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Abstract

The Higgs-portal lepton flavor violation is studied in a vector-like lepton model. To avoid the

constraints from rare Z → ℓ±i ℓ
∓
j decays, we introduce two triplet vector-like leptons, (1, 3)−1 and

(1, 3)0. The resultant branching ratio for h → µτ can be up to 10−4 when the constraints from

the invisible Z decays are applied. As a result, the signal strength for the ττ channel has a 12%

deviation from the standard model prediction, while the muon g − 2 is two orders of magnitude

smaller than the data, and BR(τ → µγ) is of the order of 10−12. A predicted doubly charged

lepton in pp collisions at
√
s = 13 TeV is analyzed, and it is found that the interesting production

channels are pp → (Ψ−−
1 Ψ++

1 ,Ψ±±
1 Ψ∓

1 ). Both single and pair production cross sections of Ψ++
1 are

comparable, and can be a few hundred fb. The main decay channels for the doubly charged lepton

are Ψ±± → ℓ±W±, and for the heavy singly charged lepton are Ψ±
1 → νW±, ℓ±Z. The numerical

analysis is carried out with regard to 13 TeV LHC with 100 fb−1 luminosity.
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Due to a number of unsolved issues, such as the origin of neutrino mass, dark matter

(DM), and matter-antimatter asymmetry, it is believed that the standard model (SM) of

particle physics is an effective theory at the electroweak scale. Since rare decays are impor-

tant in the development of new physics, the loop-induced flavor changing neutral current

(FCNC) processes are generally used to examine the SM. However, most hadronic processes

involve very uncertain non-perturbative quantum chromodynamic (QCD) effects, and thus,

even if new physics exists, it is not easy to distinguish this from the SM results due to QCD

uncertainty.

Leptons do not carry a color charge, and QCD uncertainty is thus much smaller in this

case. However, due to the Glashow-Iliopoulos-Maiani (GIM) mechanism, lepton FCNC

processes in the SM (e.g., µ → eγ and τ → (e, µ)γ) are highly suppressed; if any signal of

lepton flavor violation (LFV) is observed, it is certainly strong evidence for new physics. It

is thus important to search for new physics through the lepton sector [1–3].

With the discovery of the SM Higgs in the ATLAS [4] and CMS [5] experiments, we are

moving toward better understanding the process of electroweak symmetry breaking (EWSB)

through the spontaneous symmetry breaking (SSB) mechanism in the scalar sector. The next

mission for the High Luminosity Large Hadron Collider (LHC) is to explore not only the

detailed properties of the SM Higgs, but also the new physics effects.

Since the SM Higgs has been discovered, it is of interest to search for new physics through

the Higgs portal. For instance, an excess of events with a significance of 2.4σ in h → µτ

decay was reported by CMS in pp collisions at
√
s = 8 TeV, where the branching ratio (BR)

with the best fit is given by [6]:

BR(h → µτ) = (0.84+0.39
−0.37)% [CMS] . (1)

ATLAS also reported the same measurement and found no significant excess, where the best

fit is [7]:

BR(h → µτ) = (0.77± 0.62)% [ATLAS] . (2)

Although the measurements of BR(h → µτ) are not conclusive yet, inspired by the Higgs

portal events, a number of the possible new physics effects that could explain the large

BR for h → µτ decay have been studied [8–34]. In this study, we explore the LFV in the

framework of a vector-like lepton model.
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FCNCs are quite a common phenomenon in the quark sector, such as neutral meson

oscillations and b → sγ. However, with the exceptions of the neutrino oscillations we have

no concrete and solid signals to verify the LFV in the lepton sector, thus limiting our

knowledge about this. In this context, the measurements from ATLAS and CMS of the

Higgs-portal LFV provide a good chance to better understand the lepton sector. Following

the hint of the SM with regard to whether the Higgs couplings to the fermions appear in the

Yukawa sector, a possible minimal extension of the SM for Higgs mediated LFV is to include

exotic heavy leptons or to add a new Higgs doublet without imposing any symmetry [30].

In this work, we study the implications of adding heavy leptons. In order to avoid the gauge

anomaly, we investigate the model with vector-like leptons (VLLs).

To achieve mixing with the SM leptons, the representations of VLL under SU(2)×U(1)Y

gauge symmetry can be singlet, doublet [35–43], and triplet [44]. The VLLs from a composite

model are discussed in earlier works [45, 46]. In order to avoid the constraints from rare

Z → ℓ±i ℓ
∓
j decays, we study the triplet representations (1, 3)−1 and (1, 3)0 with hypercharges

Y = −1 and Y = 0, respectively. The new Yukawa couplings are thus written as:

− LY = L̄Y1Ψ1RH + L̄Y2Ψ2RH̃ +mΨ1
TrΨ̄1LΨ1R +mΨ2

TrΨ̄2LΨ2R +H.c. , (3)

where we have suppressed the flavor indices; H is the SM Higgs doublet, H̃ = iτ2H
∗, the

neutral component of Higgs field is H0 = (v + h)/
√
2, and the representations of two VLLs

are:

Ψ1 =





Ψ−
1 /

√
2 Ψ0

1

Ψ−−
1 −Ψ−

1 /
√
2



 , Ψ2 =
1√
2





Ψ0
2/
√
2 Ψ+

2

Ψ−
2 −Ψ0

2/
√
2



 (4)

with Ψ+
2 = CΨ̄−

2 and Ψ0
2 = CΨ̄0

2. Since Ψ2 is a real representation of SU(2), the factor of

1/
√
2 in Ψ2 is to obtain the correct mass term for Majorana fermion Ψ0

2. Due to the new

Yukawa terms of Y1,2, the heavy neutral and charged leptons mix with the SM leptons; after

EWSB, the lepton mass matrices become 5× 5 matrices and are expressed by:

Mℓ =





mℓ Yℓv

0 mΨ



 , Mν =





mν Yνv

0 mΨ



 , (5)

where we have chosen the basis such that the SM leptons are in diagonalized states, mℓ is
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the SM charged lepton mass matrix, mΨ =diag(mΨ1
, mΨ2

), and

Yℓ =
1

2











−Y11 Y21

−Y12 Y22

−Y13 Y23











, Yν =
√
2











Y11 Y21/2

Y12 Y22/2

Y13 Y23/2











. (6)

We note that the elements of Yχ should be read as Yij = (Yi)j, where the index i = 1, 2

distinguishes the Yukawa couplings of the different VLLs and the index j = 1, 2, 3 stands

for the flavors of the SM leptons. Since the origin of neutrino mass has not been concluded

yet and is still model dependent, we directly put the Majorana type of neutrino mass term

to the Yukawa sector. Since the detailed effects of neutrino physics are irrelevant to this

study, we do not further pursue issues related to this and mν = 0.

To diagonalize Mℓ and Mν , we introduce the unitary matrices V χ
R,L with χ = ℓ, ν so that

Mdia
χ = V χ

L MχV
χ†
R . The information of V χ

L and V χ
R can be obtained through MχM

†
χ and

M †
χMχ, respectively. According to Eq. (5), it can be easily found that the flavor mixings

between heavy and light leptons in V χ
R are proportional to the lepton masses. Since the

neutrino masses are small, it is a good approximation to take V ν
R ≈ 1. If we further set

me = mµ = 0 in the phenomenological analysis, only τ -related processes have significant

contributions. Unlike V χ
R , the off-diagonal elements in flavor-mixing matrices V χ

L are asso-

ciated with Y1,2v/mΨ; in principle, the mixing effects can be of the order of 0.1. In this

study, we examine these effects on h → τµ and rare tau related decays. To be more specific,

we parametrize the unitary matrices in terms of Y1,2 as:

V χ
L ≈





13×3 − εεεχLεεε
χ†
L /2 −εεεχL

εεεχ†L 13×3 − εεεχ†L εεεχL/2



 , V ℓ
R ≈





13×3 −εεεℓR
εεεℓ†R 13×3



 , (7)

where V ν
R ≈ 1 is implied, εεεχL ≈ vYχ/mΨ, and εεεℓR ≈ vm†

ℓY
ℓ/m2

Ψ.

Combining the SM Higgs couplings and new Yukawa couplings of Eq. (3), the Higgs

couplings to all singly charged leptons are given by:

−Lhℓ′ℓ′ = hℓ̄′LV
ℓ
L





mℓ/v Y ℓ

0 0



V ℓ†
R ℓ′R +H.c. , (8)

where ℓ′T = (e, µ, τ, τ ′, τ ′′) is the state of a physical charged lepton in lepton flavor space. We

use the notations of τ ′ and τ ′′ to denote the heavy charged VLLs. Using the parametrization
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of Eq. (7), the Higgs couplings to the SM leptons can be formulated by:

−Lhℓℓ = Ch
ij ℓ̄iLℓjRh +H.c. , (9)

Ch
ij =

mℓj

v

[

δij −
3

8

(

v2Y1iY1j

m2
Ψ1

+
v2Y2iY2j

m2
Ψ2

)]

.

If we set me = mµ = 0, it is clear that in addition to the coupling hττ being modified,

the tree-level flavor-changing couplings h-τ -µ and h-τ -e are induced, and the couplings are

proportional to mτ/v ≈ 7.2 × 10−3. In order to study the VLL contributions to h → γγ,

the couplings for hτ ′τ ′ and hτ ′′τ ′′ are expressed as:

−LhΨΨ =
v
∑

i Y
2
1i

2mΨ1

hτ ′τ ′ +
v
∑

i Y
2
2i

2mΨ2

hτ ′′τ ′′ . (10)

Due to the mixture between VLLs and the SM leptons, the same effects also influence

the gauge couplings of Z and W to the SM leptons. To understand the modifications, we

discuss the gauge interactions below. With the covariant derivative for triplet VLLs [51], we

first write the Z-boson gauge interactions with VLLs to be:

LZ = − g

cW
Zµ

[

Ψ̄Lγ
µ
(

IΨ3 − s2WQΨ

)

ΨL + Ψ̄Rγ
µ(−s2WQΨ)ΨR +Ψ−−

1 γµ(−1 + 2s2W )Ψ−−
1

+Ψ̄Lγµ





1/2 0

0 −1/2



ΨL + N̄Rγ
µ





1/2 0

0 0



NR + L̄′
Rγ

µ





0 0

0 −1



L′
R



 , (11)

where we have expressed the forms of couplings to be the same as those in the SM, IΨ3 =

1/2(−1/2) and QΨ = 0(−1) for neutral (charged) VLLs, ΨT = (Ψ0
1,Ψ

0
2) or (Ψ

−
1 ,Ψ

−
2 ), N

T
R =

(Ψ0
1R,Ψ

0
2R), and L

′T
R = (Ψ−

1R,Ψ
−
2R). It is clear that the first two terms in Eq. (11) provide the

flavor-conserving effects; however, the last three terms lead to Z-mediated FCNC couplings

at the tree level. As mentioned earlier, the flavor mixings in V χ
R are associated with the

lepton masses; if we ignore the small effects, the gauge couplings of the Z-boson to the

neutral and singly charged leptons can be expressed as:

LZℓ′ℓ′ = − g

cW
C

ℓ′
L

ij ℓ̄
′
Lγ

µℓ′LZµ −
g

cW
C

ℓ′
R

ij ℓ̄
′
Lγ

µℓ′RZµ , (12)

C
ℓ′
L

ij = (Iℓ
′

3 − s2WQℓ′)δij +
1

2

(

V ℓ′

Li4V
ℓ′∗
Lj4 − V ℓ′

Li5V
ℓ′∗
Lj5

)

,

C
ℓ′
R

ij ≈ −s2WQℓ′δij +







1
2
δi4δj4 for Qℓ′ = 0

−δi5δj5 for Qℓ′ = −1
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with ℓ′T = (ν1, ν2, ν3, ν4, ν5) or (e, µ, τ, τ
′, τ ′′). As a result, the tree-level Z-mediated FCNCs

only occur in the left-handed currents.

The new gauge interactions of the W -boson with VLLs are given by:

LW = −g
(

Ψ0
1γ

µΨ−
1 +Ψ−

1 γ
µΨ−−

1

)

W+
µ − g

(

Ψ0
2γ

µΨ−
2

)

W+
µ +H.c. . (13)

With V χ
R ≈ 1, the W -mediated interactions of neutral and singly charged leptons are ex-

pressed as:

LWν′ℓ′ = − g√
2
NLγ

µV ν
L





V ′
PMNS 0

0
√
2



V ℓ†
L ℓ′LW

+
µ +H.c. , (14)

where V ′
PMNS is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix without triplet

VLLs, which can be regarded as a model-dependent result, and is uncertain. Since mν = 0,

in this study V ′
PMNS = 1. With the flavor mixings in Eq. (7), from Eq. (14) the W -boson

interactions with the SM leptons are formulated by:

LWνℓ = − g√
2
(ν̄1, ν̄2, ν̄3)Lγ

µVPMNS











e

µ

τ











L

W+
µ +H.c. , (15)

VPMNS = V ′
PMNS − V ′

PMNS

εεεℓLεεε
ℓ†
L

2
− εεενLεεε

ν†
L

2
V ′
PMNS +

√
2εεενLεεε

ℓ†
L . (16)

The VPMNS is the 3 × 3 PMNS matrix, which can be extracted from the matrix product

of V ν
L (...)V

ℓ†
L in Eq. (14). Since the minimal value of the PMNS matrix element is around

0.15 [47], the limits of Y1i and Y2i from the charged current interactions may not be as clear

as those from the rare Z decays. Therefore, to constrain the free parameters, we focus on

the rare Z decays, such as Z → ℓ±i ℓ
∓
j , invisible Z decays, and so on.

Before studying the LFV-related phenomenologies, we discuss the possible constraints

on the free parameters Y1i,2i. From Eq. (12), it can be seen that the Z-mediated lepton

flavor-violating effects can contribute to Z → (eµ, eτ, µτ), where the current upper limits of

the data are [47]:

Br(Z → e±µ∓) < 7.5× 10−7 ,

Br(Z → e±τ∓) < 9.8× 10−6 ,

Br(Z → µ±τ∓) < 1.2× 10−5 . (17)
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The severe constraints make the BR of h → τµ decay far smaller than the CMS mea-

surements. In order to avoid the bounds from the rare Z decays, we set Y1i = Y2i and

mΨ1
= mΨ2

. As a result, the second term of C
ℓ′
L

ij in Eq. (12) for charged leptons vanishes.

However, the cancellations are not complete in the Z → ν̄iνj decays, due to the structure of

Yν in Eq. (6). That is, the invisible Z-boson decays can directly constrain the parameters,

where the current measurement is ΓZ
inv = 499±1.5 MeV [47] and the SM prediction is around

500 MeV. With Y1i = Y2i = Yi and mΨ1
= mΨ2

= mΨ, the partial decay rates for Z → ν̄iνj

and h → µτ are given as:

Γ(Z → ν̄iνj) ≈
mZ

24π

g2

c2W

∑

ij

|Cν
ij|2 , (18)

Γ(h → µτ) ≈ mh

16π

m2
τ

v2

∣

∣

∣

∣

3v2Y2Y3

2m2
Ψ

∣

∣

∣

∣

2

. (19)

Accordingly, we present the contours for Γ(Z → ν̄iνj) and BR(h → τµ) as a function of Yi

and mΨ in Fig. 1(a), where numerically we adopt Y2 = Y3 = Y and Y1 ≪ 1, the solid line

stands for Z → ν̄iνj , the dashed line is for h → µτ and the values on the plot are in units of

10−5, and Γh ≈ 4.21 MeV is used. The results clearly show that the lepton flavor-violating

Higgs decay can only be up to 10−4 when the data for invisible Z decays are applied.

FIG. 1: Contours as a function of Y and mΨ: (a) for Γ(Z → νiνj) and BR(h → µτ) and (b) for

signal strength µγγ , where the numbers on the plot (a) for BR(h → µτ) are in units of 10−5.

Next, we discuss the influence of new flavor mixings on other Higgs decays. From Eq. (10),

it can be seen that the induced couplings of Higgs to VLLs can contribute to h → γγ through
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the loop diagrams; the decay rate can be formulated as:

Γ(h → γγ) ≈ ΓSM(h → γγ)

∣

∣

∣

∣

1 +
CV LL

AW +NCQ
2
tAt

∣

∣

∣

∣

2

, (20)

CLLV =
v2

∑

i Y
2
i

2m2
Ψ

A1/2(τΨ) (21)

where NC = 3, Qt = 2/3, AW ≈ 8.3, At ≈ −1.38, and the loop integral from VLL is [48]:

A1/2(τ) = −2τ [1 + (1− τ)f(τ)2]

with τΨ = 4m2
Ψ/m

2
h and f(x) = sin−1(1/

√
x). We note that although the coupling hττ

is modified by the new flavor mixing effects, we ignore its small contribution to the loop-

induced h → γγ decay. The signal strength, which is used to show the Higgs measurement,

is defined as:

µγγ =
σ(pp → h)

σ(pp → h)SM
× BR(h → f)

BR(h → f)SM
, (22)

where f denotes the possible decay channel. Taking Γh ≈ 4.21 MeV and σ(pp → h) =

σ(pp → h)SM, we plot the contours for µγγ as a function of Y and mΨ in Fig. 1(b). For

comparison, we also show the constraint from ΓZ
inv in the same plot. In these results we

see that the deviation from the SM prediction is about 4% and is consistent with µγγ =

1.17± 0.27 and 1.13± 0.24, as measured by ATLAS [52] and CMS [53], respectively.

From Eq. (9), it can be seen that the modified Higgs couplings to the SM leptons are still

proportional lepton masses. By comparison with other lepton channels, it can be seen that

the ττ mode is more significant, and thus we study the influence on h → τ+τ−. Using the

values that satisfy BR(h → µτ) ≈ 10−4, the deviation of Γ(h → τ+τ−) from the SM results

can be obtained as:

κττ ≡ Γ(h → τ+τ−)

ΓSM(h → τ+τ−)
=

∣

∣

∣

∣

1− 6v2Y 2
3

8m2
Ψ

∣

∣

∣

∣

2

≈ 0.88 . (23)

If the SM Higgs production cross section is not changed, the signal strength for pp → h →
τ+τ− in this model is µττ ≈ 0.88, where the measurements from ATLAS and CMS are

1.44+0.42
−0.37 [52] and 0.91± 0.27 [53], respectively. Although the current data errors for the ττ

channel are still large, the precision measurement of µττ can test the model or give strict

limits on the parameters.

In the following text we investigate the contributions of new couplings in Eq. (9) to

the rare tau decays and to the flavor-conserving muon anomalous magnetic moment. We
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first examine the muon g − 2, denoted by ∆aµ. The lepton flavor-changing coupling hµτ

can contribute to the ∆aµ through the Higgs-mediated loop diagrams. However, as shown

in Eq. (9), the induced couplings are associated with mℓj/vℓ̄LiℓRj ; that is, only the right-

handed tau-lepton has a significant contribution. The induced ∆aµ is thus suppressed by

m2
µmτ/(vm

2
h) so that the value of ∆aµ is two orders of magnitude smaller than current data

∆aµ = aexpµ − aSMµ = (28.8± 8.0)× 10−10 [47]. A similar situation happens in τ → 3µ decay.

Since the couplings are suppressed by mτ/v and mµ/v, the BR for τ → 3µ is of the order of

10−14. We also examine the process τ → µγ via the h-mediation. The effective interaction

for τ → µγ is expressed by

Lτ→µγ =
e

16π2
mτ µ̄σµν (CLPL + CRPR) τF

µν , (24)

where CL = 0 and the Wilson coefficient CR from the one-loop is formulated as:

CR ≈ Ch
23C

h
33

2m2
h

(

ln
m2

h

m2
τ

− 4

3

)

. (25)

Accordingly, the BR for τ → µγ is expressed as:

BR(τ → µγ)

BR(τ → eν̄eντ )
=

3αe

4πG2
F

|CR|2 . (26)

We present the contours for BR(τ → µγ) as a function of Y and mΨ in Fig. 2, where the

numbers on the plots are in units of 10−12. It can be seen that the resultant BR(τ → µγ)

can be only up to 10−12, where the current experimental upper bound is BR(τ → µγ) <

4.4× 10−8 [47].

In this model, we have two new neutral leptons, two new singly charged leptons, and

one doubly charged lepton. Since a particle carrying an electrical charge of 2 can have less

background and a clearer signature in colliders, we discuss the potential for discovering the

doubly charged lepton Ψ−−
1 . By electroweak interactions, Ψ−−

1 can be produced singly and

in pairs through the channels Ψ∓∓
1 Ψ±

1 and Ψ−−Ψ++, where the former is from charged weak

interactions while the latter is from Z and electromagnetic interactions. In addition, due to

the flavor mixing effects, the W couplings to Ψ−−
1 and the SM leptons can be written as:

LWΨ
−−

1
ℓ = −gℓ̄iγ

µ(εεεℓLi4PL + εεεℓRi4PR)Ψ
−−
1 W+ +H.c. . (27)

By the induced gauge couplings, the doubly charged lepton can be produced through the

Ψ−−
1 ℓ channels. We note that due to εεεℓR ∝ mℓ, the right-handed current contributions can

9



FIG. 2: Contours for BR(τ → µγ) (dashed) as a function of Y and mΨ, where the constraint

from ΓZ
inv (solid) is included.

be neglected. In order to discuss the production cross section in pp collisions, we implement

our model in CalcHEP [49] and use CTEQ6L PDF [50] to do the numerical calculations. In

Fig. 3, we show the single and pair production cross sections of Ψ±±
1 as a function of mΨ

in pp collisions at
√
s = 13 TeV, where vY/mΨ = 0.3 is used for the Ψ++ℓ production. It

can be seen that the production cross sections for Ψ±±ℓ modes are one order of magnitude

smaller than those for other modes. For mΨ < 400 GeV, the production cross sections for

Ψ−−Ψ++ and Ψ++Ψ−, which only depend on gauge couplings, can be over 50 fb.

Next, we discuss the decays of Ψ−−
1 and Ψ−

1 . From Eq. (3), we see that before EWSB,

the triplet VLLs in Ψ1 are degenerate; however, the masses are split when the Y1 effects are

involved. Since Ψ−−
1 can not mix with other leptons, the mass splittings occur in neutral

and singly charged leptons. According to Eqs. (5) and (7), the mass of Ψ−
1 shifted from Ψ−−

1

is:

mΨ
−

1

≈ mΨ1

(

1 +
v2

∑

i Y
2
1i

8m2
Ψ1

)

. (28)

With the bound from ΓZ
inv, the mass splitting is only 3%. Therefore, we still take mΨ

−

1

≈
mΨ

−−

1

≈ Ψ0
1 in this study. From Eq. (27), we see that the Ψ−−

1 decay pattern depends on

each value of Yukawa coupling Y1i. If we adopt Y11 ≈ Y12 ≈ Y13 = Y , the better channels

10



FIG. 3: Doubly charged lepton production cross section ( in units of fb) as a function of mΨ in

pp collisions at
√
s = 13 TeV, where X in the y-axis denotes the possible channel.

to search for the doubly charged lepton are Ψ−−
1 → (e, µ, τ)W− and the corresponding BRs

are fixed as:

BR(Ψ−−
1 → (e, µ, τ)W−) ≈ 1/3 , (29)

where the lepton masses are ignored. Since τ has hadronic and leptonic decays and accom-

panies the neutrino when it decays, the clear signal for probing the doubly charged lepton

should be Ψ−−
1 → ℓW− → ℓ(ℓν), where ℓ = e, µ and the final states are the same-sign

dilepton. The Higgs and gauge boson couplings of Ψ−
1 to the SM leptons are given by:

IΨ−

1

=
vY1i

2
ℓ̄iLΨ

−
1Rh+

g

cW

vY1i

2mΨ

ℓ̄iLγ
µΨ−

1LZµ + g
3vY1i

2mΨ

ν̄iLγ
µΨ−

1LW
+
µ +H.c. (30)

It is found that the BRs for Ψ−
1 → (ℓih, ℓiZ, νW ) are insensitive to Y = Y1i and mΨ, and

their ratios are :

ℓih : ℓiZ : νW ≈ 0.02/3 : 0.1/3 : 0.89 , (31)

where ℓi denotes one of the SM leptons and the νW channel includes all SM neutrinos. It

is clear that the BR for νW is one order of magnitude larger than other decay modes.

11



According to the analysis, there are two ways to search for the doubly charged lepton in

the model. In pair production, the search channel is

pp → Ψ−−
1 Ψ++

1 → (ℓ−W−)(ℓ+W+) , (32)

where ℓ = e, µ, the W -boson can decay to leptons or jets, and their corresponding cross

section with mΨ = 300 GeV is 76 fb at
√
s = 13 TeV. The expected events with a luminosity

of 100 fb−1 are shown in Table I. In single production, the search channels are

pp → Ψ±±
1 Ψ∓

1 →







(ℓ±W±)(νW∓) ,

(ℓ±W±)(ℓ∓Z) ,
(33)

where the associated cross sections for mΨ = 300 GeV at
√
s = 13 TeV are σ(ℓ+νW+W−) =

122 fb, σ(ℓ−νW−W+) = 58 fb, σ(ℓ+ℓ−W+Z) = 9 fb, and σ(ℓ−ℓ+W−Z) = 4 fb. Without

event selection criteria and event kinematic cuts, we naively show the expected number of

events with 100 fb−1 in Table I. In this work, we just show the potential for discovering the

VLLs, and the detailed event simulation with kinematic cuts will be given elsewhere.

We also examine Ψ±± production via flavor-changing interactions: pp → Ψ±±
1 ℓ∓. Al-

though the cross section is O(1)− O(10) fb for mΨ = 300 − 400 GeV, as shown in Fig. 3,

it would be possible to find the signal with a sufficiently large luminosity. This process will

thus also be important, since we could test the flavor-changing coupling vY/mΨ in collider

experiments. However, detailed analysis of this is left for future work.

In summary, we investigated Higgs-portal lepton flavor violation by introducing two

triplet vector-like leptons to the SM; one is the hypercharge Y = −1 and the other

TABLE I: Number of events for the processes in Eqs. (32) and (33), where a luminosity of 100

fb−1 and the center-of-mass energy of 13 TeV are used.

Final state ℓ−W−ℓ+W+ ℓ+νW+W− ℓ−νW−W+ ℓ+ℓ−W+Z ℓ−ℓ+W−Z

mΨ = 300 GeV 7600 12200 5800 900 400

400 GeV 2400 4000 1760 297 121

500 GeV 928 1620 648 119 44.7

600 GeV 405 727 273 53.6 18.9

700 GeV 192 355 126 26.2 8.67

800 GeV 97.2 183 61.8 13.5 4.26
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is Y = 0. The model has the Higgs-mediated and Z-mediated flavor-changing neutral

currents at the tree level. When the bounds from rare Z → ℓ̄iℓj decays are smeared out,

the invisible Z decays become the dominant constraints. As a result, the branching ratio

for h → µτ can be up to 10−4, muon g − 2 is two orders of magnitude smaller than the

current data, and BR(τ → µγ) is of O(10−12). The deviation of signal strength from the

SM prediction in ττ mode is 12%. We analyze the production channels for the predicted

doubly charged lepton. We find that the interesting production channels in pp collisions

are pp → (Ψ−−
1 Ψ++

1 ,Ψ±±
1 Ψ∓

1 ). Both single and pair production cross sections of Ψ++
1 are

comparable and can be a few hundred fb. The main decay channel for the doubly charged

lepton is Ψ±± → ℓ±W±, while the heavy singly charged lepton is Ψ±
1 → νW±, ℓ±Z. We

then summarize possible signatures of our model with the expected number of events for

100 fb−1 luminosity at the 13 TeV LHC.
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