 0, JP = 1+) is the f1 axial vector meson, hence we denote by

Gf1(p
2) the form factor corresponding to the transverse part of Gµν

5 (p2).

In the case of the pseudoscalar sector, from Eq. (14) it is seen that there is a mixing between the

pion fields and the longitudinal part of the axial vector fields [23, 24]. The mixing term includes a

loop function Gπa(p
2), while the term quadratic in δπ is proportional to the loop function Gπ(p

2).

These functions are given by

Gπ(p
2) =

1

GS
− 8NC

∫

d4q

(2π)4
g(q)2

z(q+)z(q−)

D(q+)D(q−)

[

(q+ · q−) + m(q+)m(q−)
]

,

Gπa(p
2) =

8NC

p2

∫

d4q

(2π)4
g(q)h(q)

z(q+)z(q−)

D(q+)D(q−)

[

(q+ · p)m(q−)− (q− · p)m(q+)
]

, (22)
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where once again we have used the definitions q± = q ± p/2. The physical states ~̃aµ and ~̃π can be

now obtained through the relations [23, 24]

δπb(p) = Z1/2
π π̃b(p) ,

δabµ(p) = Z1/2
a ãbµ(p)− i λ(p2) pµ Z1/2

π π̃b(p) , (23)

where the mixing function λ(p2), defined in such a way that the cross terms in the quadratic

expansion vanish, is given by

λ(p2) =
Gπa(p

2)

L−(p2)
. (24)

The pion mass can be then calculated from Gπ̃(−m2
π) = 0, where

Gπ̃(p
2) = Gπ(p

2)− G2
πa(p

2)

L−(p2)
p2 , (25)

while the pion WFR can be obtained from

Z−1
π = g−2

πqq =
dGπ̃(p

2)

dp2

∣

∣

∣

∣

p2=−m2
π

. (26)

In the case of the a1 axial vector mesons (I = 1 triplet), since the transverse parts of the abµ fields

do not mix with the pions, the corresponding mass and WFR can be calculated using relations

analogous to those quoted for the vector meson sector, namely Eqs. (19) and (21), with Ga1(p
2)

given by Eq. (17).

B. Pion weak decay

By definition the pion weak decay constant fπ is given by the matrix elements of axial currents

between the vacuum and the physical one-pion states,

〈0|J a
Aµ(x)|π̃b(p)〉 = i e−ip·x δab fπ(p

2) pµ , (27)

evaluated at the pion pole. To determine the axial currents, we “gauge” the effective action SE,

introducing external gauge fields. In general, for a local theory, this is carried out just by replacing

∂µ −→ ∂µ + iGµ , (28)

where Gµ is the corresponding gauge field. In our model, due to the nonlocality of the interactions,

the gauging procedure requires the introduction of gauge fields not only through the covariant
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derivative in Eq. (28) but also through a parallel transport of the fermion fields in the nonlocal

currents (see e.g. Refs. [3, 8, 12]):

ψ(x− z/2) → WG(x, x− z/2) ψ(x− z/2) ,

ψ†(x+ z/2) → ψ†(x+ z/2) WG(x+ z/2, x) . (29)

Here x and z are the variables in the definitions of the nonlocal currents in Eq. (2), while the

function WG(x, y) is defined by

WG(x, y) = P exp

[

i

∫ y

x
dsµ Gµ(s)

]

, (30)

where s runs over an arbitrary path connecting x with y. In the case of the axial current we

introduce the axial gauge fields W a
µ (x), taking

Gµ =
1

2
γ5 ~τ · ~Wµ . (31)

In addition, notice that if the action is written in terms of the original states πb and abµ, in order to

calculate the matrix element in Eq. (27) one has to take into account the mixing described in the

previous subsection. Once the gauged effective action is built, the matrix elements can be obtained

by taking derivatives with respect to the gauge and the physical pion fields,

〈0|J a
Aµ(x)|π̃b(p)〉 =

δ2Sbos
E

δWa
µ(x) δπ̃

b(p)

∣

∣

∣

∣

Wa
µ=π̃b=0

. (32)

π, a1
π, a1

Figure 1: Diagrammatic representation of the contributions to the pion decay constant. The cross

represents the axial current vertex.

The resulting one-loop contributions are diagrammatically schematized in Fig. 1. Tadpole-like

diagrams, which are not present in the local NJL model, arise from the occurrence of gauge fields

in Eqs. (29). We finally obtain

fπ =
mc gπqq̄
m2

π

[

F0(−m2
π) + λ(p2)F1(−m2

π)
]

, (33)
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where

F0(p
2) = 8Nc

∫

d4q

(2π)4
g(q)

z(q+)z(q−)

D(q+)D(q−)

[

(q+ · q−) +m(q+)m(q−)
]

,

F1(p
2) = 8Nc

∫

d4q

(2π)4
h(q)

z(q+)z(q−)

D(q+)D(q−)

[

(q+ · p)m(q−)− (q− · p)m(q+)
]

. (34)

It is important to notice that the result for fπ does not depend on the path chosen for the transport

function in Eq. (30) [see the comment after Eq. (42) below]. In the absence of vector meson fields,

the mixing term in Eq. (33) vanishes and our expression reduces to that previously quoted in

Ref. [13].

C. ρ meson-photon vertex and ρ electromagnetic decay constant

Another important quantity to be studied is the ρ-photon vertex. In our nonlocal model, meson-

photon couplings receive in general contributions from the parallel transport in Eq. (29), therefore

we find it important to check that the conservation of the vector current is satisfied. In addition,

from this vertex we can obtain a prediction for the electromagnetic ρ→ e+e− decay amplitude.

The ρ-photon vertex is given by the matrix element of the electromagnetic current between a

vector meson state and the vacuum,

〈0|Jemµ(x)|ṽaν (p)〉 = i e−ip·xΠa
µν(p) . (35)

To calculate this matrix element one can follow the procedure discussed in the previous subsection,

taking now

Gµ = eQAµ , (36)

where e is the proton charge and Q = diag(2/3 , −1/3).
Once again it is possible to distinguish two contributions to Πa

µν , namely Π
(I) a
µν and Π

(II) a
µν ,

arising from a two-vertex and a tadpole-like diagram, respectively (see Fig. 2). We obtain

Π(I) a
µν (p) = 4NC δa3 eZ

1/2
ρ

∫

d4q

(2π)4
z(q+)z(q−)

D(q+)D(q−)
h(q)

×
{

1

2

[ 1

z(q+)
+

1

z(q−)

][

q+µ q
−
ν + q+ν q

−
µ − (q+ · q−) δµν −m(q+)m(q−) δµν

]

+ σ̄1

[

m(q+) q−ν +m(q−) q+ν

]

αg µ(q, p)

+ σ̄2

[

− (q−)2

2
q+ν −

(q+)2

2
q−ν +m(q+)m(q−) qν

]

αf µ(q, p)

}

, (37)

Π(II) a
µν (p) = − 4NC δa3 eZ

1/2
ρ

∫

d4q

(2π)4
z(q)

D(q)
qν αhµ(q, p) . (38)
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Here we have defined, for a given function f(p),

αf µ(q, p) =

∫

d4ℓ

(2π)4

[

f(q + ℓ/2)Fµ(p− ℓ, ℓ) + f(q − ℓ/2)Fµ(ℓ, p− ℓ)
]

, (39)

with

Fµ(k, k
′) = − i

∫

d4z eik
′z

∫ z

0
dsµ e

−i(k+k′)s , (40)

where s runs over a path connecting the origin with a point located at z.

ρ

(a)

ρ

(b)

Figure 2: Diagrams contributing to the ρ meson-photon vertex.

It can be seen that the tensors Π
(I) a
µν and Π

(II) a
µν are in general not transverse. However, the sum

of both contributions satisfies pµΠa
µν = 0, as required from the conservation of the electromagnetic

current. This can be verified by noting that

(k + k′)µFµ(k, k
′) = − i

∫

d4z eik
′z

∫ z(k+k′)

0
dω e−iω = (2π)4

[

δ(4)(k)− δ(4)(k′)
]

, (41)

which leads to

pµαf µ(q, p) = f(q+)− f(q−) . (42)

It is also worth noticing that the integral in Eq. (41) becomes trivial, therefore the result in

Eq. (42) does not depend on the integration path in Eq. (40) [a similar mechanism leads to the

path independence of the functions in Eqs. (34)]. Using the relation in Eq. (42), after an adequate

change of variables one obtains

pµ
(

Π(I) a
µν +Π(II) a

µν

)

= 0 . (43)

A similar cancellation has been found in Ref. [9], where a nlNJL model that includes vector mesons

without quark WFR is considered.

Let us now concentrate on the ρ electromagnetic decay constant fv, which can be defined from

ρ0 → e+e− decay:

Γ(ρ0 → e+e−) =
4π

3
α2mρ f

2
v , (44)



12

where α = e2/(4π) is the electromagnetic fine structure constant. It can be seen that fv is related

to the trace of Π3
µν(p) through

3m2
ρ e fv = gµν Π

3
µν(p)

∣

∣

∣

p2=−m2
ρ

. (45)

To evaluate the transverse part of the tensor Π3
µν we take a straight line path for the integral over

sµ in Eq. (30). This leads to

αf µ(q, p) =

∫ 1

−1
dλ

(

qµ + λ
pµ
2

)

f ′
(

q + λ
p

2

)

, (46)

where f ′(p) denotes the derivative of f with respect to p2. After some algebra, we obtain

fv =
Z

1/2
ρ

3m2
ρ

[

J (I)(−m2
ρ) + J (II)(−m2

ρ)
]

, (47)

where

J (I)(p2) = − 4Nc

∫

d4q

(2π)4
h(q)

{

3

2

[z(q+) + z(q−)]

D(q+)D(q−)

[

(q+ · q−) +m(q+)m(q−)
]

+
1

2

z(q+)

D(q+)
+

1

2

z(q−)

D(q−)
+

q2

(q · p)

[

z(q+)

D(q+)
− z(q−)

D(q−)

]

+
z(q+)z(q−)

D(q+)D(q−)

[

(q · p)− q2 p2

(q · p)

] [

− σ̄1
[

m(q+) +m(q−)
]

α+
g (q, p)

+ σ̄2
[

q2 +
p2

4
−m(q+)m(q−)

]

α+
f (q, p)

]

}

,

J (II)(p2) = − 4Nc

∫

d4q

(2π)4
z(q)

D(q)

{

q2

(q · p)
[

h(q+)− h(q−)
]

+

[

(q · p)− q2 p2

(q · p)

]

α+
h (q, p)

}

. (48)

Superindices (I) and (II) correspond to the contributions from the diagrams in Figs. 2a and 2b,

respectively, while the functions α+
f (q, p) have been defined as

α±
f (q, p) =

∫ 1

−1
dλ

λ

2
f ′

(

q − λp
2

)

. (49)

D. π0 → γγ decay

Let us analyze in the context of our model the anomalous decay π0 → γγ. As it is well known, in

the NJL model this decay is problematic: in order to reproduce the experimentally observed result

it is necessary to perform quark loop momentum integrations up to infinity instead of following

the cutoff prescription of the model [25]. In our framework, taking into account the discussion

of gauge interactions in the previous subsections, the decay amplitude can be calculated from the

matrix element

〈0|Jem µ(x)Jem ν(0)|π̃3(p)〉 =
δ3Sbos

E

δAµ(x) δAν(0) δπ̃3(p)

∣

∣

∣

∣

Aµ,ν=π̃3=0

. (50)



13

In principle there are several diagrams that contribute to the amplitude at the level of one loop.

As in the case of the pion decay constant fπ, since the physical π0 state π̃3(p) is a combination

of π and aµ fields, one has to consider the linear expansion of the bosonized action in π and in

aµ. The diagrams leading to nonzero contributions are those depicted in Fig. 3. If the outgoing

photons are assumed to be in states of four-momenta k1 and k2 with polarization vectors ε
(λ1)
µ (k1)

and ε
(λ2)
ν (k2), respectively, the decay amplitude can be written as

M(π0 → γγ) = i 4πα F̃ (k1, k2) ǫ
µναβ ε(λ1)

µ (k1)
∗ε(λ2)

ν (k2)
∗k1α k2β , (51)

where the form factor F̃ (k1, k2) is given by the sum of π and aµ contributions to the π̃3 state,

F̃ (k1, k2) = Z1/2
π [Fπ(k1, k2) + λ(p2)Fa(k1, k2)] , (52)

with p = k1 + k2.

The first term in the brackets, corresponding to the diagram in Fig. 3a, has been calculated

(apart from an isospin factor) in Ref. [22]. One has

Fπ(k1, k2) =
2Nc

3

∫

d4q

(2π)4
h

(

q +
k2
2
− k1

2

)

z(q)z(q − k1)z(q + k2)

D(q)D(q − k1)D(q + k2)
A(q, k1, k2) , (53)

where

A(q, k1, k2) =

(

1

z(q)
+

1

z(q − k1)

)(

1

z(q)
+

1

z(q + k2)

){

m(q) − q2

2
×

[

m(q + k2)−m(q)

(q · k2)
− m(q − k1)−m(q)

(q · k1)

]}

. (54)

On the other hand, the form factor Fa(k1, k2) arises from the sum of the contributions correspond-

π

γ

γ

(a)

a1

γ

γ

(b)

a1

γ

γ

(c)

Figure 3: Diagrams contributing to π0 → γγ decay.

ing to the diagrams in Figs. 3b and 3c. Although these turn out to be separately divergent, it is
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seen that divergent pieces cancel out and the sum is finite. We obtain

Fa(k1, k2) = − 2Nc

3

∫

d4q

(2π)4

{

h
(

q + k2/2− k1/2
) z(q)z(q − k1)z(q + k2)

D(q)D(q − k1)D(q + k2)
×

[

(

m(q − k1) +m(q + k2)
)

A(q, k1, k2) +

q2

2

(

B(q, q − k1, q + k2)

(q · k2)
− B(q, q + k2, q − k1)

(q · k1)

)]

+

q2
[

h(q + k2/2)

(q · k2)
C(q, k1) +

h(q + k1/2)

(q · k1)
C(q, k2)

]

}

, (55)

where

B(q, r, s) =

(

1

z(q)
+

1

z(r)

)(

1

z(q)
− 1

z(s)

)

D(s) ,

C(q, k) =

(

1

z(q + k/2)
+

1

z(q − k/2)

)

z(q + k/2)z(q − k/2)
D(q + k/2)D(q − k/2) . (56)

Finally, after phase space integration and sum over outgoing photon polarizations, the π0 → γγ

decay amplitude is given by

Γ(π0 → γγ) =
π

4
α2m3

π F̃ (k1, k2)
2 . (57)

Since photons are on-shell, from Lorentz invariance it is seen that F̃ (k1, k2) can only be function

of the scalar product (k1 · k2) = −m2
π/2.

E. ρ→ ππ decay

In general, various transition amplitudes can be calculated by expanding the bosonized action to

higher orders in meson fluctuations. In this subsection we concentrate in the processes ρ0 → π+π−

and ρ± → π±π0, which are responsible for more than 99% of ρ meson decays. The decay amplitudes

M(va(p) → πb(q1)π
c(q2)) are obtained by calculating the corresponding functional derivatives

of the effective action, which can be written in terms of two form factors F̃ρππ(p
2, q21 , q

2
2) and

G̃ρππ(p
2, q21 , q

2
2):

δ3Sbos
E

δṽaµ(p)δπ̃
b(q1)δπ̃c(q2)

∣

∣

∣

∣

δvµ=δπ=0

= (2π)4 δ(4)(p+ q1 + q2) ǫabc

[

F̃ρππ(p
2, q21 , q

2
2)

(q1µ + q2µ)

2

+ G̃ρππ(p
2, q21 , q

2
2)

(q1µ − q2µ)
2

]

. (58)

Only the transverse piece, driven by the form factor G̃ρππ(p
2, q21 , q

2
2), contributes to ρ→ ππ decay

widths. Indeed, in the isospin limit, one has

Γρ0→π+π− = Γρ±→π±π0 =
1

48π
mρ g

2
ρππ

(

1− 4m2
π

m2
ρ

)3/2

, (59)
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where gρππ ≡ G̃ρππ(−m2
ρ,−m2

π,−m2
π).

The form factor G̃ρππ(p
2, q21 , q

2
2) arises from the effective vertex ρ̃π̃π̃, where ρ̃ and π̃ are renor-

malized states. Since we expand the effective action in Eq. (4) in powers of the unrenormalized

fields, it is convenient to write the effective vertex in terms of the original fields ρ, π and aµ [the

latter has to be taken into account due to the π−a mixing given by Eq. (23), as mentioned in pre-

vious subsections]. In this way, the form factor receives contributions from the diagrams sketched

in Fig. 4. One has

G̃ρππ(p
2, q21 , q

2
2) = Z1/2

ρ Zπ

[

Gρππ(p
2, q21 , q

2
2) +

λ(p2) Gρπa(p
2, q21 , q

2
2) + λ(p2)2 Gρaa(p

2, q21 , q
2
2)

]

, (60)

where Gρππ(p
2, q21, q

2
2), Gρπa(p

2, q21, q
2
2) and Gρaa(p

2, q21 , q
2
2) are one-loop functions that arise from

the expansion of the effective action. The explicit forms of these functions, which can be obtained

after a rather lengthy calculation, can be found in Appendix A.

ρ

π

π

ρ

a1

π

ρ

a1

a1

Figure 4: Diagrams contributing to ρ→ ππ decays.

IV. NUMERICAL RESULTS

A. Model parameters and form factors

To fully define the model it is necessary to provide the values of the unknown parameters and

to specify the shape of the form factors entering the nonlocal fermion currents. There are six

parameters, namely, the current quark mass mc and the dimensionful coupling constants GS , GV ,

G0, G5 and κ. Regarding the form factors, as stated in the Introduction, we will take into account

the results obtained in lattice QCD for the momentum dependence of the mass and WFR in the

quark propagator. Therefore, following Ref. [26], we write the effective mass m(p) as

m(p) = mc + αm fm(p2) , (61)
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where αm is a mass parameter defined by the normalization condition fm(0) = 1. Since LQCD

calculations involve various current quark masses, we have chosen to take as input the shape of

the (normalized) function fm(p2), taking LQCD results in the limit of low mc and smallest lattice

spacing. Considering the LQCD analysis in Ref. [26], we parameterize this function by

fm(p2) =
1

1 + (p2/Λ2
0)

α
, (62)

with α = 3/2. On the other hand, for the wave function renormalization we use the parametriza-

tion [11, 13]

z(p) = 1 − αz fz(p
2) , (63)

where

fz(p
2) =

1
(

1 + p2/Λ2
1

)β
. (64)

It is found that LQCD results favor a relatively low value for the exponent β, therefore we take here

β = 5/2, which is the smallest exponent compatible with the ultraviolet convergence of the gap

equations (12). As required by dimensional analysis and Lorentz invariance, the functions fm(p2)

and fz(p
2) carry dimensionful parameters Λ0 and Λ1, which represent effective cutoff momenta in

the corresponding channels. Thus, we will use here the above functional forms for the form factors,

taking Λ0 and Λ1 as two further free parameters of the model. Regarding the parameters αm and

αz introduced in Eqs. (61) and (63), from Eqs. (11) it is seen that they are related to the mean

field values of the scalar fields by

m(0) = mc + αm =
mc + σ̄1
1− σ̄2

, (65)

z(0) = 1− αz =
1

1− σ̄2
, (66)

hence, for a given set of model parameters, they can be obtained by solving the gap equations (12).

The model also includes the form factors h(p), h0(p) and h5(p), introduced through the vector

and axial vector current-current interactions. For definiteness and simplicity we will assume the

effective behavior of quark interactions to be similar in the J = 0 and J = 1 channels, therefore we

will take for h(p) the same form as g(p). Regarding the vector-isoscalar sector, as it is usually done

we assume approximate degeneracy with the vector-isovector part, hence we take h(p) ≃ h0(p).

The axial vector-isoscalar sector can be studied separately, since it decouples from the rest of the

Lagrangian. Here we will just take h5(p) = h(p) in order to get an estimation for the constant G5

from phenomenology.
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Given the form factor shapes, in order to study the phenomenology we have to determine

the values of the model parameters (current quark mass, coupling constants and effective cutoff

momenta). To do this, we first carry out a fit to lattice results for the functions fm(p2) and z(p),

from which we obtain the values of the cutoffs Λ0 and Λ1, as well as the parameter αz. The latter

will be used, together with five phenomenological quantities, as input to determine the remaining

six free model parameters. From the LQCD results quoted in Ref. [4] we obtain

Λ0 = 917 ± 14 MeV , Λ1 = 1775 ± 53 MeV , αz = 0.244 ± 0.010 , (67)

with χ2/dof = 1.17 and χ2/dof = 0.25 for the fits to fm(p2) and z(p) data, respectively. The

fits have been carried out considering lattice values up to 2.5 GeV. Both the data and the fitting

curves for fm(p2) and z(p) are shown in Fig. 5. In the case of z(p), it is seen that the fit leads

to somewhat large values of z(p) at low momenta in comparison with lattice points. We notice,

however, that errors in this region are relatively large, and in addition these points are the most

sensitive to changes in lattice spacing and/or sea quark masses [4].
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Figure 5: Fit to lattice data for the functions fm(p2) and z(p).

Once the form factor shapes have been fixed, one can set the model parameters so as to reproduce

the empirical values of some selected observables. As stated, we take from the fit the values of Λ0

and Λ1 and then we determine the values of the parameters mc, GV , GS , G0, G5 and κ from six

input quantities. These have been chosen to be the fitted value of αz together with the empirical

values of the pion weak decay constant fπ and the masses of the π, ρ, ω and f1 mesons. From our

numerical analysis we find that there is a set of parameters that allows us to properly reproduce

these empirical values. The corresponding results are quoted in Table I.
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Model parameters Inputs Model parameters Inputs

Λ0 [MeV] LQCD results mc [MeV] 1.59 αz LQCD results

Λ1 [MeV] LQCD results GSΛ
2
0 19.0 mπ [MeV] 139

κ/Λ0 11.2 fπ [MeV] 92.2

GV Λ
2
0 13.0 mρ [MeV] 775

G0Λ
2
0 12.8 mf1 [MeV] 1280

G5Λ
2
0 ∼ 14 mω [MeV] 783

Table I: Model parameters. The values of Λ0, Λ1 and αz have been obtained from a fit to lattice

QCD calculations for the effective quark propagator, see Eq. (67). The model parameters mc,

GS , κ, GV , G0 and G5 are fitted against the phenomenological values of five hadronic

observables, plus the value of αz given by the fit to LQCD data.

The numerical analysis requires solving a system of coupled equations that includes the gap

Eqs. (12), equations GM (−m2
M ) = 0 for M = π, ρ, ω and f1 to determine meson masses, and

Eq. (33) for fπ. This involves the calculation of one-loop integrals introduced in Secs. III.A and

III.B, which in general is not a trivial task due to the fact that the form factor fm(p2), as function

of the fourth component p4 of the momentum, has cuts when p4 is extended to the complex plane.

Depending on the value of the three-momentum ~p these cuts can occasionally cross the real axis,

and have to be taken into account through a proper deformation of the integration path. Details

of the calculations are given in Appendix B.

From Table I we find a ratio GS/GV ∼ 1.5, which is in agreement with standard NJL model

parametrizations [2]. Concerning the value of G0, it is necessary to take into account that we are

working within a two-flavor model, therefore effects of strange quark bound states are not explicitly

considered. Our determination of G0 would be valid only in the case of “ideal mixing” between

SU(3)f singlet and octet I = 0 states, which means taking the ω as an approximate SU(3)f octet

state, and the φ meson as an approximately pure s̄s state. In the case of the f1 axial vector

meson there is an additional problem, which is common to various quark models. Indeed, models

that do not include an explicit mechanism of confinement usually have difficulties for describing

meson resonances, since there is a threshold above which the meson mass becomes large enough

to allow the decay of the meson into two quarks. This threshold is typically of the order of 2m(0),

therefore models that lead to constituent masses larger than about 400 MeV (as occurs in our case)

can avoid this problem for low mass resonances like the ρ meson [27]. Other possible approaches
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are e.g. the extension of GM (−s) functions to the complex plane [28] or the search for a peak in

the meson spectral function [29]. Mathematically, in our model the onset of the unphysical qq̄

channel corresponds to the fact that in the integrals of the form of e.g. Eq. (17) there is a “pinch

point” at which both functions D(q+) and D(q−) in the integrand are equal to zero (i.e. both

constituent quarks are simultaneously on shell). For the parameters in Table I, the threshold is

found to be at 1264 MeV, i.e. below the empirical value mf1 = 1280 MeV, and the free parameter

to be adjusted to get the phenomenological value of the f1 mass is the coupling constant G5. To

obtain an approximate value for this constant, we have solved the equation Gf1(−m2) = 0 varying

G5Λ
2
0 from large values of G5 up to G5Λ

2
0 ≃ 22, which leads to m ≃ 1 GeV, and then we have

extrapolated to the region above the threshold to obtain mf1 ≃ 1280 MeV for G5Λ
2
0 ∼ 14.

B. Numerical results for phenomenological quantities

Using the parameters and nonlocal form factors quoted in the previous subsection, we can

calculate the predictions of the model for the phenomenological quantities analyzed in Secs. II and

III.

Our numerical results for various observables are summarized in Table II (we have not included

here the quantities taken as phenomenological inputs, namely mπ, fπ, mρ, mω and mf1). From the

table it is seen that the predictions of the model for the π0 → γγ, ρ→ e+e− and ρ→ ππ decay rates

are in good agreement with experiments, being compatible with the empirical values [30] within

an accuracy of less than 10%. We can also obtain a prediction for the width Γ(ω → e+e−), which

is found to be about 0.8 keV, somewhat larger than the experimental value 0.60 ± 0.02 keV [30].

However, as discussed above, our result might become modified after the inclusion of strangeness

degrees of freedom owing to the ω − φ mixing. Regarding the σ − σ′ sector, we obtain a physical

state with a mass of about 680 MeV, which can be identified with the observed σ meson resonance

(the mass of which is rather uncertain), while for the state σ′ we find that the function Gσ′(−s)
grows monotonically with s, indicating that this state does not represent a physical meson (a more

detailed discussion on the σ′ state in this type of models can be found in Ref. [13]). In the case

of the a1 vector mesons we find that the function Ga1(−s) decreases with s until it reaches a

minimum at
√
s ≃ 1250 MeV, very close to the threshold of on-shell quark pair production, or

pinch point, found at 1264 MeV. Recalling the discussion in the previous subsection, in order to

estimate the value of the a1 mass it is possible either to take the minimum of Ga1(−s) or to make

an extrapolation based on the behavior of Ga1(−s) up to say s ∼ (1 GeV)2. Both approaches lead
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to ma1 ∼ 1200− 1250 MeV, which is in good agreement with experimental expectations. We have

also analyzed the dependence of our results on the value of αz within the error given by the fit to

LQCD data [see Eq. (67)], obtaining that the model predictions do not vary significantly.

Model Empirical

Γ(π0 → γγ) [MeV] 7.82× 10−6 (7.63± 0.16)× 10−6

Γ(ρ→ e+e−) [MeV] 6.71× 10−3 (7.04± 0.06)× 10−3

Γ(ρ→ ππ) [MeV] 137 149.1± 0.8

mσ [MeV] 683 400 - 550

ma1 [MeV] 1200 - 1250 1190 - 1270

Table II: Model predictions and empirical values [30] for various observables.

Finally, in Table III we quote our results for mean field values of scalar fields, chiral quark con-

densates and effective quark-meson couplings. It is seen that the model leads to a zero-momentum

effective quark mass m(0) = (mc + σ̄1)/(1 − σ̄2) ≃ 400 MeV, somewhat larger than the value

of 311 MeV obtained in Ref. [13] for a nlNJL model without vector meson degrees of freedom.

For comparison, notice that standard NJL model parametrizations lead to values of constituent

(momentum-independent) quark masses around 350 MeV [2]. Concerning the chiral quark conden-

sates, our results are relatively large in comparison with usual phenomenological estimations and

lattice calculations, which lead to condensates in the range of (−240 MeV)3 to (−320 MeV)3 [31].

In addition, when determining the model parameters we have found a relatively low value for the

current quark mass, namely mc = 1.59 MeV, in comparison with lattice estimates that lead to

mc ≃ 3.4 ± 0.25 MeV in the isospin limit [30]. The results for these quantities in nlNJL mod-

els are in fact strongly dependent on the form factor shapes, as it is found in Refs. [13, 20, 21],

where two- and three-flavor nonlocal models (which do not include the vector meson sector) are

considered. As discussed in those articles, one has to take into account that both mc and 〈q̄q〉
are scale-dependent quantities, and our fit has been carried out using lattice data that correspond

to a renormalization scale µ = 3 GeV, somewhat larger than the usual scale of 2 GeV. To get

rid of the scale dependence one can look at the product −〈q̄q〉mc, for which we get, within our

parametrization, a result of about 8.12 × 10−5 GeV4. This is in good agreement with the value

arising from the Gell-Mann-Oakes-Renner relation at the leading order in the chiral expansion,

namely −〈q̄q〉mc = f2πm
2
π/2 ≃ 8.21× 10−5 GeV4. Finally, for completeness we include in Table III

the values obtained for the effective quark-meson couplings gπqq̄ and gρqq̄.
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Model

σ̄1 [MeV] 524

σ̄2 -0.322

−〈q̄q〉1/3 [MeV] 371

gπqq̄ 5.69

gρqq̄ 2.94

Table III: Numerical results for various phenomenological quantities.

V. SUMMARY & OUTLOOK

In this work we have introduced a two-flavor chiral quark model that includes nonlocal four-

fermion interactions. Besides the usual scalar and pseudoscalar couplings already present in the

standard (local) NJL model, we consider the couplings between vector and axial-vector quark-

antiquark currents as well as a current-current interaction that leads to WFR of the quarks fields.

The model leads to a dressed quark propagator in which the effective mass and WFR are functions

of the momentum through nonlocal form factors, and these can be fitted to the results obtained in

lattice QCD calculations.

We have concentrated on vacuum properties related with the presence of vector and axial-vector

mesons, which have not been taken into account in this context in previous works. For this analysis

we have evaluated various one-loop diagrams contributing to vector and axial-vector mass terms and

decay amplitudes. It is seen that, owing to the nonlocal character of the interactions, the model

leads to tadpole diagrams contributing to the ρ−photon vertex, in addition to the usual quark

loop contributions. The longitudinal components of both contributions are found to be separately

nonvanishing, while their sum is transverse, as requested by electromagnetic current conservation.

It is worth mentioning that analytical expressions for the pion mass and decay constants obtained

in previous works have been revisited in order to take into account π−a1 mixing.

On the phenomenological side, the fit of nonlocal form factors to lattice QCD results for effective

quark propagators provides a more natural and realistic way to regularize the model in comparison

with the standard NJL approach. The remaining unknown parameters, namely the current quark

mass and the current-current coupling constants, can be determined from some input observables.

Here we have chosen to take as inputs the measured values of the pion decay constant and a

set of meson masses. From the numerical evaluation of the analytical expressions we find that
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the model is able to properly reproduce the empirical values of these observables, and leads to

phenomenologically acceptable values for other scalar and vector meson masses and decay widths.

To conclude, let us state that the inclusion of the axial and vector meson sector offers a more

complete picture of hadron phenomenology in the framework of nonlocal quark models, and its

effects can be important for the analysis of hadronic observables such as the pion electromagnetic

form factor and the vector and axial vector form factors for pion radiative decays. It is also worth

it to extend the study of ρ meson properties to finite-temperature systems, given its importance

for the study of heavy ion collisions. In addition, for the case of hadronic systems at finite chemical

potential it is expected that vector interactions lead to a nonzero condensate in the J = 1, I = 0

channel, which can be important for the study of the QCD phase diagram [32] and the physics of

compact objects [33]. We expect to report on these issues in forthcoming articles.
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Appendix A: Analytical expressions for the form factors in ρ→ ππ decays

Here we quote the analytical expressions for the functions Gρππ(p
2, q21 , q

2
2), Gρπa(p

2, q21 , q
2
2) and

Gρaa(p
2, q21 , q

2
2) contributing to the form factor G̃ρππ(p

2, q21, q
2
2), see Eq. (60). To calculate the

ρ → ππ decay amplitude, we have to evaluate these functions at q21 = q22 = (p − q1)2 = −m2
π,

p2 = −m2
ρ. We find it convenient to introduce the momentum v = q1 − p/2, which satisfies

p · v = 0, v2 = m2
ρ/4−m2

π. Then the functions Gρxy(p
2, q21, q

2
2), where subindices x and y stand for

either π or a, can be written as

Gρxy(p
2, q21 , q

2
2) = 16Nc

∫

d4q

(2π)4
h(q) g (q + v/2 + p/4) g (q + v/2− p/4)

× z(q+)z(q−)z(q + v)

D(q+)D(q−)D(q + v)
fxy(q, p, v) , (68)
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where we have defined q± = q ± p/2. After a rather lengthy calculation we find for fxy(q, p, v) the

expressions

fππ =

[

(q+ · q−) +m(q+)m(q−)

] [

1 +
(q · v)
v2

]

− (q · v)
v2

{

2
[

q · (q + v)
]

+ m(q + v)
[

m(q+) + m(q−)
]

}

,

fπa = −2m(q + v)

[

(q+ · q−) − 2
(q · v)2
v2

+ m(q+)m(q−)

]

+

[

1 +
(q · v)
v2

]{

(q+ · p)m(q−)− (q− · p)m(q+) − 2(q · v)
[

m(q+) +m(q−)
]

}

,

faa =

[

1 +
(q · v)
v2

][

q+2 q−2 − (q+ · q−) (q + v)2 −
(

v2 +
p2

4

)

m(q+)m(q−)

]

+ m(q + v)

{

m(q+) (q− · p) − m(q−) (q+ · p) +
(q · v)
v2

(

v2 − p2

4

)

[

m(q+) + m(q−)
]

}

+ 2
(q · v)
v2

(q + v)2
[

(q · v)− p2

4

]

. (69)

Appendix B: Loop integrals and branch cuts in the form factors

As described in Sec. IV, we have considered a parametrization of the nlNJL model that allows

us to reproduce LQCD results for the momentum dependence of effective quark propagators. From

the comparison with LQCD data, the form factors g(p) and f(p) have been written in terms of the

functions fm(p2) and fz(p
2) given by Eqs. (62) and (64). In this appendix we discuss the numerical

evaluation of loop integrals, which have to be treated with some care given the particular form of

fm(p2).

Let us consider loop integrals that involve an external momentum p, such as those in the

functions GM (p2), F0,1(p
2) and J (I,II)(p2), defined in Sec. III. The integrals can be generically

written as

I(p2) =

∫

d4q

(2π)4
F (q+, q−, p) , (70)

where q± = q ± p/2, and F (q+, q−, p) is a function that includes the form factors either explicitly

or through the quark effective masses and/or wave function renormalizations. More precisely, it is

seen that in general F (q+, q−, p) may include the form factors fm(s) evaluated at s = (q+)2, (q−)2

and/or q2. We are interested in this form factor since its explicit form fm(s) = 1/[1 + (s/Λ2
0)

3/2]

implies the existence of a branch cut in the complex plane s, namely at Re(s) < 0, Im(s) = 0. It

is worth noticing that in all cases the integrals have to be evaluated numerically at p2 = −M2,

where M is some meson mass.
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To perform the calculations we choose, as usual, the 4th axis in the direction of the external

momentum. Thus one has pµ = (iM,~0), and I(p2) can be reduced to a double integral in q4 and

|~q|. Since the functions F (q+, q−, p) are symmetric under the exchange q+ ↔ q−, it is easy to see

that F (q+, q−, p) = F (q+
∗
, q−

∗
, p), which ensures the reality of I(q2). Now let us take |~q| fixed,

and consider the analytical structure of the integrand in the complex q4 plane. It is immediately

seen that we will find a pair of branch cuts in this plane arising from the function fm(q2), and

other pairs of cuts will appear from the occurrences of fm[(q+)2] and fm[(q−)2], respectively. In

the case of fm(q2) = fm(q24 + |~q|2), the cuts are given by Re(q4) = 0, |Im(q4)| > |~q|, hence they

never cross the real q4 axis, along which the integral is to be performed. On the other hand, for

fm[(q±)2] the cuts are located at Re(q4) = 0, |Im(q4) ±M/2| > |~q|, therefore if |~q| < M/2, both

fm[(q+)2] and fm[(q−)2] have cuts that cross the real q4 axis.

The treatment of these cuts is a matter of prescription. In fact, after taking the form factors

from LQCD calculations in Euclidean space, one could turn back to Minkowski space through a

Wick rotation. Then one would find that the cuts are located along the integration axis, and to

evaluate the integrals they have to be moved away according to some recipe. Here we will adopt

the prescription of translating the arguments of fm(s) according to

fm[(q+)2] → fm[(q+)2 − iε] , (71)

fm[(q−)2] → fm[(q−)2 + iε] , (72)

while fm(q2) is kept unchanged. In this way, branch cuts do not overlap and the property

F (q+, q−, p) = F (q+
∗
, q−

∗
, p) remains valid. From Eqs. (71) and (72) the cuts associated to the

functions fm[(q±)2] are given by











Re(q4)−
ε

M ± 2 Im(q4)
= 0 ,

|Im(q4)±M/2| − |~q| > 0 .

(73)

The corresponding curves in the complex plane q4 are sketched in Fig. 6, where we have distin-

guished two situations in which |~q| > M/2 (Fig. 6a) and |~q| < M/2 (Fig. 6b). Branch cuts cor-

responding to the functions fm[(q+)2], fm[(q−)2] and fm(q2) have been represented with dashed,

dotted and dashed-dotted lines, respectively. If |~q| > M/2, as it is shown in Fig. 6a, the cuts do

not cross the integration axis, thus there is no extra contribution to the loop integral. On the con-

trary, for |~q| < M/2 two branch cuts cross from one half-plane to the other one, passing through

the real q4 axis. Since the integral over q4 has to be ultimately equivalent to an integral over

the Minkowski momentum q0, obtained through the corresponding Wick rotation, the integration
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contour along q4 should be deformed in order to subtract the contribution of the crossing pieces,

which are represented with solid lines in Fig. 6b. A similar procedure has to be followed when

poles of the integrand cross the integration axis at some value of |~q|; in that case the contributions

resulting from the deformation of the q4 integration contour can be obtained by calculating the

residues of the poles, according to Cauchy’s theorem. The need to add cut or pole contributions

to the loop integrals becomes evident by looking at relatively simple integrals as those appearing

in the gap equations (12): if one carries out a translation of the loop momentum p → p ′ = p + r,

with r2 = −M2, for fixed |~p ′| there will be branch cuts in the complex plane p ′
4 that cross from

the upper half-plane to the lower one (or vice versa). In addition, in general the integrand will

have poles that for large enough values of M cross the real p ′
4 axis at some value of |~p ′|. From

Cauchy’s theorem it is easy to see that the corresponding contributions have to be subtracted if

one requires the loop integral to be invariant under the translation.

| q |

( b )

0

q4

M/2  | q |

 M/2  | q |

| q |

M/2  | q |

 | q |  | q |

M

 

q4

0

M/2  | q |

M/2  | q |

( a )

Figure 6: Branch cuts of the functions F (q+, q−, p) in the complex plane q4, according to the

prescription in Eqs. (71) and (72). The curves in graphs (a) and (b) correspond to |~q| > M/2 and

|~q| < M/2, respectively.

In practice the contributions from the cuts can be obtained by carrying out integrations in the

q4 plane along adequate contours that enclose the crossing pieces, letting then ε → 0. Owing to
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the symmetry of the functions F (q+, q−, p) imaginary parts from the integrations in the upper

and lower half-planes cancel out, leading to a real total contribution. Then the result has to be

integrated over the three-momentum variable |~q|. Notice that —according to the conditions in

Eq. (73)— this integration goes from |~q| = 0 to |~q| = M/2, therefore the contribution can be

neglected if the meson mass M is relatively small, which is in general the case when M = mπ.

Finally, in the case of the ρ→ ππ form factor the situation is more complicated since the relevant

loop integral, given by Eq. (68), involves two independent external momenta p and v. It can be

seen that the integrand has two additional branch cuts in the q4 complex plane, arising from the

functions fm(s) evaluated at s = (q + v/2 ± p/4)2. To deal with these new cuts we have used the

prescription fm[(q + v/2 ± p/4)2] → fm[(q + v/2 ± p/4)2 ± iε′], choosing an integration path that

encloses the pieces of the cuts that cross the real p4 axis as explained above.
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