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cInstitut für Kernphysik, Institute for Advanced Simulation, Jülich Center for Hadron Physics, JARA-HPC, and JARA-FAME, Forschungszentrum Jülich, D–52425
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Abstract

The pion–nucleonσ-term can be stringently constrained by the combination of analyticity, unitarity, and crossing symmetry with
phenomenological information on the pion–nucleon scattering lengths. Recently, lattice calculations at the physical point have been
reported that find lower values by about 3σ with respect to the phenomenological determination. We point out that a lattice mea-
surement of the pion–nucleon scattering lengths could helpresolve the situation by testing the values extracted from spectroscopy
measurements in pionic atoms.
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1. Introduction

The pion–nucleon (πN) σ-termσπN is a fundamental param-
eter of low-energy QCD. It measures the amount of the nucleon
mass that originates from the up- and down-quarks, in contrast
to the predominant contribution from the gluon fields gener-
ated by means of the trace-anomaly of the energy-momentum
tensor. A precise knowledge of theσ-term has become increas-
ingly important over the last years since it determines the scalar
matrix elements〈N|mqq̄q|N〉 for q = u, d [1], which, in turn,
are crucial for the interpretation of dark-matter direct-detection
experiments [2–4] and searches for lepton flavor violation in
µ → e conversion in nuclei [5, 6] in the scalar-current interac-
tion channel.

Despite its importance, the value ofσπN has been under de-
bate for decades. Phenomenologically, theσ-term can be ex-
tracted fromπN scattering by means of a low-energy theorem
that relates the scalar form factor of the nucleon evaluatedat
momentum transfert = 2M2

π to an isoscalarπN amplitude at
the Cheng–Dashen point [7, 8], which unfortunately lies out-
side the region directly accessible to experiment. The neces-
sary analytic continuation, performed in [9–11] based on the
partial-wave analysis from [12, 13], led to the classical value
of σπN ∼ 45 MeV [10]. Within the same formalism, this re-
sult was later contested by a new partial-wave analysis [14]that
implied a significantly larger valueσπN = (64± 8) MeV.

Recently, a new formalism for the extraction ofσπN has
been suggested relying on the machinery of Roy–Steiner equa-
tions [15–19], a framework designed in such a way as to main-
tain analyticity, unitarity, and crossing symmetry of the scat-
tering amplitude within a partial-wave expansion. One of the
key results of this approach is a robust correlation betweenthe

σ-term and theS-wave scattering lengths

σπN = (59.1± 3.1) MeV+
∑

Is

cIs

(

aIs − āIs
)

, (1)

c1/2 = 0.242 MeV× 103Mπ, c3/2 = 0.874 MeV× 103Mπ,

where the sum extends over the twos-channel isospin channels
andaIs − āIs measures the deviation of the scattering lengths
from their reference values extracted from pionic atoms

ā1/2 = (169.8± 2.0)× 10−3M−1
π ,

ā3/2 = (−86.3± 1.8)× 10−3M−1
π . (2)

In this way, the main drawback of the formalism from [9, 10],
the need for very precise input for a particularP-wave scat-
tering volume, could be eliminated. In combination with the
experimental constraints on the scattering lengths from pionic
atoms, the low-energy theorem thus leads to a very stringent
constraint [17]

σπN = (59.1± 3.5) MeV. (3)

Given that already 4.2 MeV of the increase originate from up-
dated corrections to the low-energy theorem (thereof 3.0 MeV
from the consideration of isospin-breaking effects), the net in-
crease in theπN amplitude compared to [10] adds up to about
10 MeV, roughly half-way between [10] and [14].

While for a long time lattice calculations were hampered by
large systematic uncertainties due to the extrapolation tophys-
ical quark masses, recently three calculations near or at the
physical point appeared [20–22], with results collected inTa-
ble 1. All values lie substantially below the phenomenological
value (3) (Table 1 also shows the significance in each case if all
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Collaboration σπN [ MeV] Reference

BMW 38(3)(3) [20] 3.8σ

χQCD 44.4(3.2)(4.5) [21] 2.2σ

ETMC 37.22(2.57)
(+0.99
−0.63
)

[22] 4.9σ

Table 1: Lattice results forσπN. The last column gives the tension with [17],
adding all errors in quadrature. We do not attempt an averageof the lattice
results here.

errors are added in quadrature). As we will argue in this Letter,
this discrepancy should be taken very seriously as it suggests
that the latticeσ-terms are at odds with experimental data on
pionic atoms.

An analysis of flavorS U(3) breaking suggests aσ-term
closer to the small values obtained on the lattice (cf. the dis-
cussion in [23] and references therein): assuming violation of
the OZI rule to be small, it should be not too far from the matrix
elementσ0 = (mu+md)/2×〈N|ūu+d̄d−2s̄s|N〉, which can be re-
lated to the mass splitting in the baryon ground state octet and is
usually found to be of the order of 35 MeV [24, 25]. However,
significantly larger values have been obtained in the literature
when including effects of the baryon decuplet explicitly in the
loops, both in covariant and heavy-baryon approaches [26, 27],
making it unclear how well the perturbation series in the break-
ing of flavor S U(3) behaves, and the uncertainties difficult to
quantify.

A similar puzzle emerged recently in a lattice calculation of
K → ππ [28], which quotes a value of the isospin-0S-wave
ππ phase shift at the kaon massδ00(MK) = 23.8(4.9)(1.2)◦,
about 3σ smaller than the phenomenological result fromππ
Roy equations [29, 30]. A potential origin of this discrepancy
could be that the strongππ rescattering, known to be particu-
larly pronounced in the isospin-0S-wave, is not fully captured
by the lattice calculation, given that the result for the isospin-2
phase shiftδ20(MK) = −11.6(2.5)(1.2)◦ is much closer to phe-
nomenology. This explanation could be tested by a fully dy-
namical calculation of the corresponding scattering length a0

0,
which is predicted very accurately from the combination of Roy
equations and Chiral Perturbation Theory [31], a prediction in
excellent agreement with the available experimental informa-
tion (see [23] for a review of the present situation). In the same
way asa0

0 provides a common ground where lattice, experiment,
and dispersion theory can meet to resolve the discrepancy in
theππ case, a lattice measurement of theπN scattering lengths
could help clarify theσ-term puzzle. In this Letter we present
our arguments why we believe this to be the case.

2. πN scattering lengths from pionic atoms

The linear relation (1) betweenσπN and theπN scattering
lengths proves to be a very stable prediction ofπN Roy–Steiner
equations: while derived as a linear expansion around the cen-
tral values (2), we checked the potential influence of higher
terms by additional calculations on a grid around ¯aIs with max-
imal extension of twice the standard deviation quoted in (2)

in each direction, with the result that also in this extendedre-
gion quadratic terms are entirely negligible. The numbers for
cIs given in (1) refer to this extended fit and therefore differ
slightly from the ones given in [17]. An additional check of the
formalism is provided by the fact that if the scattering lengths
from [13] are inserted, the lowerσ-term from [10] is recovered.
Irrespective of the details of uncertainty estimates, thisbehav-
ior clearly demonstrates that the origin for the upward shift in
the central value is to be attributed to the updated input forthe
scattering lengths. The latter exercise also shows that thesolu-
tion linearized around the pionic-atom reference point remains
approximately valid in a much larger range of parameter space:
for the scattering lengths from [13] it differs from the full solu-
tion by less than 2 MeV.

In pionic atoms, electromagnetic bound states of aπ− and
a proton/deuteron core, strong interactions leave imprints in
the level spectrum that are accessible to spectroscopy measure-
ments [32]. In pionic hydrogen (πH) the ground state is shifted
compared to its position in pure QED and acquires a finite width
due to the decay toπ0n (andnγ) final states. The correspond-
ing observables are therefore sensitive to theπ−p → π−p and
π−p → π0n scattering channels. Although the width in pionic
deuterium (πD) is dominated byπ−d→ nn, the level shift mea-
sures the isoscalar combination ofπ−p→ π−p andπ−n→ π−n,
once few-body corrections are applied, and thus provides a third
constraint on thresholdπN physics. Experimentally, the level
shifts have been measured with high accuracy at PSI [33, 34],
and a preliminary value for theπH width is reported in [35].

At this level of accuracy a consistent treatment of isospin-
breaking [36–39] and few-body [40–46] corrections becomes
paramount if all three constraints are to be combined in a global
analysis ofπH andπD [47, 48]. In the isospin limit, theπN
amplitude can be decomposed into two independent structures

Tba = δbaT+ +
1
2

[τb, τa]T−, (4)

where a and b refer to the isospin label of the incoming
and outgoing pion,τa to isospin Pauli matrices, andT± to
isoscalar/isovector amplitudes. Their threshold values are re-
lated to theS-wave scattering lengths by

T±
∣

∣

∣

threshold
= 4π
(

1+
Mπ
mN

)

a±, (5)

where Mπ and mN are the masses of pion and nucleon, and
spinors have been normalized to 1. Conventionally, the com-
bined analysis of pionic atom data is not performed in terms of
a+, but using [49]

ã+ = a+ +
1

4π
(

1+ Mπ
mN

)

{4∆π
F2
π

c1 − 2e2 f1
}

(6)

instead, where∆π = M2
π − M2

π0 denotes the pion mass differ-

ence,Fπ the pion decay constant,e =
√

4πα, andc1 and f1
are low-energy constants that yield a universal shift ina+ away
from its isospin limit that cannot be resolved from pionic atoms
alone. Moreover, we have defined particle masses in the isospin
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limit to coincide with the charged particle masses. The cen-
tral values for thes-channel isospin scattering lengths (2) have
been obtained from such a combined analysis as follows [19]:
first, we subtracted the contributions from virtual photonsto
avoid the presence of photon cuts, and second, we identified
the Is = 1/2, 3/2 channels from the physicalπ±p amplitudes

a1/2 =
1
2
(

3aπ−p→π−p − aπ+p→π+p
)

,

a3/2 = aπ+p→π+p. (7)

The main motivation for this convention is thataπ−p→π−p can be
extracted directly from theπH level shift without any further
corrections, whileaπ+p→π+p can be reconstructed fromaπ−p→π−p

and ã+ with minimal sensitivity toa− and thus the prelimi-
nary value for theπH width. Of course, this convention has
to be reflected in the precise form of the low-energy theorem
for σπN [17, 19], with uncertainties included in the error given
in (1).

To illustrate the tension between phenomenological and lat-
tice determinations ofσπN it is most convenient to revert this
change of basis by means of

a1/2 = ã+ + 2a− + ∆a1/2,

a3/2 = ã+ − a− + ∆a3/2, (8)

where

∆a1/2 = (−2.8± 1.3)× 10−3M−1
π ,

∆a3/2 = (−2.6± 0.7)× 10−3M−1
π . (9)

The linear relation (1) can then be recast as
(

c1/2 + c3/2
)

ã+ +
(

2c1/2 − c3/2
)

a− = C(σπN), (10)

where the right-hand side is given by

C(σπN) = σπN − (59.1± 3.1) MeV−
∑

Is

cIs

(

∆aIs − āIs
)

= σπN − (90.5± 3.1) MeV. (11)

The corresponding bands in the ˜a+–a− plane are shown in
Fig. 1. As expected due to the isoscalar nature of theσ-term,
the constraint from the lattice results is largely orthogonal toa−,
although non-linear effects in the Roy–Steiner solution gener-
ate some residual dependence ona− as well. The overall picture
reflects the core of the discrepancy between lattice and phe-
nomenology: while the three bands from the pionic-atom mea-
surements nicely overlap, the latticeσ-terms favor a consider-
ably smaller value of ˜a+.1 The exact significance again depends
on if and how the three lattice measurements are combined, but
in any case the fact remains that there is a disagreement with
pionic-atom phenomenology around the 3σ level.

1In this context, it is also worth stressing that changinga3/2 alone, where
most of the difference between pionic atoms and [13] resides, is not an op-
tion: in doing so, one would infer, via the Goldberger–Miyazawa–Oehme sum
rule [50] that is sensitive to the isovector combinationa−, a value of theπN
coupling constant significantly too large compared to extractions from both
nucleon–nucleon [51, 52] and pion–nucleon scattering [53]; see [48].
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Figure 1: Constraints on theπN scattering lengths from pionic atoms (black:
level shift in πH, blue: width of πH ground state, red: level shift inπD)
and from latticeσ-terms (orange: BMW [20], violet:χQCD [21], brown:
ETMC [22]).

3. Lattice calculation of the πN scattering lengths

The discussion in the previous section makes it apparent that
another independent determination of theπN scattering lengths
would imply additional information onσπN that could help iso-
late the origin of theσ-term puzzle. Since a lattice calcula-
tion of aIs would proceed directly in the isospin limit, we re-
formulate the relation (1) accordingly. First, we assume that
the isospin limit would still be defined by the charged particle
masses,2 but due to the absence of electromagnetic effects the
corresponding scattering lengths as extracted from pionicatoms
become

a1/2
c = a1/2 − ∆a1/2 − (ã+ − a+

)

= (178.8± 3.8)× 10−3M−1
π ,

a3/2
c = a3/2 − ∆a3/2 − (ã+ − a+

)

= (−77.5± 3.5)× 10−3M−1
π , (12)

where we have usedc1 = −1.07(2) GeV−1 [18] and | f1| ≤
1.4 GeV−1 [36, 54]. The size of the shifts compared to (2) is
larger than one might naively expect from the chiral expansion,
but the origin of the enhanced contributions is well understood:
the bulk is generated from the term proportional to 4c1∆π/F2

π,
see (6), which appears because the operator involvingc1 in the
chiral Lagrangian generates a term proportional to the quark
masses and thus, by the Gell-Mann–Oakes–Renner relation, to
the neutral pion mass, which results in a large tree-level shift.
The remainder is mainly due to a particular class of loop topolo-
gies, so-called triangle diagrams, which are enhanced by a fac-
tor of π and an additional numerical factor.

2A similar analysis could be performed if the isospin limit were defined by
the neutral pion mass. In this case, one would need to take thechiral isospin-
limit expressions for the scattering lengths to adjust the pion mass from the
charged to the neutral one, analogously to a chiral extrapolation.

3



In view of these effects one might wonder about the potential
impact ofO(p4) isospin-breaking corrections. However, both
enhancement mechanisms will become irrelevant at higher or-
ders simply due to the fact that the chiralS U(2) expansion
converges with an expansion parameterMπ/mN ∼ 0.15 unless
large chiral logs appear or additional degrees of freedom en-
hance the size of low-energy constants. This leaves as poten-
tially largeO(p4) corrections loop diagrams with low-energy
constantsci , which are numerically enhanced due to saturation
from the∆(1232), but at this order cannot appear in triangle-
type topologies and therefore are not sufficiently enhanced to
become relevant. Finally, similarly toc1 at tree level, there is
another artifact from the definition of the operator accompa-
nying c2, which is conventionally normalized to the nucleon
mass in the chiral limit. AtO(p4) this generates a quark-mass
correction proportional toc1c2 that renormalizes the afore-
mentioned isospin-breaking correction involvingc1 by a factor
1+ 4c2M2

π/mN = 1.27, resulting in an additional shift inaIs
c by

1.6 units. Given that we do not have a fullO(p4) calculation, we
did not include this correction in the central values in (12), but,
to stay conservative, in the quoted uncertainty as an estimate of
the potential impact of higher-order terms.

If we finally rewrite (1) in terms ofaIs
c in order to illustrate the

impact of a lattice determination of the pion–nucleon scattering
lengths on theσ-term, we obtain

σπN = (59.1± 2.9) MeV+
∑

Is

cIs

(

aIs
c − āIs

c
)

, (13)

where the new reference values ¯aIs
c refer to the central values

given in (12). In this formulation the uncertainty even decreases
slightly because the electromagnetic shift proportional to f1
cancels to a large extent a similar correction in the low-energy
theorem. The final uncertainty inσπN for a given relative accu-
racy in the scattering lengths is shown in Fig. 2. For instance,
if both isospin channels could be calculated at [5. . .10]%, one
would obtain theσ-term with an uncertainty [5.0 . . .8.5] MeV.
We therefore see that to add conclusive information to the reso-
lution of theσ-term puzzle by means of a lattice determination
of the scattering lengths, a calculation at or below the 10% level
would be required. However, also more moderate lattice infor-
mation may be helpful, e.g. in case one of the scattering lengths
can be obtained more accurately than the other: as Fig. 1 sug-
gests, also a single additional band could point towards signif-
icant tension with the very precise overlap region of the three
pionic-atom experimental constraints.

4. Conclusions

In this Letter we highlighted the current tension between lat-
tice and phenomenological determinations of theπN σ-term.
We argued that the puzzle becomes particularly apparent when
formulated at the level of theπN scattering lengths, which play
a decisive role for the phenomenological value: a linear rela-
tion between the two scattering lengths of definite isospin and
theσ-term allows one to reformulate any value for the latter as
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0
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Figure 2: Uncertainty inσπN as a function of the relative accuracy inaIs
c .

a constraint on the former, pointing towards a clear disagree-
ment between lattice and pionic-atom data. In a similar way
as a direct lattice calculation of the isospin-0S-waveππ scat-
tering length could help resolve a comparable discrepancy be-
tween lattice and Roy equations inK → ππ, we suggested that
a lattice calculation of theπN scattering lengths would amount
to another independent determination ofσπN that could help
identify the origin of the discrepancy.

Note added in proof

While this paper was under review, another lattice calculation
near the physical point appeared [55]. The quoted resultσπN =

35(6) MeV lies within the range of [20–22].
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