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Charmless Bc → PP, PV decays in the QCD factorization approach
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Abstract

The charmless Bc → PP,PV (where P and V denote the light pseudoscalar and vector mesons,

respectively) decays can occur only via the weak annihilation diagrams within the Standard Model

and provide, therefore, an ideal place to probe the strength of annihilation contribution in hadronic

Bu,d,s decays. In this paper, we study these kinds of decays in the framework of QCD factorization,

by adopting two different schemes: scheme I is similar to the method usually adopted in the QCD

factorization approach, while scheme II is based on the infrared behavior of gluon propagator and

running coupling. For comparison, in our calculation, we adopt three kinds of wave functions for

Bc meson. It is found that: (a) The predicted branching ratios in scheme I are, however, quite

small and are almost impossible to be measured at the LHCb experiment. (b) In scheme II, by

assigning a dynamical gluon mass to the gluon propagator, we can avoid enhancements of the

contribution from soft endpoint region. The strength of annihilation contributions predicted in

scheme II is enhanced compared to that obtained in scheme I. However, the predicted branching

ratios are still smaller than the corresponding ones obtained in the perturbative QCD approach.

The large discrepancies among these theoretical predictions indicate that more detailed studies of

these decays are urgently needed and will be tested by the future measurements performed at the

LHCb experiment.
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I. INTRODUCTION

The Bc meson is the lowest-lying bound state of two heavy quarks with different flavors (b̄

and c). Due to its flavor quantum numbers B = C = ±1 and being below the BD threshold,

the Bc meson is stable against strong and electromagnetic interactions and can decay only

via weak interaction. Furthermore, the Bc meson has a sufficiently large mass, each of the

two heavy quarks can decay individually, resulting in rich decay channels [1]. Therefore, the

Bc meson is an ideal system to study weak decays of heavy mesons [2].

The experimental studies of Bc-meson properties started in 1998 when the Collider Detec-

tor at Fermilab (CDF) reported the first observation of Bc meson through the semi-leptonic

decay modes Bc → J/Ψℓ+X (ℓ = e, µ) [3]. Thanks to the fruitful performance of the CDF,

D0 and LHCb collaborations, both the mass [4–6] and the lifetime [7–9] of the Bc meson have

been measured quite accurately. At the Large Hadron Collider (LHC) with a luminosity of

about L = 1034cm−2s−1, one could expect around 5× 1010 Bc events per year [10]. In addi-

tion, several hadronic Bc decay channels, such as B+
c → J/ψK+ [11] and B+

c → B0
sπ

+ [12],

have also been observed for the first time. In the following years, the properties of Bc meson

and the dynamics involved in Bc decays will be further exploited through the precision mea-

surements at the LHC with its high collision energy and high luminosity, opening therefore

a golden era of Bc physics [13].

The theoretical investigations have also been carried out on the properties of Bc meson,

such as its lifetime, its decay constant, and some of its form factors, based on different

theoretical frameworks [2]. Due to its heavy-heavy nature and the participation of strong

interaction, the hadronic Bc decays are extremely complicated but, at the same time, provide

great opportunities to study the perturbative and non-perturbative QCD, and final state

interactions in heavy meson decays. Being weakly decaying and doubly heavy flavor meson,

it also offers a novel window for studying the heavy-quark dynamics that is inaccessible

through the bb̄ and cc̄ quarkonia [2]. These features have motivated an extensive study of

Bc decays in various theoretical approaches in the literature [14].

In this paper, we shall focus on the two-body charmless hadronic Bc decays, which can

proceed only via the weak annihilation diagrams in the Standard Model (SM): the initial b̄

and c quarks annihilate into u and d̄/s̄ quarks, which form two light mesons by hadroniz-

ing with a qq̄ (q = u, d, s) pair emitted from a gluon. Detailed studies of these decays
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will be certainly helpful for further improving our understanding of the weak annihilation

contributions, the size of which is currently an important issue in B physics.

The recent measurements of the Bu,d,s decays, especially of the pure annihilation processes

Bs → π+π− and Bd → K+K− [15, 16], indicate that the annihilation topologies can be

significant, contrary to the common belief of their power suppression in the heavy-quark

limit [17]. Although it was later noticed theoretically that the annihilation amplitudes may

not be negligibly small in realistic B-meson decays [18], it is still very hard to make a

reliable calculation of these diagrams, and quantitative predictions for them vary greatly

between different approaches. In the QCD factorization (QCDF) approach [19], they can

only be estimated in a model dependent way due to the endpoint singularities [20]. In the

soft-collinear effective theory (SCET) [21], they are argued to be factorizable and almost

real with tiny strong phase [22], which is rather different from almost imaginary with large

strong phase as predicted in the perturbative QCD (pQCD) approach [18]. In addition,

the annihilation contributions in many Bu,d,s decays usually involve both tree and penguin

operators, and they interfere with many other different topologies, making it difficult to

obtain an accurate value of annihilation by fitting the experimental data [23].

The charmless Bc decays into two light pseudoscalar (P) and/or vector (V) mesons,

coming only from a single tree operator, provide therefore an ideal testing ground for an-

nihilation in heavy meson decays, and deserve detailed studies using different theoretical

approaches [24–27]. In this paper, we shall revisit these decays in the QCDF frame-

work, using two different schemes proposed to deal with the endpoint singularity and

to avoid enhancements in the soft endpoint region: the divergence in scheme I is usu-

ally parameterized with at least two phenomenological parameters through the treatment
∫ 1
0 dx/x → XA,H = ln(mB/Λh) (1 + ρA,He

iφA,H ) [20]; whereas in scheme II, one could use

an infrared-finite gluon propagator 1/(k2 + iǫ) → 1/(k2 −Mg(k
2) + iǫ) [28], to regulate the

divergent integrals [29–33]. The different scenarios corresponding to different choices of ρA,H

and φA,H in scheme I have been thoroughly discussed in Refs. [20]. In scheme II, it is found

that the hard spectator-scattering contributions are real and the annihilation corrections are

complex with a large imaginary part [31–33]. These two different treatments used in Bu,d,s

decays could be further tested through the charmless Bc decays.

The remaining parts of the paper are organized as follows. In Sec. II, after recapitulating

the theoretical framework for two-body charmless hadronic Bc decays, we present the calcu-
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lation of the annihilation diagrams in the QCDF framework with the two different schemes.

The numerical results and discussions are given in Sec. III. Finally, we conclude in Sec. IV.

The explicit expressions for the decay amplitudes and the relevant input parameters are

collected in Appendix A and Appendix B, respectively.

II. THEORETICAL FRAMEWORK AND CALCULATION

A. The effective weak Hamiltonian and hadronic matrix element

Using the operator product expansion and renormalization group (RG) equation, we

can write the effective weak Hamiltonian for charmless B−
c → M1M2 (Mi denote the light

pseudoscalar and vector mesons) decays as [34]

Heff =
GF√
2
VcbV

∗
uD

[

C1(µ)Q1 + C2(µ)Q2

]

+ h.c., (1)

where GF is the Fermi coupling constant, Vcb and VuD (D = d, s) the Cabibbo-Kobayashi-

Maskawa (CKM) matrix elements [35]. The four-quark operators Qi arise from W -boson

exchange and are defined, respectively, as

Q1 = [c̄αγ
µ(1− γ5)bα]

[

D̄βγµ(1− γ5)uβ
]

,

Q2 = [c̄αγ
µ(1− γ5)bβ]

[

D̄βγµ(1− γ5)uα
]

, (2)

where α, β are the color indices. The corresponding Wilson coefficients Ci(µ) can be calcu-

lated using the RG improved perturbative theory [34].

To obtain the decay amplitude, the remaining work is to evaluate the hadronic matrix

elements of the local operators Qi, which is however quite difficult due to the participation

of non-perturbative QCD effects. The Feynman diagrams for Bc → M1M2 decays with the

QCDF approach are shown in Fig. 1, where (a), (b) and (c), (d) are nonfactorizable and

factorizable topologies, respectively. Since the tree operators Q1,2 have the (V −A)⊗(V −A)
Dirac structure, the two factorizable diagrams (c) and (d) cancel each other exactly in the

QCDF approach [20]. Moreover, due to the mismatch of the color indices, there are no

contributions from diagrams (a) and (b) with the insertion of the color-singlet operator Q1.

Thus, there is only a single tree operator Q2 involved in the decay amplitudes, and the

nonzero contribution comes only from diagrams (a) and (b).

4



(c)

B−
c

b

c

M2

M1

(a)

(d)

(b)

B−
c

b

c

M2

M1

B−
c

b

c

M2

M1

B−
c

b

c

M2

M1

FIG. 1: The lowest order Feynman diagrams contributing to charmless B−
c → M1M2 decays.

In the QCDF framework and with the same hypotheses made for hadronic Bu,d,s decays,

the decay amplitude for charmless B−
c → M1M2 decays can be written as [20]

〈M1M2|Heff |B−
c 〉 ∝ fBc

fM1fM2 b2(M1,M2) , (3)

where fBc
, fM are decay constants of the Bc and M mesons respectively. The coefficient

b2(M1,M2) is defined as [20]

b2(M1,M2) =
CF

N2
c

C2A
i
1(M1,M2) , (4)

where CF = 4/3 and Nc = 3, the superscript ‘i’ on Ai
1 refers to the gluon emission from

the initial-state quarks, and the subscript ‘1’ on Ai
1 refers to the (V − A) ⊗ (V − A) Dirac

structure of the inserted four-quark operator Q2. The basic building block Ai
1(M1,M2) can

be expressed as the convolution of the hard kernels given by diagrams (a) and (b) in Fig. 1

and the light-cone distribution amplitudes (LCDAs) of the initial- and final-state mesons,

which will be detailed in the next two subsections.

B. Ai
1(M1,M2) in scheme I

In scheme I, the annihilation contributions to hadronic Bu,d,s decays are evaluated by

regularizing the divergent integrals on the basis of heavy-quark power counting [20]. Despite

the fact that such a treatment is not entirely self-consistent in the context of a hard-scattering
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approach, it provides nevertheless a model to estimate the importance of annihilation, which,

motivated by the first observation of the pure annihilation decay Bs → π+π− [15, 16], has

been revisited quite recently in Refs. [32, 36].

Following a similar treatment, we now estimate the annihilation topologies in charmless

B−
c → M1M2 decays. In accordance with the convention adopted in Ref. [20], we find that

the basic building block Ai
1(M1,M2) is given by

Ai
1(M1,M2) = παs

∫ 1

0
dxdydzΦMBc

(z)

{

ΦM2(x) ΦM1(y)
[

x̄− z̄ + zb
x̄y[(x̄+ y)z̄ − x̄y − iǫ]

− y − z + zc
x̄y[(x̄+ y)z − x̄y − iǫ]

]

+rM1
χ rM2

χ Φm2(x) Φm1(y)
[

x̄yz − xȳz̄ + zb
x̄y[(x̄+ y)z̄ − x̄y − iǫ]

− x̄yz̄ − xȳz + zc
x̄y[(x̄+ y)z − x̄y − iǫ]

]

}

, (5)

when both mesons are pseudoscalar or when M1 is a pseudoscalar and M2 a vector meson.

In the case when M1 is a vector meson and M2 a pseudoscalar, one has to change the sign of

the second term in Ai
1. When we take z = zb = 1 and z = zc = 0, this result is in agreement

with the expressions obtained in Ref. [20, 37]. In Eq. (5), zb and zc denote the relative size

of the b- and c-quark masses with

zb =
mb

mBc

, zc =
mc

mBc

, (6)

Their appearance allows one to distinguish the origin of each term in the brackets: the ones

involving zb must come from diagram (a), whereas those involving zc must from diagram (b)

in Fig. 1. As always, ΦM(x) and Φm(x) denote the leading-twist and twist-3 two-particle

LCDAs of the final-state meson M , respectively. The factor rMχ , once multiplied by mBc
/2,

is used to normalize the twist-3 distribution amplitude; explicitly, we have

rPχ (µ) =
2m2

P

mBc
[m1(µ) +m2(µ)]

, rVχ (µ) =
2mV

mBc

f⊥
V (µ)

fV
, (7)

where m1,2(µ) denote the running masses of the two valence quarks of a pseudoscalar, and

f⊥
V (µ) the scale-dependent transverse decay constant of a vector meson. Despite being

formally suppressed by one power of ΛQCD/mb in the heavy-quark limit, these terms are not

always small numerically, especially in the case of pseudoscalar mesons [20].
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FIG. 2: The three kinds of distribution function for Bc meson, W-I thick solid line,W-II blue

line,W-III red line.

In the calculation, we will use three different types of distribution function for Bc meson.

The first one is the peak form (W-I) [38]

ΦBc
(x) = δ(x−mc/mBc

), (8)

The second one is the solution of the Schrödinger equation with the harmonic oscillator

potential (W-II) [39]

ΦBc
(x) = Nxx exp{− 1

8α2
(
m2

c

x
+
m2

b

x
)}, (9)

where α2 = µω, the reduced mass µ = mbmc/(mb+mc) and the quantum of energy ω ≈ 0.50

GeV [40]. The third one is the quarkonium form (W-III) [41]

ΦBc
(x) = Nxx exp{−(

MBc

MBc
−mb −mc

)2(x− xBc
)2}, (10)

where xBc
= 1−mb/mBc

.

In Eq. (9-10), N is normalization constant and the normalization condition is
∫ 1

0
dxΦBc

(x) = 1. (11)

The shape of the three distribution function of Bc meson is displayed in Fig. 2.

To pursue the structure of the singularities of the building block Ai
1(M1,M2), we take,

for simplicity, the asymptotic expressions for the distribution amplitudes [20, 42]

ΦP (x) = 6x(1− x) , ΦV (x) = 6x(1− x) , (12)

Φp(x) = 1 , Φv(x) = 3(2x− 1) . (13)
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FIG. 3: The variation of the real and imaginary parts of function g(z) defined by Eq. (14) with

respect to the parameter z.

The weak annihilation of Bu,d,s exhibit endpoint singularities even at twist-2 order in

the light-cone expansion for the final-state mesons. For Bc → PP, PV decay, the endpoint

singularities only at twist-3 level, has the same situation with the hard spectator interactions

of Bu,d,s. For the twist-2 terms, the singularities in the integral interval. It is found that the

convolution integrals in Eq. (5) can be performed without problem as long as 1/2 ≤ z < 1.

There are, however, integrable singularities at x̄ = z/(1 − z) or y = z/(1 − z) when 0 <

z < 1/2, which can be dealt with using the prescription of Cauchy principal value integral.

Taking the integral

g(z) =
∫ 1

0
dxdy

1

(x̄+ y)z − x̄y − iǫ
(14)

as an example, we show in Fig. 3 its real and imaginary parts dependence on the parameter

z, and one can see clearly that the integral is finite as long as z is different from 0 and 1.

The twist-3 terms in Eq. (5) is more complex and can not be expressed as polynomial of

XA =
∫ 1
0 dy/y ∼ ln(mb/ΛQCD), so we make the integral interval of x, y ∈ [ΛQCD/mb, 1].

Rather than giving the explicit expressions for the convolution integrals, we present, with

the default inputs mb = 4.8 GeV and mc = 1.5 GeV, the numerical results for the building

block Ai
1(M1,M2) in the three different cases

W-I

Ai
1(P, P ) = π

[

(−5.70 + 6.26i) + rM1
χ rM2

χ (−1.59− 2.75i)
]

, (15)
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Ai
1(P, V ) = π

[

(−5.70 + 6.26i) + rM1
χ rM2

χ (−3.73 + 0.56i)
]

, (16)

Ai
1(V, P ) = π

[

(−5.70 + 6.26i)− rM1
χ rM2

χ (3.73− 0.56i)
]

, (17)

W-II

Ai
1(P, P ) = π

[

(−2.78− 4.95i) + rM1
χ rM2

χ (−0.09− 2.47i)
]

, (18)

Ai
1(P, V ) = π

[

(−2.78− 4.95i) + rM1
χ rM2

χ (−1.00− 0.04i)
]

, (19)

Ai
1(V, P ) = π

[

(−2.78− 4.95i)− rM1
χ rM2

χ (1.00 + 0.04i)
]

, (20)

W-III

Ai
1(P, P ) = π

[

(−5.82− 6.48i) + rM1
χ rM2

χ (−1.71− 2.85i)
]

, (21)

Ai
1(P, V ) = π

[

(−5.82− 6.48i) + rM1
χ rM2

χ (−4.03 + 0.49i)
]

, (22)

Ai
1(P, V ) = π

[

(−5.82− 6.48i)− rM1
χ rM2

χ (4.03− 0.49i)
]

, (23)

where the result is obtained with αs(µ ≃ mBc
/2) = 0.25 and mBc

= 6.2745 GeV. Judging

from the above expressions, the branching ratios obtained with W-I and W-III should be

very close, and the W-II’s results will be smaller. It is noted that Ai
1(P, V ) is identical to

Ai
1(V, P ) in our approximation and the annihilation contribution have a large imaginary

part.

C. Ai
1(M1,M2) in scheme II

Instead of parameterized with an ad hoc model-dependent cut-off, the endpoint diver-

gences can also be regulated with an infrared (IR) finite gluon propagator that is charac-

terized by a dynamical gluon mass, providing therefore a natural IR regulator [28]. This

has been successfully applied to various hadronic Bu,d,s decays in Refs. [29–33]. In this

subsection, we shall evaluate the building block Ai
1(M1,M2) in such a scheme.

Instead of the perturbative expression 1/q2 that is IR divergent, the IR finite gluon prop-

agator is obtained by solving an intricate set of coupled Dyson-Schwinger equations (DSE)

for pure gauge QCD, under a systematic approximation and truncation [28]. It is also noted

that any IR finite gluon propagator leads to a freezing of the IR coupling constant [43],

meaning that the use of an IR finite gluon propagator must be accompanied by an IR finite

9
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FIG. 4: The behavior of the gluon propagator (left) and coupling constant (right) derived by

Cornwall [28], with respect to the gluon momentum squred q2.

coupling constant. The above information about the IR behavior of QCD has also been con-

firmed by the most recent lattice simulations [44, 45]a. Here we adopt the gluon propagator

derived by Cornwall many years ago [28]

D(q2) =
1

q2 +M2
g (q

2)
, (24)

where q2 denotes the gluon momentum squared. The corresponding running coupling con-

stant reads [28]

αs(q
2) =

4π

β0 ln
[

q2+4M2
g (q

2)

Λ2
QCD

] , (25)

where β0 = 11− 2
3
nf is the first coefficient of the QCD beta function, and nf the number of

active quark flavors at a given scale. The dynamical gluon mass M2
g (q

2) is given by [28]

M2
g (q

2) = m2
g







ln(
q2+4m2

g

Λ2
QCD

)

ln(
4m2

g

Λ2
QCD

)







− 12
11

, (26)

where ΛQCD = 225 MeV is the QCD scale, and mg the effective gluon mass with a typical

value mg = 0.5 ± 0.2 GeV [28]. It is interesting to note that similar values are found by

fitting the experimental data on Bu,d,s decays: mg = 0.5±0.05 GeV from Bu,d decays [31] and

mg = 0.48±0.02 GeV from Bs decays [32]. In our calculation, we take mg = 0.49±0.03 GeV.

As shown in Fig. 3, both the gluon propagator (Eq. (24)) and the coupling constant (Eq. (25))

are IR finite and different from zero at the origin of momentum squred q2 = 0.

a Recent reviews, together with a list of references, on DSE solutions and lattice results about the infrared

finite gluon propagator and running coupling constant could be found, for example, in Refs. [46–49].
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FIG. 5: The distribution in the (x̄, y) plane of the IR finite gluon propagator appearing in the

annihilation diagrams for charmless hadronic Bc → M1M2 decays.

With the above prescription and the same convention used in scheme I, our final results

for the building block Ai
1(M1,M2) can be expressed as (ω2(q2) =M2

g (q
2)/m2

Bc
)

Ai
1(M1,M2) = π

∫ 1

0
dxdydz αs(q

2) ΦMBc
(z)

{

ΦM2(x) ΦM1(y)
[

x̄− z̄ + zb
(x̄y − ω2(q2) + iǫ) [(x̄+ y)z̄ − x̄y − iǫ]

− y − z + zc
(x̄y − ω2(q2) + iǫ) [(x̄+ y)z − x̄y − iǫ]

]

+rM1
χ rM2

χ Φm2(x) Φm1(y)
[

x̄yz − xȳz̄ + zb
(x̄y − ω2(q2) + iǫ) [(x̄+ y)z̄ − x̄y − iǫ]

− x̄yz̄ − xȳz + zc
(x̄y − ω2(q2) + iǫ) [(x̄+ y)z − x̄y − iǫ]

]

}

, (27)

when (M1,M2) = (P, P ) and (P, V ). If (M1,M2) = (V, P ), on the other hand, the sign of

the second term in Ai
1 has to be changed. Our results, after taking the limits z̄ = zb → 1

and z = zc → 0, agree with the ones given in Refs. [31–33].

In Eq. (27), the time-like gluon momentum squared is given by q2 = x̄ym2
Bc
, and also

depends on the longitudinal momentum fractions x̄ = 1− x and y, making the convolution

integrals rather complicated. As shown in Fig. 5, although the running coupling constant is

rather large in the small q2 region (see Fig. 4(b)), the fact that only a small fraction comes

from the q2 < m2
g regions in the (x̄, y) plane indicates that the annihilation contributions

are still dominated by the q2 > m2
g regions associated with a large imaginary part [31]. In

scheme II, we also use three kinds of Bc meson wave function in the calculation. With the

default inputs mBc
= 6.2745 GeV, mg = 0.49 GeV, mb = 4.8 GeV and mc = 1.5 GeV, our

11



numerical results for the building block Ai
1(M1,M2) read

W-I

Ai
1(P, P ) = π

[

(−10.11− 6.16i) + rM1
χ rM2

χ (−3.64− 2.36i)
]

, (28)

Ai
1(P, V ) = π

[

(−10.11− 6.16i) + rM1
χ rM2

χ (−6.38 + 3.09i)
]

, (29)

Ai
1(V, P ) = π

[

(−10.11− 6.16i)− rM1
χ rM2

χ (6.38− 3.09i)
]

, (30)

W-II

Ai
1(P, P ) = π

[

(−5.84− 6.06i) + rM1
χ rM2

χ (−4.24− 7.76i)
]

, (31)

Ai
1(P, V ) = π

[

(−5.84− 6.06i) + rM1
χ rM2

χ (−18.36− 9.27i)
]

, (32)

Ai
1(V, P ) = π

[

(−5.84− 6.06i)− rM1
χ rM2

χ (12.5 + 9.94i)
]

, (33)

W-III

Ai
1(P, P ) = π

[

(−10.37− 6.36i) + rM1
χ rM2

χ (−3.57− 1.89i)
]

, (34)

Ai
1(P, V ) = π

[

(−10.37− 6.36i) + rM1
χ rM2

χ (−5.97 + 4.29i)
]

, (35)

Ai
1(V, P ) = π

[

(−10.37− 6.36i)− rM1
χ rM2

χ (6.02− 4.30i)
]

. (36)

One can see that, compared to the values obtained in scheme I (Eq. (17)-(23)), the anni-

hilation contributions predicted in scheme II are enhanced. This will apparently affect the

predictions for charmless hadronic Bc → M1M2 decays, which will be detailed in the next

section.

III. NUMERICAL RESULTS AND DISCUSSIONS

In the Bc-meson rest frame, the branching ratio for a general charmless B−
c → M1M2

decay can be written asa

Br(B−
c →M1M2) =

τBc

8π

|~p|
m2

Bc

|A(B−
c →M1M2)|2 , (37)

a At the moment we focus only on the PP , PV , and V P modes. For the V V mode, three different

configurations for the outgoing mesons, labeled by their helicities, have to be considered. In the QCDF

approach, the transversely polarised amplitudes in V V modes do not factorise even at leading power in

the heavy-quark expansion, making the calculation less predictive [20, 37].
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where τBc
is the Bc-meson lifetime, and |~p| is the center-of-mass momentum of either of the

two outgoing mesons, with

|~p| =

√

[

m2
Bc

− (mM1 +mM2)
2
] [

m2
Bc

− (mM1 −mM2)
2
]

2mBc

. (38)

The decay amplitude A(B−
c → M1M2) can be obtained from the hadronic matrix element

〈M1M2|Heff |B−
c 〉 defined in Eq. (3); for convenience, we collect in Appendix A the explicit

expressions of the decay amplitudes for the considered decay modes. The CP-violating

asymmetries for all the considered Bc decays are absent, since there involves only a single

tree operator in the decay amplitudes, which can be clearly seen from Eq. (3).

With the theoretical expressions given above and the input parameters collected in Ap-

pendix B, we proceed to evaluate the CP-averaged branching ratios for these charmless

Bc → M1M2 decays. In our calculation, the default value of the renormalization scale is

set at µ = mBc
/2, which is approximately the averaged virtuality of the time-like gluon

propagated in the annihilation diagrams. The numerical results based on the two schemes

are collected in Table II. In Table III, Table IV and Table V, we also present detailed error

estimates induced by the theoretical uncertainties of input parameters for the strangeness-

conserving (|△S| = 0) processes. The first error shown corresponds to the variation of the

CKM parameters A and λ (named as “CKM”), the second error refers to the variation of

the quark masses, decay constants, and the η−η′ mixing angle (named as “hadronic”). The

third error arises from the variation of the renormalization scale µ (named as “scale”). The

last error reflects the uncertainty due to the dynamical gluon mass mg (named as “mg”).

Based on the results collected in Table II-V, we have the following observations and

remarks:

• The two-body charmless hadronic Bc →M1M2 decays can be classified into two cate-

gories: the strangeness-conserving (|△S| = 0) and the strangeness-changing (|△S| =
1) processes. From the numerical results listed in Table II, one can see that the branch-

ing rations of |△S| = 0 channels are generally much larger than those of |△S| = 1

ones. This is due to the large hierarchical structure between the two CKM matrix

elements Vud and Vus, |Vud/Vus|2 ∼ 19.

• In scheme I, the branching ratios obtained with W-I and W-III very close, they are

vary in the ranges of 10−10 to 10−8, being larger than the corresponding ones obtained
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with W-II. This is consistent with the wave function, W-III is very close to δ function

as shown in Fig. 2. In scheme II, the annihilation contribution are enhanced when

we adopt the IR finite gluon propagator, and the branching ratios are not sensitive

to the choice of wave function for Bc meson. On the whole, the results of this paper

are smaller than the corresponding ones obtained in the pQCD approach [25]. The

large discrepancies among these theoretical predictions make it very necessary to make

more detailed studies of these kinds of Bc decays.

• Among these charmless Bc decays, only several decays modes, such as B−
c → K−K0,

K∗−K0, K−K∗0, π−ω, and ρ−η(
′), have relatively large branching ratios, being around

O(10−7) in Scheme-II. All of these channels belong to the |△S| = 0 transitions that

are CKM favored. It is found that branching ratio for B−
c → π−ω decay has the

largest branching ratio Br(B−
c → π−ω) = 12.8 × 10−8, which is promisingly detected

by experiments at the running Large Hadron Collider and forthcoming SuperKEKB.

• For B−
c → π−π0, π−ρ0, and ρ−π0 decays, on the other hand, since |π0〉, |ρ0〉 =

(|ūu〉− |d̄d〉)/
√
2, the contributions from ūu and d̄d components of the neutral mesons

cancel each other exactly or almostly, resulting in (approximate) zero branching ra-

tios of these three channels. For B−
c → π−ω, π−η(′) and ρ−η(′) decays, due to the

flavor decomposition |ω〉, |ηq〉 = (|ūu〉 + |d̄d 〉)/
√
2, the interference between the two

flavor components ūu and d̄d of the neutral mesons is constructive, resulting in larger

branching ratios. Taking into account the fact that fω > fη > fη′ , one can easily un-

derstand the pattern of their branching ratios. Especially, the decay modes π−(ρ−)η

and π−(ρ−)η′ have similar branching ratios, because only the |ηq〉 term involves in the

decay amplitudes.

• For B−
c → K(∗)−η(′) decays, the obtained branching ratios show a rather different

pattern, Br(K(∗)−η′) ≫ Br(K(∗)−η), from that of Br(π−(ρ−)η′) ∼ Br(π−(ρ−)η). It is

also observed that Br(K(∗)−η′) is much larger than Br(K(∗)−π0), while Br(K(∗)−η) is

suppressed rather than enhanced compared to that of the π0 mode. To understand

the enhancement and suppression patterns, we should note that both the |ηq〉 and |ηs〉
terms contribute to these |△S| = 1 transitions, but with an opposite sign between

them for the η and η′ final states, which is due to the fact that f q
η(′)

> 0, f s
η′ > 0,

while f s
η < 0. This results in a destructive interference for the η, but a constructive
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interference for the η′ modes. Similar patterns have already been observed in the

B → Kη(′) and B → K∗η(′) decays [50].

• As discussed in Ref. [24], several relations among the charmless Bc decay channels

hold in the limit of exact SU(3) flavor symmetry. For Bc → PP decays, for example,

one of such relations reads

A(B−
c → K̄0π−) =

√
2A(B−

c → K−π0) = λ̂A(B−
c → K−K0) , (39)

with the Cabibbo-suppressing factor λ̂ = Vus/Vud. Similar relations could also be found

for Bc → PV decays, with the replacements π → ρ and/or K → K∗. We find that the

first equality holds exactly in both scheme I and scheme II, because the exact isospin

symmetry is assumed in our calculation. The second equality is, however, violated by

the differences between decay constants and light-quark masses, which account for the

SU(3)-breaking effect.

• As the relevant CKM parameters have been measured quite precisely, the theoretical

errors introduced by the CKM parameters are small. The uncertainty due to the

variation of the dynamical gluon mass in scheme II is also found to be negligible.

The main uncertainties are due to the variation of the renormalization scale, as well

as the mixing parameters for η and η′ final states. The large scale dependence of

the branching ratios is understandable, because only the leading order term in αs

is taken into account in our calculation. Furthermore, the different choices of the

renormalization scale also account for the main differences among our results and the

ones presented in Refs. [24, 25].

Finally, we would like to point out that it is hard to estimate the systematical uncertainties

coming from the hypothesis underlying our calculations, such as the one-gluon approximation

for the annihilation mechanism, the use of asymptotic distribution amplitudes, as well as

the neglect of 1/mb-suppressed power corrections.

IV. SUMMARY

Being the lowest-lying bound state of two heavy quarks with different flavors, the Bc

meson is an ideal system to study weak decays of heavy mesons. In this paper, we have
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carried out a detailed study of two-body charmless hadronic Bc decays, which can proceed

only via the weak annihilation diagrams within the SM and are, therefore, very suitable

for further improving our understanding of the annihilation mechanism, the size of which

is currently an important issue in B physics. Explicitly, we have adopted two different

schemes to deal with these decays: scheme I is similar to the usual method adopted in the

QCDF approach, while scheme II is based on the infrared behavior of gluon propagator and

running coupling. For comparison, we adopt three different kinds of distribution function

for Bc meson. It is found that the strength of annihilation contributions predicted in scheme

II is enhanced compared to that obtained in scheme I. The branching ratios are not sensitive

to the choice of wave function for Bc meson in scheme II. However, the predicted branching

ratios are inconsisitent with the corresponding ones obtained in the pQCD approach [25].

The large discrepancies among these theoretical predictions make it very necessary to

make more detailed studies of these kinds of Bc decays, especially from the experimental

side. It is interesting to note that the LHCb experiment has the potential to observe the

decays with a branching ratio of 10−7, which will certainly provide substantial information

on these charmless Bc decays and deepen our understanding of the annihilation mechanisms.
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Appendix A: Decay amplitudes in the QCDF approach

Starting with Eq. (3) and adopting the standard phase convention for the flavor wave

functions of light and heavy mesons [20, 50, 51], one can easily write down the decay ampli-

tude for a given decay mode. Firstly, there are eight charmless Bc → PP decays with the

corresponding amplitude given, respectively, as (the exact isospin symmetry is assumed):

A(B−
c → π−π0) = GF

2
VcbV

∗
ud fBc

fπ−fπ0 [b2(π
0, π−)− b2(π

−, π0)] = 0 , (A1)

A(B−
c → π−η(′)) = GF

2
VcbV

∗
ud fBc

fπ−f q
η(′)

[

b2(π
−, η(′)) + b2(η

(′), π−)
]

, (A2)

A(B−
c → K−K0) = GF√

2
VcbV

∗
ud fBc

fK−fK0 b2(K
−, K0) , (A3)

A(B−
c → K−π0) = GF

2
VcbV

∗
us fBc

fK−fπ0 b2(π
0, K−) , (A4)
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A(B−
c → K̄0π−) = GF√

2
VcbV

∗
us fBc

fK0fπ− b2(π
−, K̄0) , (A5)

A(B−
c → K−η(′)) = GF

2
VcbV

∗
us fBc

fK−

[

f q
η(′)

b2(η
(′), K−) +

√
2f s

η(′)
b2(K

−, η(′))
]

. (A6)

The decay amplitudes for the 15 charmless PV modes can be written, respectively, as:

A(B−
c → π−ρ0) = GF

2
VcbV

∗
ud fBc

fπ−fρ0 [b2(ρ
0, π−)− b2(π

−, ρ0)] , (A7)

A(B−
c → π−ω) = GF

2
VcbV

∗
ud fBc

fπ−fω [b2(ω, π
−) + b2(π

−, ω)] , (A8)

A(B−
c → K∗−K0) = GF√

2
VcbV

∗
ud fBc

fK∗−fK0 b2(K
∗−, K0) , (A9)

A(B−
c → K−ρ0) = GF

2
VcbV

∗
us fBc

fK−fρ0 b2(ρ
0, K−) , (A10)

A(B−
c → K̄0ρ−) = GF√

2
VcbV

∗
us fBc

fK0fρ− b2(ρ
−, K̄0) , (A11)

A(B−
c → K−ω) = GF

2
VcbV

∗
us fBc

fK−fω b2(ω,K
−) , (A12)

A(B−
c → ρ−π0) = GF

2
VcbV

∗
ud fBc

fρ−fπ0 [b2(π
0, ρ−)− b2(ρ

−, π0)] , (A13)

A(B−
c → ρ−η(′)) = GF

2
VcbV

∗
ud fBc

fρ−f
q
η(′)

[

b2(η
(′), ρ−) + b2(ρ

−, η(′))
]

, (A14)

A(B−
c → K−K∗0) = GF√

2
VcbV

∗
ud fBc

fK−fK∗0 b2(K
−, K∗0) , (A15)

A(B−
c → K∗−π0) = GF

2
VcbV

∗
us fBc

fK∗−fπ0 b2(π
0, K∗−) , (A16)

A(B−
c → K̄∗0π−) = GF√

2
VcbV

∗
us fBc

fK∗0fπ− b2(π
−, K̄∗0) , (A17)

A(B−
c → K∗−η(′)) = GF

2
VcbV

∗
us fBc

fK∗−

[

f q
η(′)

b2(η
(′), K∗−) +

√
2f s

η(′)
b2(K

∗−, η(′))
]

,(A18)

A(B−
c → φK−) = GF√

2
VcbV

∗
us fBc

fφfK− b2(K
−, φ) . (A19)

Appendix B: Input parameters

To get the Wilson coefficients Ci(µ) at the lower scale µ = mBc
/2, we adopt the following

input parameters [52]:

αs(MZ) = 0.1185± 0.0006, α(MZ) = 1/128, sin2 θW = 0.23,

MZ = 91.1876 GeV, MW = 80.385 GeV, mt = 173.21± 0.87 GeV. (B1)

We also vary the renormalization scale µ in the region [mBc
/4, mBc

] to assess the scale

uncertainty.
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For the CKM matrix elements, we use the Wolfenstein parameterization [53] and keep

terms up to O(λ4) [34]:

Vud = 1− 1
2
λ2 − 1

8
λ4 +O(λ6) ,

Vus = λ+O(λ7) , Vcb = Aλ2 +O(λ8) , (B2)

with the inputs A = 0.813+0.015
−0.027 and λ = 0.22551+0.00068

−0.00035 [54].

For the η− η′ system, we adopt the Feldmann-Kroll-Stech (FKS) mixing scheme defined

in the quark-flavor basis [51], where the physical states |η〉 and |η′〉 are related to the flavor

states |ηq〉 = (|ūu〉+ |d̄d 〉)/
√
2 and |ηs〉 = |ss̄〉 by







|η〉
|η′〉





 =







cos φ − sinφ

sin φ cosφ













|ηq〉
|ηs〉





 . (B3)

The decay constants f q
η(′)

and f s
η(′)

, as well as the other hadronic parameters related to η and

η′ can then be expressed in terms of two decay constants fq,s and the mixing angle φ [50].

The values of these three parameters have been determined from a fit to experimental data,

yielding [51]

fq = (1.07± 0.02)fπ, fs = (1.34± 0.06)fπ, φ = 39.3◦ ± 1.0◦. (B4)

Finally, a summary of the other input parameters entering our numerical analysis is given

in Table I. It is noted that the latest experimental determinations of fπ and fK [52] compare

positively within errors with the lattice results [55]. Our values of the vector-meson decay

constants are taken from Ref. [56], which are an update of the ones extracted in Ref. [57].

The scale dependence of the transverse decay constants is taken into account via the leading-

logarithmic running f⊥(µ) = f⊥(µ0) [αs(µ)/αs(µ0)]
4/23. The light quark masses given in the

table are the running masses defined in the MS scheme; to get the corresponding pole and

running masses at different scales, we use the NLO running formulae collected, for example,

in Ref. [58]. The b- and c-quark masses are, however, defined as the pole masses.
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TABLE II: The CP-averaged branching ratios (in units of 10−8 for |∆S| = 0 and 10−9 for |∆S| = 1

transitions) of Bc → PP (upper) and Bc → PV (lower) decays based on the two schemes and

three kinds of Bc meson distribution function.

Wave-I Wave-II Wave-III

Decay modes Cases S - I S - II S - I S - II S - I S - II

B−
c → π−π0 |∆S| = 0 0 0 0 0 0 0

B−
c → π−η |∆S| = 0 2.82 5.50 1.30 4.87 3.00 5.61

B−
c → π−η′ |∆S| = 0 1.86 3.63 0.86 3.21 1.98 3.70

B−
c → K−K0 |∆S| = 0 4.69 9.15 2.18 9.11 5.01 9.25

B−
c → K−π0 |∆S| = 1 0.92 1.79 0.43 1.86 0.98 1.81

B−
c → K̄0π− |∆S| = 1 1.84 3.59 0.86 3.72 1.97 3.61

B−
c → K−η |∆S| = 1 0.17 0.33 0.08 0.45 0.18 0.33

B−
c → K−η′ |∆S| = 1 3.85 7.52 1.79 7.28 4.11 7.62

B−
c → π−ρ0 |∆S| = 0 0 0 0 0.02 0 ∼ 0

B−
c → ρ−π0 |∆S| = 0 0 0 0 0.02 0 ∼ 0

B−
c → π−ω |∆S| = 0 6.19 12.4 2.63 10.2 6.59 12.8

B−
c → ρ−η |∆S| = 0 5.34 10.6 2.32 7.43 5.67 11.0

B−
c → ρ−η′ |∆S| = 0 3.52 7.00 1.53 4.90 3.74 7.26

B−
c → K∗−K0 |∆S| = 0 5.46 11.0 2.31 8.81 5.82 11.3

B−
c → K−K∗0 |∆S| = 0 5.46 11.0 2.31 9.94 5.82 11.3

B−
c → K−ρ0 |∆S| = 1 1.53 3.07 0.65 2.30 1.63 3.17

B−
c → K̄0ρ− |∆S| = 1 3.06 6.14 1.31 4.61 3.26 6.33

B−
c → K∗−π0 |∆S| = 1 1.04 2.09 0.44 1.98 1.11 2.14

B−
c → K̄∗0π− |∆S| = 1 2.07 4.19 0.87 3.95 2.21 4.28

B−
c → K−ω |∆S| = 1 1.17 2.35 0.50 1.77 1.25 2.42

B−
c → K∗−η |∆S| = 1 0.15 0.32 0.06 0.29 0.16 0.32

B−
c → K∗−η′ |∆S| = 1 4.58 9.22 1.95 7.41 4.88 9.47

B−
c → φK− |∆S| = 1 3.55 7.18 1.49 7.02 3.78 7.33
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TABLE III: The CP-averaged branching ratios and theoretical errors (in units of 10−8) of Bc →

PP (V ) decays with |∆S| = 0 based on W-I. The theoretical errors correspond to the uncertainties

referred to as “CKM”, “hadronic”, “scale”, and “mg” defined in the text.

Decay modes Cases Scheme I Scheme II

B−
c → π−η |∆S| = 0 2.82+0.13+2.68+7.64

−0.20−1.94−2.03 5.50+0.26+5.17+6.15+0.13
−0.39−3.77−3.16−0.12

B−
c → π−η′ |∆S| = 0 1.86+0.08+1.81+5.04

−0.14−1.30−1.34 3.63+0.16+3.48+4.05+0.08
−0.26−2.54−2.08−0.08

B−
c → K−K0 |∆S| = 0 4.69+0.22 +0.19+12.24

−0.33−0.19−3.34 9.15+0.43+0.38+9.70+0.21
−0.65−0.37−5.15−0.20

B−
c → π−ω |∆S| = 0 6.19+0.29 +0.92+19.23

−0.44−0.84−4.61 12.4+0.6+2.0+16.6+0.3
−0.8−1.7−7.6−0.3

B−
c → ρ−η |∆S| = 0 5.34+0.25 +0.82+16.68

−0.38−0.74−3.98 10.6+0.5+2.1+14.3+0.3
−0.7−1.8−6.5−0.2

B−
c → ρ−η′ |∆S| = 0 3.52+0.16 +0.60+10.99

−0.25−0.54−2.63 7.00+0.33+1.48+9.41+0.16
−0.50−1.28−4.29−0.16

B−
c → K∗−K0 |∆S| = 0 5.46+0.25 +0.58+16.95

−0.39−0.54−4.07 11.0+0.5+1.2+14.6+0.3
−0.8−1.1−6.7−0.3

B−
c → K−K∗0 |∆S| = 0 5.46+0.25 +0.58+16.94

−0.39−0.54−4.07 11.0+0.5+1.2+14.6+0.3
−0.8−1.1−6.7−0.3

TABLE IV: Same as Table.III but based on W-II.

Decay modes Cases Scheme I Scheme II

B−
c → π−η |∆S| = 0 1.30+0.06 +1.41+3.48

−0.09−0.92−0.93 4.87+0.22 +11.31+4.16+0.39
−0.35−5.56−2.55−0.30

B−
c → π−η′ |∆S| = 0 0.86+0.04 +0.93+2.29

−0.06−0.62−0.62 3.21+0.15+7.54+2.75−0.26
−0.23−3.71−1.68−0.20

B−
c → K−K0 |∆S| = 0 2.18+0.10 +0.09+5.61

−0.15−0.08−1.55 9.11+0.43+0.38+7.01+0.82
−0.64−0.36−4.61−0.63

B−
c → π−ω |∆S| = 0 2.63+0.12 +0.37+8.25

−0.18−0.34−1.96 10.2+0.5+2.3+12.5+0.3
−0.7−1.9−6.1−1.1

B−
c → ρ−η |∆S| = 0 2.32+0.10 +0.21+7.27

−0.17−0.21−1.73 7.43+0.35+7.06+9.39+0.23
−0.52−5.07−4.47−0.57

B−
c → ρ−η′ |∆S| = 0 1.53+0.07 +0.15+4.79

−0.11−0.16−1.14 4.90+0.23+4.75+6.18+0.15
−0.35−3.42−1.94−0.38

B−
c → K∗−K0 |∆S| = 0 2.31+0.11 +0.24+7.24

−0.16−0.22−1.72 8.81+0.42+1.17+2.27+0.77
−0.62−1.05−5.25−0.50

B−
c → K−K∗0 |∆S| = 0 2.31+0.11 +0.24+7.24

−0.16−0.22−1.72 9.94+0.46+1.37+9.66+0.00
−0.71−1.23−5.89−1.60
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TABLE V: Same as Table.III but based on W-III.

Decay modes Cases Scheme I Scheme II

B−
c → π−η |∆S| = 0 3.00+0.14 +2.91+8.13

−0.21−2.08−2.16 5.61+0.26+4.80+6.38+0.24
−0.40−5.10−3.24−0.08

B−
c → π−η′ |∆S| = 0 1.98+0.09 +1.96+5.36

−0.14−1.40−1.42 3.70+0.17+3.25+4.20+0.15
−0.26−3.18−2.14−0.05

B−
c → K−K0 |∆S| = 0 5.01+0.23+0.21+13.04

−0.36−0.20−3.57 9.25+0.43 +0.39+10.01+0.37
−0.66−0.37−5.25−0.13

B−
c → π−ω |∆S| = 0 6.59+0.31+0.99+20.46

−0.47−0.89−4.91 12.8+0.6+1.9+17.1+0.7
−0.9−1.8−7.8−0.3

B−
c → ρ−η |∆S| = 0 5.67+0.27+0.93+17.72

−0.40−0.82−4.23 11.0+0.5+1.8+14.9+0.6
−0.8−1.4−6.7−0.1

B−
c → ρ−η′ |∆S| = 0 3.74+0.17+0.67+11.67

−0.27−0.61−2.79 7.26+0.34+1.30+9.79+0.40
−0.52−1.10−4.45−0.11

B−
c → K∗−K0 |∆S| = 0 5.82+0.27+0.62+18.04

−0.41−0.58−4.34 11.3+0.5+1.2+15.1+0.6
−0.8−1.1−6.9−0.2

B−
c → K−K∗0 |∆S| = 0 5.82+0.27+0.62+18.04

−0.41−0.58−4.34 11.3+0.5+1.2+15.1+0.6
−0.8−1.1−6.9−0.2
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