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Abstract

We present a calculation of ηc → l+l− and χc0 → l+l− decay widths. The amplitudes are
computed within leading-order approximation using NRQCD framework. Numerical results for the
branchings fractions are presented.

Introduction. The leptonic decays of C-even charmonia have very small branching fractions because
the amplitudes are suppressed by α2 with respect to the two photon decay modes. For the (pseudo-)-
scalars ηc and χc0 no experimental determination of an upper limit for the dileptonic branching fractions
has been reported. Experimental studies of ηc and χc0 decays usually use the mesons produced by
radiative transitions of the vector charmonia: J/ψ and ψ(2S), respectively. However, the searches for
the dielectron decay modes could instead use formation processes: e+e− → ηc and e+e− → χc0 where
the (pseudo-)scalar meson production is tagged using one of its common decays. This method has an
advantage of low background and could provide high sensitivity. The method has been applied e.g. for
searches of the η′ → e+e− process at VEPP-2000 where an impressive upper limit for the branching
fraction of 5.6× 10−9 at 90% C.L. was achieved using integrated luminosity of 2.9 pb−1 [1,2]. In case of
C-even charmonia such experiments are possible at BEPC-II collider with the BESIII detector [3].

Calculations of the leptonic decay amplitudes can be carried out using the NRQCD framework, see
e.g. Refs. [4–6]. Recently such calculations have been performed for the χc1 and χc2 decays in Ref. [7].
The decays ηc → l+l− and χc0 → l+l− can also be described in the same framework. However, the
corresponding amplitudes are suppressed by an additional factor ml/mc where ml and mc are lepton and
charm quark masses, respectively. This is a consequence of the conservation of the orbital momentum:
the lepton helicity flip is mandatory in decays of (pseudo-)scalar mesons. The dominant diagrams with
two photons in the intermediate state are shown in Fig.1. The gray blob in the figure denotes the
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Figure 1: One-loop diagrams describing the annihilation into lepton pair with momenta l1 and l2.

charmonium bound state with momentum P . In this figure we assume that the dominant contribution
is associated with the leading-order QQ̄ component of the wave function. This assumption is valid if the
dominant contribution to the corresponding loop integral comes from region(s) with the large virtuality

of the intermediate heavy quark
(

1
2P + ∆− k

)2 −m2 � (mv)2, where m denotes the heavy quark mass
and v is the small relative velocity of the heavy quarks. On the other hand the virtualities of the photons
and lepton can be arbitrary because these particles belong to the QED sector. For such case the resulting
integral yields the leading-order approximation and the overlap with the physical state is described by

∗On leave of absence from St. Petersburg Nuclear Physics Institute, 188350, Gatchina, Russia

1

ar
X

iv
:1

60
2.

07
46

0v
1 

 [
he

p-
ph

] 
 2

4 
Fe

b 
20

16



the matrix element which can be associated with the two quark component of the charmonium wave
function. However, as it was shown in Ref. [7] such simple picture is not valid for the P -states and
resulting interpretation is more complicated. In the following we provide a short description for the
decay amplitudes of ηc and χc0.

Calculation of the amplitude and branching fraction for ηc → l+l−. The decay amplitude reads

Aηc→ll ' Dγγ 〈0| ψ†ωγ5χω |ηc〉 , (1)

where ψ†ω and χω denote the heavy quark fields in the heavy quark effective theory (HQET), ω is the
velocity of the heavy meson

P = Mω = l1 + l2, (2)

M denotes the mass of ηc and we use the rest frame where ω = (1,~0). The HQET fields satisfy

ψ†ω /ω = ψ†ω, /ωχω = −χω. (3)

The matrix element in Eq.(1) reads

〈0| ψ†ωγ5χω |ηc〉 =
√

2M

√
3

2π
R10(0), (4)

where R10(0) is the radial component of the charmonium wave function at the origin.
The coefficient Dγγ in Eq.(1) is given by the diagrams in Fig.1 and reads (Feynman gauge, ec = 2/3,

is used)

Dγγ = −α2e2
c

∫
d4k

iπ2
ū(l1)Dαβ

l v(l2)
1

[k2 − 2m(kω)]

× 1

4
Tr
[
(1 + /ω)γ5γ

β(m/ω − /k +m)γα + γα(/k −m/ω +m)γβ
]
. (5)

In the above expression the small relative momentum in the heavy quark propagator is neglected(
1

2
P + ∆− k

)2

−m2 ' k2 − 2m(kω). (6)

In the numerator of the leptonic part we keep the linear terms in ml

ū(l1)Dαβ
l v(l2) ' ūn

(
1 +

/̄n

2

ml

M

)
γα( l/1 − /k +ml)γ

β

[k2]
[
(k − l1)

2 −m2
l

] [
(k − P )

2
] (1− ml

M

/n

2

)
vn̄. (7)

The last expression uses auxiliary light cone vectors n and n̄ related to the lepton momenta

l1 = M
n

2
+O(1/m), l2 = M

n̄

2
+O(1/m). (8)

The spinors in Eq.(7) has been decomposed as

ū(l1) ' ūn
(

1 +
/̄n

2

ml

M

)
, ūn = ū(l1)

/̄n/n

4
, (9)

v(l2) '
(

1− ml

M

/n

2

)
vn̄, vn̄ =

/̄n/n

4
v(l2). (10)

Using the threshold expansion technique developed in Ref. [5], one finds the following dominant

regions: hard k ∼ m, lepton collinear k ∼ l1 or k ∼ l2 and lepton ultrasoft k − l1 ∼ ml with (k − l1)
2 −

m2
l ∼ m2

l . In all cases the virtuality of the heavy quark propagator is of order m2, i.e. large. We can
therefore proceed with the loop calculations neglecting the small momentum components as it is done
in Eq.(6). The lepton mass can not be completely neglected because it serves as a natural regulator

2



in the collinear and ultrasoft regions. Therefore the result depends on the large logarithms lnml/mc.
Computing the integral in Eq.(5) we obtain

Aηc→ll = 〈0| ψ†ωγ5χω |ηc〉 ūnγ5vn̄ α
2ml

M

e2
c

m2

(
1

4
ln2 λ− lnλ+ 4 ln 2 +

π2

12
+
iπ

2
lnλ

)
, (11)

where

λ =
m2
l

4m2
. (12)

In order to get the numerical estimate we use α = 1/137, mc = 1.5 GeV, me = 0.51 MeV, mµ =
105.6 MeV and the value of R10(0) from Ref. [8] for Buchmüller-Tye potential [9]:

|R10(0)|2 ' 0.81 GeV3. (13)

With these parameters we get

Br
[
ηc → e+e−

]
= 5.6× 10−13, Br

[
ηc → µ+µ−

]
= 1.66× 10−9. (14)

Alternatively one can consider the branching fractions ratio where R10(0) cancels

Br [ηc → e+e−]

Br [ηc → γγ]
= 1.6× 10−9,

Br [ηc → µ+µ−]

Br [ηc → γγ]
= 4.7× 10−6. (15)

Using value for Br [ηc → γγ] = 1.57× 10−4 [10] we obtain

Br
[
ηc → e+e−

]
= 2.5 × 10−13, Br

[
ηc → µ+µ−

]
= 0.74 × 10−9. (16)

These estimates are about factor two smaller then the values in Eq.(14). The difference can be considered
as an estimate of theoretical uncertainty of in this approach.

The ηc → l+l− process has been previously studied in Ref. [11] using a different theoretical approach.
Our estimate for Br [ηc → µ+µ−] is in agreement with the one from this reference within the uncertainties,
but the results for Br [ηc → e+e−] differ by factor of six.

Calculation of the amplitude and branching fraction for χc0 → l+l−. In this case the the description
of the amplitude in the effective theory framework is more complicated. The integral originating from the
diagram in Fig.1 has an infrared singularity because there is a region of the integration where the heavy
quark propagator becomes soft. Therefore in order to obtain a consistent description in NRQCD one
has to include a contribution associated with higher Fock component of the charmonium wave function
|QQγ〉. This can be done in the same way as for decay χcJ → l+l− with J = 1, 2, see e.g. Ref. [7].
In addition one has to take into account the collinear and soft regions which could also be relevant.
Therefore the expression for the amplitude can be represented as a sum of two terms

Aχ0→ll ' iūnvn̄
ml

m

{
C(0)
γγ (µF )

〈
O(3P0)

〉
− α

π
eQCγ

1√
3
h(µF )

}
. (17)

The first term in Eq.(17) describes the contribution which overlaps with QQ̄ components of the charmo-
nium wave function. In this case

〈
O(3P0)

〉
≡ 〈0| 1

2
√

3
χ†ω
←→
D α
>γ

α
>ψω |χc0〉 =

√
2Nc

√
2Mχc0

√
3

4π
R′21(0), (18)

where R′21(0) denotes the derivative of the wave function at the origin. The subscript > is used for the
Lorentz indices which are orthogonal to the velocity ω, for instance, ωαγ

α
> = 0. The hard coefficient

function C
(0)
γγ (µF ) is associated with the integration regions where the heavy quark propagator is hard.

In this case we find the same dominant regions as described above for the ηc decay.
However in present case there is an additional domain when the photon momentum is ultrasoft,

kµ ∼ mv2. The overlap of the hard and the ultrasoft regions leads to the logarithmic divergence that
introduces a dependence on the factorization scale µF . In the ultrasoft region the heavy quark propagator
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is soft
(

1
2P + ∆− k

)2 −m2 ∼ (mv)2 and therefore the corresponding contribution cannot be given by
the matrix element associated with QQ̄ component of the charmonium wave function. Corresponding
contribution is given by the second term on r.h.s. of Eq.(17) where the quantity h(µF ) is defined by the
following matrix element

〈0| χ†ωγσ>ψωY †nYn̄ |χc0〉 = −1

2
(n− n̄)σ i

α

π
eQ

1√
3
h(µF ), (19)

with the ultrasoft photon Wilson lines

Y †n = Pexp

{
ie

∫ ∞
0

ds n ·Bus(sn)

}
, Yn̄ = P̄exp

{
−ie

∫ ∞
0

ds n̄ ·Bus(sn̄)

}
, (20)

where Busµ denotes the ultrasoft photon field. In the leading-order approximation with respect to the

electromagnetic coupling e these Wilson lines are equal to unity Y †n = Yn̄ = 1 +O(e). Then the matrix
element in Eq.(19) vanishes because of C-parity. One has to pick up at least one term ∼ eBus in the
expansion of the Wilson lines in order to get the C-even operator. Therefore we can conclude that the
matrix element in Eq.(19) can be associated with the coupling to the higher Fock component

∣∣QQ̄γ〉 of
the charmonium wave function. The value of the corresponding constant h(µF ) in Eq.(19) is the same for
all states χcJ due to the heavy quark spin symmetry. At low normalization point µF = µ0 ' 400 MeV it
can be computed in the low energy effective theory describing interaction of the ultrasoft photons with
heavy mesons. The ultasoft matrix element in Eq.(19) also contributes to the decays χc1,1 → e+e− and
has been already computed in Ref. [7]

h(µ0) = fγ

√
2MJ/ψ

√
3

2π
R10(0)

∆

M
(1− ln 2 + ln[µ0/∆] + iπ) (21)

+ f ′γ
√

2Mψ′

√
3

2π
R20(0)

∆′

Mχ0

(
1− ln 2 + ln[µ0/|∆

′ |]
)
, (22)

where ∆ = (M2
χ0
−M2

J/ψ)/2M , ∆′ = (M2
χ0
−M2

ψ′)/2Mχ0
, R10(0) and R20(0) denote the radial wave

functions of J/ψ and ψ′ mesons, respectively. In what follows we take their values from Ref. [8] for
Buchmüller-Tye potential. The dimensionless couplings fγ and f ′γ can be determined from the decays
χcJ → J/ψ + γ and ψ′ → χcJ + γ, respectively

fγ ' 6.0, f ′γ ' −7.2. (23)

The hard coefficient Cγ in Eq.(17) is given by the tree diagram describing annihilation subprocess
cc̄→ e+e− and reads

Cγ =
απ

m2
ec. (24)

The determination of the second hard coefficient C
(0)
γγ in Eq.(17) requires calculation of the diagrams

in Fig.1 and one-loop calculation of the matrix element in Eq.(19) in the potential NRQED [12–14].
These calculations are similar to the ones carried out in Ref. [7]. The only difference is that a minimal
dependence on the lepton mass ml has to be included in order to avoid IR-singularities in the QED sector.
The final result reads

C(0)
γγ (µF ) =

α2

√
3

e2
c

m3

{
2 ln

m2

µ2
F

+
3

4
ln2 λ+ lnλ+

π2

4
+ 2 + 6 ln 2 + iπ

(
2 ln 2− 1 +

3

2
lnλ

)}
, (25)

where λ is defined in Eq.(12). The numerical estimates of the branching fractions are

Br[χc0 → e−e+] = 1.0× 10−12, Br[χc0 → µ−µ+] = 2.2× 10−9. (26)

We observe that the hard contribution with C
(0)
γγ dominates and practically saturates the numerical values

contrary to χc1,2 → l+l− decays where the ultrasoft contribution is the most important, see Ref. [7]. This

is explained by a relative enhancement of C
(0)
γγ in Eq.(25) by the large logarithms lnλ with respect to the

ultrasoft term h in Eq.(17) which remains unchanged.
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The amplitude of the decay χcJ → l+l− has also been considered in Ref. [15] where only the hard

contribution with C
(0)
γγ has been taken into account. The result in Eq.(25) differs from the one in Ref. [15]

only by simple non-logarithmic terms. We observe that this discrepancy does not provide any tangible
numerical effect. The estimate for Br[χc0 → l+l−] obtained in this work is about factor three larger
which is explained by the different choice of the numerical values used for mc and R′21(0).
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