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Abstract

We incorporate the perturbative evolution effects in the generalized parton distributions (GPDs)

calculated in effective light-front quark model for the nucleon. The perturbative effects enters into

formalism through the evolution of GPDs according to the Dokshitzer-Gribov-Lipatov-Altarelli-

Parisi-like (DGLAP) equation. We obtain the evolved GPDs in the momentum space and trans-

verse impact parameter space. We observe that combining the light front quark model with the

perturbative evolution effects, give the effective model for studying the phenomenological GPDs.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is the widely accepted fundamental description of

strong interaction in terms of quark and gluon degrees of freedom. It has been proven

successful in explaining the physical phenomena at high-energy range, however, the appli-

cability of QCD to low energies is limited to some extend. Because of color confinement no

quarks and gluons have ever been directly observed by any detector in high energy scatter-

ing experiments. QCD factorization theorem enables us to connect the dynamics of quarks

and gluons to physically measured hard scattering cross sections of the known spectrum of

hadrons, by systematically factorizing the physics taking place at different momentum scales

[1–4].

Both the exclusive and inclusive processes, can be factorized into the perturbative and

non perturbative part. The scattering of the virtual photon off the parton is the short

distance part can be evaluated using the perturbation theory. The universal long-distance

part is parametrized in terms of PDFs, GPDs, or other kinds of form factors and require

the knowledge of either non-perturbative methods or a global fit to experimental data.

The initial distributions of quark and gluon are parameterized as functions of longitudinal

momentum of quarks x for a chosen initial scale µ2 and then evolved to numerically larger

values. The independence of physical observable from the physical scale leads to the DGLAP

equation in the perturbative QCD.

The study of GPDs have been of enormous interest as they contain vital information

about the 3-D structure information of the nucleon [5–7]. Many models have been proposed

theoretically in the recent past to explain the hadronic properties in terms of GPDs [8]. Pri-

marily, GPDs are parametrized in terms of three variables, namely, longitudinal momentum

of quark x, the invariant momentum transfer t, and the skewness parameter ζ , which gives

the fraction of the longitudinal momentum transfer to the nucleon in the process. The recent

experiments are performed at high-luminosity with large momentum transfer and give re-

markable precise data for the measurement of GPDs. Several experiments, for example, H1

Collaboration [9], ZEUS Collaboration [10] at HERA collider, HERMES at DESY [11], have

already collected data for the deeply virtual Compton scattering experiments. Experiments

presently running at Hall A and B at Jefferson Laboratory [12–14], COMPASS at CERN

[15], etc., will provide more accurate data in a wider kinematic range. This will significantly
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help us in advancing our present understanding of hadron structure.

In a recent work, Gutsche et al. [18, 19] have proposed a new phenomenological light-front

wave function (LFWF) for nucleon. The effective LFWF is derived from light front holog-

raphy principle of matching the predictions of soft-wall model of AdS with the light-front

QCD for electromagnetic form factors (EFFs) of mesons [20–23]. A new phenomenological

light-front quark model (LFQM) has been formulated based on LFWFs considering the nu-

cleon as the quark-scalar diquark bound state, which successfully explain the experimental

data for the form factor of nucleon and their flavor decomposition into up and down quark.

In this work, we are interested in understanding the effect of perturbative evolution on

the phenomenological LFQM [18] and study the observable related to the nucleon structure.

In particular, we incorporate the perturbative effects on the GPDs calculated in the LFQM

and refer them as “evolved GPDs”. It is necessary to take into account the hard perturba-

tive evolution effects to make theory independent of factorization scale. In addition, we also

investigated the DGPAP evolution of the GPDs in impact parameter space. Impact param-

eter GPDs provide the tomographic picture of the distribution of a quark with momentum

fraction x located at a transverse position b⊥ from the center of nucleon [16].

This paper is structured as follows: In Sec. II, we present the results for nucleon LFWFs

of the quark-scalar diquark model and present the essential calculations of valence GPDs in

the momentum space. In the next section III, we will discuss briefly the way perturbative

corrections enter into the formalism giving the DGLAP like evolution of GPDs. A detailed

comparison of behaviour of GPDs in the transverse impact parameter space is presented in

Sec. IV. Summary and conclusions are discussed in Sec. V.

II. GPDS IN THE LIGHT FRONT QUARK-SCALAR DIQUARK MODEL

The hard exclusive reactions have found increased attention in the recent past because of

new experimental and theoretical developments. Such reactions, for instance, deeply virtual

compton scattering where all the kinematical parameters of initial and final particles are

measured, contain much more information about the nucleon structure. Generalized parton

distributions enter into the factorization theorem for hard exclusive processes and play the

role of long-distance non-perturbative part in a similar manner as PDFs enter factorization

for inclusive DIS processes.
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In this section, we will revisit the essential of calculations of GPDs in the light front

quark model based upon the light front holography principle. The details pertaining to

the perturbative evolution effects will be considered in the next section. Valence GPDs are

calculated using a phenomenological LFWF for the nucleon, which consider the nucleon as

bound state of an active quark and a spectator scalar diquark. The LFQM has been able to

successfully produce the EFFs of nucleons including their flavor decompositions consistent

with data [18].

First, we will recollect the known information about the Dirac F1(q
2) and Pauli form

factors F2(q
2) for the spin 1/2+ particles. In the light-front formalism, it is convenient to

identify the F1,2(q
2) form factors by the helicity conserving and the helicity non-conserving

matrix element of the plus component of the electromagnetic current (J+).

〈

P + q, ↑ |
J+(0)

2P+
|P, ↑

〉

= F1(q
2) , (1)

〈

P + q, ↑|
J+(0)

2P+
|P, ↓

〉

= −(q1 − ιq2)
F2(q

2)

2MN
, (2)

where qµ = (P ′ − P )µ is the momentum transferred, MN is the nucleon mass. Dirac form

factors F
p/n
1 (0) are normalized to electric charge (ep/n) and Pauli form factor F

p/n
2 (0) to the

anomalous magnetic moment (κp/n) of the nucleons.

The well known Ji’s sum rules that relate the electromagnetic form factors with the GPDs

for unpolarized quarks [17] :

F q
1 (q

2) =

∫ 1

0

dx Hq(x, q2) , (3)

F q
2 (q

2) =

∫ 1

0

dx Eq(x, q2) , (4)

where we have used the definitions of GPDs with suppressed skewness Hq(x, q2) = Hq(x, 0, q2)+

Hq(−x, 0, q2); Eq(x, q2) = Eq(x, 0, q2)+Eq(−x, 0, q2) . The value of GPDs at (−x) for quarks

is equal to GPDs at (x) for antiquarks with a minus sign. The skewness dependence drops

out from the sum rules because of the Lorentz invariance [24]. We therefore restrict our study

to the case ζ = 0 and use the convention Hq(x, q2) (Eq(x, q2)) instead of Hq(x, ζ = 0, q2)

(Eq(x, ζ = 0, q2).

Considering the proton as the bound state of two particles: a quark and a scalar diquark

in the light-front quark model, the spin flip and non-flip GPDs for the quarks can be written
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in the light-front representation as [25]

H(x, q2) =

∫

d2−→k ⊥

16π3

[

ψ∗↑

1/2(x,
−→
k ′

⊥)ψ
↑

1/2(x,
−→
k ⊥) + ψ∗↑

−1/2(x,
−→
k ′

⊥)ψ
↑

−1/2(x,
−→
k ⊥)

]

, (5)

E(x, q2) =
−2MN

q1 − ιq2

∫

d2−→k ⊥

16π3

[

ψ∗↑

1/2(x,
−→
k ′

⊥)ψ
↓

−1/2(x,
−→
k ⊥)+ψ

∗↑

1/2(x,
−→
k ′

⊥)ψ
↓

−1/2(x,
−→
k ⊥)

]

, (6)

where x is the fraction of momentum carried by active quark, t = −Q2 = −q2⊥ is the square

of momentum transferred, and
−→
k ′

⊥ =
−→
k ⊥ + (1 − x)−→q ⊥ is transverse momentum of the

parton. Also, ψλN
λq (x, k⊥) is the LFWF describing the interaction of quark and a scalar

diquark to form a nucleon.

We adopt the generic ansatz for the valence Fock state of the nucleon LFWFs in the

quark-diquark model at an initial scale µ0=0.3 GeV as proposed in [18]. The explicit form

of LFWFs for the spin 1/2 particles read as

ψ↑
1
2

(x, k⊥) = ϕ1
q(x, k⊥) ,

ψ↑

− 1
2

(x, k⊥) = −

(

k1 + ιk2

xMn

)

ϕ2
q(x, k⊥) ,

ψ↓
1
2

(x, k⊥) =

(

k1 − ιk2

xMn

)

ϕ2
q(x, k⊥) ,

ψ↓

− 1
2

(x, k⊥) = ϕ1
q(x, k⊥) . (7)

The wavefunction ϕi
q(x, k⊥) is the generalization of the LFWFs derived from recent work

on soft-wall holographic model in AdS/QCD [26]. For the massless constituents the LFWF

have the simple form

ϕi
q(x, k⊥) =

4π

κ
N i

q

√

log(1/x)

1− x
xa

i
q(1− x)b

i
q e

−
k2
⊥

2κ2
log(1/x)

(1−x)2 . (8)

Here N i
q is the normalization constant, aiq and b

i
q are the free parameters to be fitted to the

experimental data on electromagnetic form factors, magnetic moments, and charge radii. It

is important to mention here that the analytical form of frame independent wavefunction

successfully predict the pion coupling constant, charge radius, space and time like behaviour

of form factors [19].

The expressions for GPDs for up and down quark in the LFQM are given as

Hq(x, q2) =
nq

Iq1
(N1

q )
2 x2a

1
q (1− x)2b

1
q+1

[

1 + σ2(x)κ2
(

1

log(1/x)
−

q2⊥
4κ2

)]

e−
log(1/x)

4κ2
q2
⊥ , (9)
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Eq(x, q2) =
2 κq
Iq2

N1
qN

2
q x

a1q+a2q−1(1− x)b
1
q+b2q+2e

−q2
⊥

log(1/x)

4κ2 , (10)

where nq is the number of valence quarks in the nucleon and κq is the quark anomalous

magnetic moment. The integrals in the above equation are defined as

Iq1 =

∫ 1

0

dx (N1
q )

2 x2a
1
q (1− x)2b

1
q+1

[

1 +
σ2(x)κ2

log(1/x)

]

, (11)

Iq2 = 2

∫ 1

0

dxN1
qN

2
q x

a1q+a2q−1(1− x)b1q+b2q+2 , (12)

with the convention σ(x) =
N2

q

N1
q
x(a

2
q−a1q)(1− x)(b

2
q−b1q).

III. DGLAP EVOLUTION FOR GENERALIZED PARTON DISTRIBUTIONS

In this section we will discuss the inclusion of perturbative evolution effects in the GPDs

calculated in the light front quark model. The evolution of the GPDs with scale parameter is

governed by the DGLAP-like equations, however, the integro-differential nature of equation

makes its difficult to find analytical solutions [1–4]. In literature there exist numerous

techniques, such as, the so-called brute-force method [27], Laguerre polynomials [? ], Mellin

moment space transformation with subsequent inversion [30], QCDFIT program [31], etc..

Following the work of Ref. [32, 33] where a numerical procedure is used to obtain evolved

GPDs in the AdS/QCD approach, we will use the same numerical technique to evolve the

GPDs in LFQM.

The independence of physical observables from scale parameter µ, gives the following

type of DGLAP like equation for valence quark GPD Hq(x, t):

µ2 d

dµ2
Hq(x, t, µ2) =

(αs

2π

)

∫ 1

x

dz

z

[

P
(x

z

)]

+
Hq(z, t, µ2) , (13)

where [....]+ is the usual “plus regularization” scheme for the DGLAP evolution kernel [30].

The leading order quark-quark splitting function P (z) = Cf(
1+z2

1−z
) with Cf = N2−1

2N
gives

the probability of a quark after being radiating a gluon is left with momentum fraction z

of the original momentum. The term corresponding to the gluon splitting function is not

considered in this prescription as we are considering only the valence quarks contribution in

the calculations of GPDs. It is also worth to mention here that DGLAP equation perfectly

works for ordinary parton distributions with t = 0.
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The basic idea in solving the Eq. (13) is to absorb the uncalculable perturbative effects

into the modified GPDs also called as evolved GPDs. We can rewrite the Eq. (13) as

Hq(x, t, µ2) = Hq(x, t, µ2
0) +

(αs

2π

)

(

ln
µ2

µ2
0

)
∫ 1

x

dz

z
P
(x

z

)

+
Hq(z, t, µ2

0) +O(α2
s) . (14)

The convolution integral on the right hand side of Eq. (14) can be easily simplified as

∫ 1

x

dz

z
P
(x

z

)

+
Hq(z, t) =

∫ 1

x

dz

z
P
(x

z

)(

Hq(z, t)−
x

z
Hq(x, t)

)

−Hq(x, t)

∫ x

0

dzP (z) .

(15)

Further, we need the physical coupling constant at different energies i.e. the running coupling

constant αs expressed as a function of renormalization scale µ. In leading order approxima-

tion, running coupling constant αs(µ2)
2π

= 2
β0 ln(µ2/Λ2)

, where β0 = 11 − 2/3nf and Λ is the

QCD scale parameter [34]. Using this prescription, we have solved the Eq.(13) numerically

for different values of x for the initial value chosen as µ0 = 0.3 GeV. It is also important to

mention that the evolution equation for the GPDs Eq(x, t) is same as Hq(x, t).

We will now discuss the behavior of evolved GPDs Hq(x, t, µ) and Eq(x, t, µ) with x for

the various values of the scale parameter. In Fig. 1(a) and (d), we have presented the

evolved GPDs Hq(x, t, µ) and Eq(x, t, µ) as a function of x for fixed values of −t = 1 GeV2

for the up and down quark. In order to understand the implication of the DGLAP evolution

on both GPDs, we have presented the results with µ = 2, 10, 100 GeV and also presented

results in LFQM. It is clear that the qualitative behaviour of both GPDs with parameter x

is same for up and down quark. Both the GPD H(x, t) and E(x, t) increase with x, obtain a

maxima and then falls to zero as x→ 1. For the evolved GPDs, peak shift towards a lower

value of x for the higher values of scale parameter µ as the probability of a gluon being

radiated is higher at large values of x, hence the distribution shift towards lower value of x

for all the cases. We observe that the maxima for evolved GPDs for different µ remain same

as the LFQM results except for the Hu(x, t, µ).

IV. GPDS IN IMPACT PARAMETER SPACE

We are interested in understanding the impact of evolution effects on the GPDs in the

impact parameter space. For zero skewness, the momentum transfer is only in the transverse

direction, thus the Fourier transform of GPDs with respect to the momentum transfer gives

the transverse distribution of the partons in impact parameter space [16]. GPDs in the
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FIG. 1. (Color online). Plots of (a) the evolved generalized parton distributions Hu(x, t, µ) vs x

for fixed values of −t = 1 GeV2 and µ = 2, 10, 100 GeV for u quark, (b) for d quark, (c) Eu(x, t, µ)

vs x for fixed values of −t and µ for u quark, and (d) for d quark.

transverse impact parameter space give the probability of finding a parton in the transverse

plane, which is an important aspect while studying the nucleon structure. Impact parameter

space GPDs are defined as

q(x, b, µ) =
1

(2π)2

∫

d2q⊥e
−b⊥.q⊥H(x, t, µ) , (16)

eq(x, b, µ) =
1

(2π)2

∫

d2q⊥e
−b⊥.q⊥E(x, t, µ) . (17)

The transverse impact parameter b = |b⊥| is a measure of the transverse distance between

the struck parton and the center of momentum of the hadron and satisfies the condition
∑

i xibi = 0, where the sum is over the number of partons. Impact parameter GPDs give

an estimate of the size of the bound state, however, in order to have an exact estimate of

nuclear size, we need to understand the spatial extension as well.

Now we investigate the implications of evolution on the impact parameter dependent

GPDs. Since the impact parameter GPDs are a function of three variable x, b, µ, we consider

the variation of GPDs with x and b separately, for different values of µ. In Fig. 2(a), we
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have plotted the behaviour of evolved GPDs u(x, b, µ) with x for fixed values of b = 1 GeV−1

and in Fig. 2(b) we have plotted the behaviour of same GPD with the impact parameter b

for the fixed values x = 0.2. In Figs. 2(c) and 2(d), we plot the same GPDs for the down

quark using the same set of parameters. In order to understand the implications of the scale

parameter, we have used the different set of scale parameter µ = 2, 10, 100 GeV. Similar

plots showing the behaviour of GPDs eq(x, b, µ) for both up and down quarks are shown in

Fig. 3.

One can observe that the effect of evolution is more prominent in the impact parameter

space than momentum space. The maxima of GPDs increases significantly as µ increases,

which implied that the magnitude of GPDs is maximum at the centre of nucleon and in-

creases further for the larger µ. Both the GPDs q(x, b, µ) and eq(x, b, µ) in the evolved

approach and LFQM converges for the higher values of x and portray a similar behaviour

for up and down quark. It is also interesting to observe that for the small values of b, the

magnitude of GPD q(x, b, µ) is larger for up quark than down quark, whereas the magni-

tude of the GPD eq(x, b, µ) is marginally larger for down quark than up quark. Further,

we observe that in both cases, the maxima of GPDs shifted towards a lower value of x as b

increases, therefore the transverse profile is peaked at b = 0 and falls off further.

We also wanted to make a point that the hadronic form factors F 1,2(t) are independent of

evolution as they are related to the GPDs when the x dependence in being integrated out.

Since the behavior of GPDs are not very well established experimentally and there are only

phenomenological methods, future experimental information on the GPDs could render the

present situation more precise.

V. SUMMARY AND CONCLUSION

We investigated the effect of perturbative evolution on GPDs for up and down quarks in

nucleon using the effective light-front quark model. We compared our results for the evolved

GPDs the momentum space with LFQM results. A detailed comparison of behaviour of

evolved GPDs with the LFQM in impact parameter space is also presented as the impact of

evolution is more significant in the transverse impact parameter space. We have shown the

effect of evolution on the GPDs in the different regions of kinematics. It is observed that

the magnitude of GPDs increases at the center of nucleon for the large values of evolution

9



(a)

b=1 GeV-1

Light front quark model

Μ=2 GeV Evolved

Μ=10 GeV Evolved

Μ=100 GeV Evolved

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

x

u
Hx

,
b
Þ
L

(b)

x=0.2
Light front quark model

Μ=2 GeV Evolved

Μ=10 GeV Evolved

Μ=100 GeV Evolved

0 1 2 3 4
0.02

0.04

0.06

0.08

0.10

0.12

b@GeV-1D

u
Hx

,b
Þ
L

(c)

b=1 GeV-1

Light front quark model

Μ=2 GeV Evolved

Μ=10 GeV Evolved

Μ=100 GeV Evolved

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.01

0.02

0.03

0.04

0.05

0.06

x

d
Hx

,
b
Þ
L

(d)

x=0.2
Light front quark model

Μ=2 GeV Evolved

Μ=10 GeV Evolved

Μ=100 GeV Evolved

0 1 2 3 4

0.02

0.03

0.04

0.05

0.06

0.07

b@GeV-1D

d
Hx

,b
Þ
L

FIG. 2. (Color online). Plots of (a) u(x, b, µ) vs x for fixed values of b = 1 GeV−1, (b) u(x, b, µ)

vs the impact parameter b = |b⊥| for x = 0.2 (c) same as (a) but for d quark, and (d) same as (b)

but for d quark.

parameter. In future, we plan to generalize the LFWFs to sea quarks, antiquarks, and

gluons, which could then be used in the evaluation of different hadronic processes so that

one can directly compare the theoretical results with the experiments.
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