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Abstract

We consider a scenario where, along with the usual Higgs doublet, two scalar triplets
are present. The extension of the triplet sector is required for the Type II mechanism
for the generation of neutrino masses, if this mechanism has to generate a neutrino
mass matrix with two-zero texture. One CP-violating phase has been retained in
the scalar potential of the model, and all parameters have been chosen consistently
with the observed neutrino mass and mixing patterns. We find that a large phase
(& 60◦) splits the two doubly-charged scalar mass eigenstates wider apart, so that the
decay H++

1 → H++
2 h is dominant (with h being the 125 GeV scalar). We identify

a set of benchmark points where this decay dominates. This is complementary to
the situation, reported in our earlier work, where the heavier doubly-charged scalar
decays as H++

1 → H+
2 W+. We point out the rather spectacular signal, ensuing from

H++
1 → H++

2 h, in the form of Higgs plus same-sign dilepton peak, which can be
observed at the Large Hadron Collider.
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1 Introduction

The observation of a rather distinctive pattern of neutrino mixing, together with the available
information on neutrino mass splitting, has triggered numerous theoretical proposals going
beyond the standard electroweak model (SM). Seesaw models enjoy a fair share of these,
along with additional assumptions to suit particular textures of the neutrino mass matrix.

Type-II seesaw models can generate Majorana neutrino masses without any right-handed
neutrino(s), with the help of one or more Y=2 scalar triplets. The restriction of the vacuum
expectation value (vev) of such a triplet, arising from the limits on the ρ-parameter (with
ρ = m2

W/m
2
Z cos2 θ), is obeyed in a not so unnatural manner, where the constitution of the

scalar potential can accommodate large triplet scalar masses vis-a-vis a small vev. In fact,
this very feature earns such models classification as a type of ‘seesaw’.

A lot of work has been done on the phenomenology of scalar triplets which, interestingly,
also arise in left-right symmetric theories [1]. One can, however, still ask the question: is
a single-triplet scenario self-sufficient, or does the replication of triplets (together with, say,
the single scalar doublet of the SM) bring about any difference in phenomenology? This
question, otherwise a purely academic one, acquires special meaning in the context of some
neutrino mass models which aim to connect the mass ordering with the values of the mixing
angles, thereby achieving some additional predictiveness. One class of such models depend
on texture zeros, where a number of zero entries (usually restricted to two) in the mass matrix
enable one to establish the desired connection. The existence of such zero entries require the
imposition of some additional symmetry; it has, for example, been shown that a horizontal
Z4 symmetry can serve the purpose. The simultaneous requirement of zero textures and the
type-II seesaw mechanism, however, turns out to be inconsistent, as has been discussed in
earlier works [2]. The inconsistency is gone for two triplets. This resurrects the relevance
of the phenomenology of two-triplet, one doublet scalar sectors, this time with practical
implications. We have studied such phenomenology in reference [3]. An important conclusion
of this study was that, whereas the doubly charged scalar in the single triplet scenario would
decay mostly in the `±`± or W±W± modes, the decay channel H++

1 −→ H+
2 W

+ acquires
primacy over a large region of the parameter space. Some predictions on this in the context
of the Large Hadron Collider were also shown in reference [3]. However, an added possibility
with two triplet is the possibility of at least one CP-violating phase being there. This in
principle can affect the phenomenology of the model, which is worth studying.

With this in view, we have analyzed here the one-doublet, two-triplet framework, includ-
ing CP-violating effects arising via a relative phase between the triplets. Thus, the vev of
one triplet has been made complex and consequently, the coefficient of the corresponding
trilinear term in the scalar potential has also been rendered complex.

Indeed, the introduction of a phase results in some interesting findings that were not
present when the relative phase was absent. First of all, as a result of mixing between two
triplets and presence of a relative phase between them, something on which no phenomeno-
logical restrictions exits, the heavier doubly charged scalar can now decay frequently into the
lighter doubly charged scalar plus the SM-like Higgs boson, i.e H++

1 → H++
2 h, over a larger

range of parameter space. This can give rise to a spectacular signal in the context of LHC.
Basically, as a final state, we obtain H++

1 → `+`+h i.e a doubly charged scalar decaying into
two same-sign leptons plus the SM-like Higgs. This decay often dominates over all other
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decay channels. When this decay is not present due to insufficient mass-difference between
respective scalars, the decay H++

2 −→ H+
2 W

+ mostly dominates, and its consequence was
discussed in some detail in our earlier work [3] on the CP-conserving scenario.

Secondly, for some combination of parameters, the decays mentioned in the above para-
graph are not possible with a vanishing or small phase, due to insufficient gap in masses
between the respective scalars. However, if we continuously increase the value of the phase,
keeping all the other parameters fixed, the mass difference between the scalars start in in-
crease, so that the aforementioned channel finally opens up.

Thirdly, we have noticed in [3] that the gauge coupling dominated decay H++
1 → H+

2 W
+

dominates over the Yukawa coupling dominated decay ∆++ → `+`+, even in those region
of parameter space where we have chosen the Yukawa coupling matrices to be sufficiently
large (' 1). On the other hand, the CP-violating phase suppresses the neutrino mass matrix
elements for the same value of the triplet vacuum expectation values (vev). This in turn
requires an increase in the corresponding Yukawa coupling matrix elements, since the vev’s
and Yukawa couplings are related by the expression for neutrino masses. The outcome of
this whole process is that, for several BPs, the decay H++

1 → `+`+ competes with the decay
into H+

2 W
+.

Finally, the CP-conserving scenario marks out regions of the parameter space, where
the branching ratios of the decays H++

1 −→ `+`+ and H++
1 → W+W+ are of comparable,

though subdominant, rates. As the phase picks up, the same vev causes necessitates a hike
in Yukawa coupling, as discussed above. In such situations, the decay H++

1 → `+`+ mostly
dominates over the W+W+ mode.

We present a summary of the scenario with a single triplet with complex vev on section 2.
In section 3, we outline the two-triplet scenario with a complex phase, including the corre-
sponding scalar potential. The composition of physical states, the benchmark points for our
numerical study and the results are presented in section 4. We summarize and conclude in
section 5.

2 A single scalar triplet with a CP-violating phase

We first give the reader a glimpse of the scenario with a single triplet ∆ = (∆++,∆+,∆0),
over and above the usual Higgs doublet φ, using the notation of [4]. ∆ is equivalently denoted
by the 2× 2 matrix

∆ =

(
∆+

√
2∆++

√
2∆0 −∆+

)
. (1)

The vev’s of the doublet and the triplet are expressed as

〈φ〉0 =
1√
2

(
0
v

)
and 〈∆〉0 =

(
0 0
vT 0

)
, (2)

respectively. The only doublet-dominated physical state that survives after the generation
of gauge boson masses is a neutral scalar h.
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The most general scalar potential including φ and ∆ can be written as

V (φ,∆) = a φ†φ+
b

2
Tr (∆†∆) + c (φ†φ)2 +

d

4

(
Tr (∆†∆)

)2

+
e− h

2
φ†φTr (∆†∆) +

f

4
Tr (∆†∆†) Tr (∆∆)

+ hφ†∆†∆φ+
(
t φ†∆φ̃+ H.c.

)
, (3)

where φ̃ ≡ iτ2φ
∗. All parameters in the Higgs potential are real except t which is complex

in general. By performing a global U(1) transformation, v can always be chosen real and
positive. Because of the t-term in the potential there is no second global symmetry to make
vT real. Furthermore, t can also be complex and, therefore, it can be written as t = |t| eiα
and vT = weiγ with w ≡ |vT |. Minimization of the scalar potential with respect to the phase
of vT i.e γ, gives the relation between the phases as α + γ = π. 1

The choice a < 0, b > 0 ensures that the dominant source of spontaneous symmetry
breaking is the scalar doublet. It is further assumed, following [4], that

a, b ∼ v2; c, d, e, f, h ∼ 1; |t| � v. (4)

Such a choice is motivated by the following considerations

• The need to fulfill the electroweak symmetry breaking conditions,

• To have w � v sufficiently small, as required by the ρ-parameter constraint,

• To keep doublet-triplet mixing low in general, and

• To ensure that all quartic couplings are perturbative.

The mass terms for the singly-charged scalars can be expressed in a compact form as

L±S = −(H−, φ−)M2
+

(
H+

φ+

)
(5)

with

M2
+ =

(
(q + h/2)v2

√
2v(t∗ − vTh/2)√

2v(t− v∗Th/2) 2(q + h/2)w2

)
and q =

|t|
w
. (6)

Keeping aside the charged Goldstone boson, the mass-squared of the singly-charged physical
scalar is obtained as

m2
∆+ =

(
q +

h

2

)
(v2 + 2w2), (7)

while the doubly-charged scalar mass is expressed as

m2
∆++ = (h+ q)v2 + 2fw2. (8)

Thus, in the limit w � v,

m2
∆++ −m2

∆+ '
h

2
v2. (9)

Thus a substantial mass splitting between ∆++ and ∆+ is in general difficult. This tends
to disfavour the ∆+W+ decay channel of ∆++, as compared to `+`+ and W+W+.

1For an analogous situation with two Higgs doublets, see, for example [5].
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3 Two scalar triplets and a CP-violating phase

Strong evidence has accumulated in favour of neutrino oscillation from the solar, atmospheric,
reactor and accelerator neutrino experiments over the last few years. It is now widely believed
that neutrinos have non-degenerate masses and a very characteristic mixing pattern. A lot,
however, is yet to be known, including the mass generation mechanism and the absolute
values of the masses, as opposed to mass-squared differences which affect oscillation rates.
Also, a lot of effort is on to ascertain the nature of neutrino mass hierarchy, including the
signs of the mass-squared differences. A gateway to information of the above kinds is the
light neutrino mass matrix, in a basis where the charged lepton mass matrix is diagonal.

Here, too, in the absence of very clear guidelines, various ‘textures’ for the neutrino mass
matrix are often investigated. A possibility that frequently enters into such investigations
is one where the mass matrix has some zero entries, perhaps as the consequence of some
built-in symmetry of lepton flavours. At the same time, such ‘zero textures’ lead to a higher
degree of predictiveness and inter-relation between mass eigenvalues and mixing angles, by
virtue of having fewer free paramaters, see for example [6]. In the context of Majorana
neutrinos which have a symmetric mass matrix, various texture zeros have thus been studied
from a number of angles. Of them, two-zero textures have a rather wide acceptability.

It has been shown in [7] that none of the seven possible two-zero-texture cases can be
achieved by assuming only one scalar triplet. However, this is not the case with two triplets,
where several of the seven possible two-zero textures are allowed. Therefore, it is important
to examine the phenomenological consequences of an augmented triplet sector, if Type-II
seesaw has to be consistent with the texture-zero approach.

’ One is thus encouraged to consider a scenario consisting of one complex doublet and
two Y = 2 triplet scalars ∆1, ∆2, both written as 2×2 matrices:

∆1 =

(
δ+

1

√
2δ++

1√
2δ0

1 −δ+
1

)
and ∆2 =

(
δ+

2

√
2δ++

2√
2δ0

2 −δ+
2

)
. (10)

The vev’s of the scalar triplets are given by

〈∆1〉0 =

(
0 0
w1 0

)
and 〈∆2〉0 =

(
0 0
w2 0

)
. (11)

The vev of the Higgs doublet is as usual given by equation (2).
The scalar potential in this model involving φ, ∆1 and ∆2 can be written as

V (φ,∆1,∆2) =

a φ†φ+
1

2
bkl Tr (∆†k∆l) + c(φ†φ)2 +

1

4
dkl

(
Tr (∆†k∆l)

)2

+
1

2
(ekl − hkl)φ†φTr (∆†k∆l) +

1

4
fkl Tr (∆†k∆

†
l ) Tr (∆k∆l)

+hkl φ
†∆†k∆lφ+ gTr (∆†1∆2) Tr (∆†2∆1) + g′Tr (∆†1∆1) Tr (∆†2∆2)

+
(
tk φ

†∆kφ̃+ H.c.
)
, (12)

where summation over k, l = 1, 2 is understood. This potential is not the most general one,
since we neglected some of the quartic terms. This is justified in view of the scope of this
paper, as laid out in the introduction.
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In [3], all the vev’s as well the parameters in the potential were assumed to be real. As has
already ben mentioned, this need not be the situation in general. To see the phenomenology
including CP-violation, we make a minimal extension of the simplified scenario by postulating
one CP-violating phase to exist. This entails a complex vev for any one triplet (in our case
we have chosen it to be ∆1). At the same time, there is a complex phase in the coefficient
t1 of the trilinear term in the potential. Thus one can write t1 = |t1| eiβ and w1 = |w1| eiα.

Using considerations very similar to those for the single-triplet model, we have taken

a, bkl ∼ v2; c, dkl, ekl, hkl, fkl, g, g
′ ∼ 1; |tk| � v. (13)

We also chosen to restric ourselves to cases where w1, w2 � v, keeping in mind the constraint
on the ρ-parameter.

The mass eigenvalues, scalar mixing matrices etc.following from the potential (12) can
only be obtained numerically in general. However, one can use the smallness of the triplet
vev’s wk, and drop the quartic terms in the scalar triplets during the diagonalisation of the
mass matrices. This enables one to use approximate analytical expressions, which makes
our broad conclusions somewhat transparent. However, the numerical results presented in
section 4 are obtained using the full potential (12), including the effects of the triplet vev’s.

It is convenient to speak in terms of the following matrices and vectors:

B = (bkl), E = (ekl), H = (hkl), (14)

t =

(
|t1|cosβ
t2

)
, t′ =

(
|t1|sinβ

0

)
, w =

(
|w1|cosα
w2

)
, w′ =

(
|w1|sinα

0

)
. (15)

In terms of them, the conditions for a stationary point of the potential are(
B +

v2

2
(E −H)

)
w + v2 t = 0, (16)

a+ cv2 +
1

2
wT (E −H)w + 2 t · w + 2t′ · w′ + 1

2
w′T (E −H)w′ = 0, (17)

(b11 +
v2

2
(e11 − h11))|w1|sinα− v2|t1|sinβ = 0, (18)

using the notation t ·w =
∑

k tkwk. These three equations are exact if one neglects all terms
quartic in the triplet vev’s in V0 ≡ V (〈φ〉0, 〈∆〉0). In equation (17) we have already divided
by v, assuming v 6= 0. The small vev’s wk are thereafter obtained as

w = −v2

(
B +

1

2
v2(E −H)

)−1

t. (19)

And from equation (18) the phase of t1 can be expressed as

sinβ =
v−2(b11 + v2

2
(e11 − h11))|w1|sinα
|t1|

(20)
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This re-iterates the fact that the phases t1 and w1 are related to each other. It is also evident
from (20) that the value of the angle α has to be nπ where n = 0, 1, 2, 3.... when the phase
β is absent.

We next discuss the mass matrices of charged scalars. The mass matrix of the doubly-
charged scalars is obtained as

M2
++ = B +

v2

2
(E +H) . (21)

It is interesting to note that if we drop those quartic terms for simplification from our scalar
potential, then our doubly charged mass matrix remains the same as in [3]. This gives the
impression that the relative phase between triplets does not affect the doubly charged mass
matrix if we drop the quartic terms in the potential. But in our numerical calculation,
where we have taken the full scalar potential including the quartic terms, we find such a
dependence, arising obviously from the quartic terms. This will be discussed further in the
next section.

As for the singly-charged fields ∆+
k , one has consider their mixing with φ+ of the Higgs

doublet. and This introduces the CP-violating phase into the singly charged mass matrix.
We write the mass term as

− L±S =
(
δ−1 , δ

−
2 , φ

−)M2
+

 δ+
1

δ+
2

φ+

+ H.c., (22)

equation (12) leads to

M2
+ =

(
B + v2

2
E

√
2v (t−Hw/2)√

2v (t−Hw/2)† a+ cv2 + 1
2
wT (E +H)w + 1

2
w′T (E +H)w′

)
. (23)

Now, this mass matrix must have a zero eigenvalue, corresponding to the would-be-Goldstone
boson. Indeed, on substituting the minimization equations (16), (17) and (18), we see that

Det(M2
+) = 0, (24)

which ensures a consistency check.
The mass matrices (22) and (23) are diagonalized by

U †1M2
++U1 = diag (M2

1 ,M
2
2 ) and U †2M2

+U2 = diag (µ2
1, µ

2
2, 0), (25)

respectively, with

(
δ++

1

δ++
2

)
= U1

(
H++

1

H++
2

)
,

 δ+
1

δ+
2

φ+

 = U2

 H+
1

H+
2

G+

 . (26)

We have denoted the fields with definite mass by H++
k and H+

k , and G+ is the charged
would-be-Goldstone boson.
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We also outline the neutral sector of the model, which cannot now be separated into
CP-even and CP-odd sectors. Thus the mass matrix for the neutral sector of the present
scenario turns out to be a 6× 6 matrix , including mixing between real and imaginary parts
of the complex neutral fields. The symmetric neutral mass matrix is denoted by Mneut,
whose elements are listed in the Appendix. So, the mass term for the neutral part can be
written as :

− L0
S = (N01, N02, N03, N04, N05, N06)M2

neut


N01

N02

N03

N04

N05

N06

+ H.c., (27)

Where N0n s are the neutral states in flavor basis. This mass matrix is diagonalized by

U †3M2
neutU3 = diag (M2

01,M
2
02,M

2
03,M

2
04,M

2
h , 0) (28)

with 
N01

N02

N03

N04

N05

N06

 = U3


H01

H02

H03

H04

h
G0

 . (29)

Where h is identified with the Standard Model Higgs boson and G0 is the neutral Goldstone
boson.

It is interesting to note that once we remove the phases of coefficient of trilinear term in
scalar potential and the vev of triplet H++

1 by setting α = β = 0 , then the mixing between
the CP-even and CP-odd scalars vanishes and we get back the usual separate 3× 3 matrices
for these two sectors. This also serves as a consistency check for the model. And ofcourse
the lightest neutral scalar of this sector can be identified with SM Higgs.

The ∆L = 2 Yukawa interactions of the triplets are

LY =
1

2

2∑
k=1

y
(k)
ij L

T
i C
−1iτ2∆kLj + H.c., (30)

where C is the charge conjugation matrix, the y
(k)
ij are the symmetric Yukawa coupling

matrices of the triplets ∆k, and the i, j are the summation indices over the three neutrino
flavours. The charged-lepton mass matrix is diagonal in this basis.

The neutrino mass matrix is generated from LY as

(Mν)ij = y
(1)
ij |w1|cosα + y

(2)
ij w2. (31)

This relates the Yukawa coupling constants y
(1)
ij , y

(2)
ij and the real part of the triplet vev’s,

namely, |w1|cosα and w2.
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The neutrino mass eigenvalues are fixed according to a particular type of mass spectrum.
In this work we illustrate our points, without any loss of generality, in the context of normal
hierarchy, setting the lowest neutrino mass eigenvalue to zero. Next, using the observed
central values of the various lepton mixing angles, the elements of the neutrino mass matrix
Mν can be found by using

Mν = U †M̂νU, (32)

where U is the PMNS matrix given by [8]

U =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 (33)

and M̂ν is the diagonal matrix of the neutrino masses. We have neglected possible Majorana
phases, and the recent global analysis of neutrino data are used to compute the elements of
U [9]. Also, the phase δ has been set to zero. For θ13, the results from the Daya Bay and
RENO experiments [10, 11] have been used.

After all this, all terms of the left-hand side of equation (30) are approximately known,
which is sufficient for predicting phenomenology in the 100 GeV - 1 TeV scale.. The actual
mass matrix thus constructed, on numerical evaluation, approximately reflects a two-zero
texture which is one of the motivations of this study.

For each benchmark point used in the next section, w1 and w2 get determined by values
of the other parameters in the scalar potential. Of course, the coupling matrices y(1) and
y(2) are still indeterminate. We fix the matrix y(2) by choosing a single suitable value for all
elements of the µ–τ block and a smaller value for the rest of the matrix. As has already
been mentioned in [3], our broad conclusions do not depend on this ‘working rule’.

4 Benchmark points and numerical predictions

The trademark signal of Higgs triplets is contained in the doubly charged components. In
the current scenario, too, one would like to see the signatures of the two doubly charged
scalars, especially the heavier one, namely H++

1 whose decays have already been shown to
contain a rather rich phenomenology.

The H++
1 , produced at the LHC via the Drell-Yan process, can in general have two-body

decays in the following channels:

H++
1 → H++

2 h, (34)

H++
1 → `+

i `
+
j , (35)

H++
1 → W+W+, (36)

H++
1 → H+

2 W
+, (37)

H++
2 → `+

i `
+
j , (38)

H++
2 → W+W+, (39)
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with h is the SM-like Higgs and `i, `j = e, µ.
The decay modes (34)and (37) are absent in the single-triplet model. On the other

hand, mixing between two triplets opens up situations where the mass separation between
H++

1 , H++
2 and H++

1 , H+
2 is sufficient to kinematically allow the transitions (34) and (37).

The decay (34) opens up a spectacular signal, especially when H++
2 mostly decays into two

same sign leptons, leading to
H++

1 → `+
i `

+
j h (40)

Let us denote the mass of SM Higgs by Mh, that of H++
k by Mk and that of H+

k by µk
(k = 1, 2). Then, in the convention M1 > M2, µ1 > µ2, the decays (34)and (37) are possible
only if M1 > M2 + Mh and M1 > µ2 + mW . We demonstrate numerically that this can
naturally happen, by considering three distinct regions of the parameter space and selecting
four benchmark points (BPs) for each region. The relative phase between two triplets also a
plays an important roll in these cases. In order to emphasise this, we have also chosen three
different values of the phase, namely α = 30◦, 45◦ and 60◦ for each benchmark point. Thus
we have considered 36 BPs alltogether, comprising three distinct regions of the parameter
space and relative phases between triplets to justify our findings.

We have seen that, in a single-triplet model, the doubly-charged Higgs decays into either
`+
i `

+
j or W+W+. The former is controlled by the ∆L = 2 Yukawa couplings yij, while the

latter is driven by w, the triplet vev. Neutrino masses are given by (31), implying large
values of yij for small w, and vice versa. Interestingly, the presence of triplet phase through
the cosα term in this equation actually suppresses the vev w1 of the first triplet. This in turn
implies that we get higher values for Yukawa coupling matrix entries yij1 compared to the
case where CP-violating effects are absent. Accordingly, we have identified, for the chosen
values of triplet phase, three regions in the parameter space, corresponding to

i) Γ(H++
1,2 → `+

i `
+
j )� Γ(H++

1,2 → W+W+),

ii) Γ(H++
1,2 → `+

i `
+
j )� Γ(H++

1,2 → W+W+),

iii) Γ(H++
1,2 → `+

i `
+
j ) ∼ Γ(H++

1,2 → W+W+).

These are referred to as scenarios 1, 2 and 3 respectively in the subsequent discussion.
The masses of the various physical state scalars are shown in Tables. Although our

study involves mainly the phenomenology of charged scalars, we have also listed the masses
of neutral scalars. It should be noted that the lightest neutral scalar, dominated by the
doublet component, has mass ∼ 125 GeV for each BP, identifying it with the observed Higgs
particle.

One also notices a rather interesting effect of the triplet phase, shown in Figures (1a)
and (1b). In Figure (1a) we have plotted the variation of mass difference between H++

1 and
H++

2 with respect to variation of the phase α. The mass difference between H++
1 and H+

2

is similarly presented in Figure (1b) . If the mass differences do not allow the decays (34)
and (37) for α = 0, they open up with increase in the phase of the triplet, when all other
parameters are at fixed values.

Earlier, we neglected contributions from the quartic terms in our scalar potential in the
approximate forms of the doubly-and singly-charged mass matrices. However, the import of
the phase is not properly captured unless one retains these terms. Thus it is only via a full
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numerical analysis of the potential retaining all terms that the above effect of the phase of
the trilinear term becomes apparent.

It should also be noted that the cosine of the complex phase suppresses the contribution
to neutrino masses. Consequently, for the same triplet vev, one requires larger values of the
Yukawa interaction strengths. This makes the l+l+ decay mode of a doubly charged scalar
more competitive with W+W+), as compared to the results in ([3]).

The branching ratios for a given scalar in different channels are of course dependent
on the various parameters that characterise a BP. We list all the charged scalar masses in
Tables 1, 4 and 7. Moreover, the neutral scalar masses are shown in Tables 2, 5 and 8 for
three different values of triplet phase α. The branching ratios for H++

1 and H++
2 for different

triplet phases are listed in Tables 3,6 and 9, together with their pair-production cross sections
at the LHC with

√
s = 13 TeV. The cross sections and branching ratios have been calculated

with the help of the package FeynRules (version 1.6.0) [12, 13], thus creating a new UFO
model file in MadGraph5-aMC@NLO (version 2.3.3) [14]. Using the full machinery of scalar
mixing in this model, the decay widths into various channels have been obtained.

The presence of the phase α also affects phenomenology in the following way. Suppose, in
the absence of any additional symmetry in hierarchy, the matrices B,E and H are such that
the resulting elements of each charged mass matrix are of similar order. This would normally
result in rather low mass-splitting between H++

1 and H++
2 , so long as the CP-violating phase

is vanishing or small. For large α, however, the degree of doublet-triplet mixing will be
different for the two triplets. The splitting between H++

1 and H++
2 consequently goes up

and the decay H++
1 → H++

2 h tends to dominate. Drell-Yan pair production of H±±1 is h`±`±,
i.e an invariant mass peakin same-sign dileptons, together with an SM-like Higgs, that can
be identified in the usual search channels at the LHC.

From Tables 3, 6 and 9, we see that decay (40) dominates, when the masses of H++
1 and

H++
2 are sufficiently separated. Also, when the phase space needed for this decay (40) is not

available, the process (37) dominates over all other remaining decays. Benchmark points
when decay (37) mostly dominates for H±±1 have been discussed in detail in reference [3].
Here we supplement those observations with some results for the case when decay (40) has
an interesting consequence, as exemplitied by Figures 2 and 3.

Figure 2 specifically shows the effect of CP-violating phase going up. We have seen in
Figure 1 that the mass difference between H++

1 and H++
2 undergoes significant enhancement

if, with other parameters unchanged, once the phase α is increased beyond 60◦, the decay
H++

1 → H++
2 h not only opens up but also becomes dominant. This point is accumulated

in Figure 2, for which the choice of parameters is detailed in the caption. We simulated
the same-sign dilepton final states and notice that there are two invariant mass peaks for
α = 60◦ in BP 4 of Scenario 2, as shown in Figure (2a). However, Figure (2b) shows only one
peak for α = 65◦, for which mass of H++

2 remains practically the same. The increase in the
CP-violating phase raises mass of H++

1 and causes decay (40) to be overwhelmingly domi-
nant. The two invariant mass peaks consequently make way for a single one at MH++

2
. The

identification of SM-like Higgs along with the same-sign dilepton peak can be an interesting
signature of such a situation.

Figure 3 captures BP’s, for which decay (37) is not overwhelmingly dominant. There,
in addition to decay (37), process (35), too has non-negligible branching ratios. For such
situations, we have simulated the same-sign dilepton final states from both H±±1 and H±±2 .
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(a) (b)

Figure 1: Variation of mass difference between (a) H++
1 and H++

2 and (b) H++
1 and H+

2 with

phase of triplet α

(a) (b)

Figure 2: Invariant mass distribution of same sign di-leptons for (a) α = 60◦ and (b) α = 65◦

for BP 4 of Scenario 2

The leptons selected for this purpose satisfy:
∣∣∣plepton
T

∣∣∣ > 20 GeV, |η lep| < 2.5, |∆R ``| < 0.2

and |∆R `j| < 0.4 where ∆R2 = ∆η2+∆φ2. The two invariant mass peaks in each of the plots
in Figure 3, bear testimony to the existence of two doubly-charged scalar states decaying in
the dilepton channel.

12



(a) (b)

(c) (d)

(e)

Figure 3: Invariant mass distribution of same sign di-leptons for chosen benchmark points.

In (a) BP 3 and (b) BP 4 of Scenario 2 for α = 30◦. In (c) BP 3 and (d) BP 4 of Scenario 2

for α = 45◦. In (e) BP 4 of Scenario 2 for α = 60◦
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α = 30◦ Mass (GeV) BP 1 BP 2 BP 3 BP 4

H++
1 516.61 513.83 522.13 537.62

Scenario 1 H++
2 391.40 389.82 426.93 440.96

H+
1 516.58 513.81 522.10 537.55

H+
2 390.60 389.79 408.83 416.30

H++
1 526.00 529.85 477.38 485.76

Scenario 2 H++
2 397.61 390.10 389.10 389.33

H+
1 525.94 529.80 477.34 485.70

H+
2 393.79 390.01 389.00 389.28

H++
1 558.71 562.35 485.76 477.38

Scenario 3 H++
2 427.00 407.20 389.33 389.10

H+
1 557.59 559.11 485.70 477.34

H+
2 392.90 405.91 389.28 389.00

Table 1: Charged scalar masses for phase α = 30◦.
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α = 30◦ Mass (GeV) BP 1 BP 2 BP 3 BP 4

H01 730.57 726.65 738.36 760.19

Scenario 1 H02 730.49 726.62 738.32 760.15

H03 552.30 551.25 551.40 552.65

H04 552.15 551.20 551.34 552.56

h 125.16 125.18 125.20 125.15

H01 743.85 749.33 675.11 686.96

Scenario 2 H02 743.00 749.25 675.00 686.90

H03 552.21 551.50 550.17 550.53

H04 552.10 551.39 550.05 550.40

h 125.21 125.18 125.22 125.23

H01 787.10 789.25 687.00 676.15

Scenario 3 H02 787.00 789.10 686.90 676.08

H03 541.16 542.00 552.21 549.90

H04 541.07 541.91 552.00 549.75

h 125.23 125.26 125.13 125.16

Table 2: Neutral scalar masses for phase α = 30◦.
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α = 30◦ Data BP 1 BP 2 BP 3 BP 4

BR(H++
1 → H++

2 h) 5.1× 10−3 not allowed not allowed not allowed

BR(H++
1 → H+

2 W
+) 0.99 0.99 0.79 0.99

BR(H++
1 → W+W+) 2.8× 10−3 6.5× 10−2 0.21 3.1× 10−7

BR(H++
1 → `+

i `
+
j ) 4.8× 10−21 1.6× 10−20 1.3× 10−18 2.1× 10−23

Scenario 1 BR(H++
2 → W+W+) 0.99 0.99 0.99 0.99

BR(H++
2 → `+

i `
+
j ) 1.6× 10−18 2.7× 10−18 3.9× 10−17 1.3× 10−20

σ(pp→ H++
1 H−−1 ) 1.10 fb 1.13 fb 1.05 fb 0.42 fb

σ(pp→ H++
2 H−−2 ) 3.97 fb 4.10 fb 2.70 fb 1.06 fb

BR(H++
1 → H++

2 h) 0.84 0.96 not allowed not allowed

BR(H++
1 → H+

2 W
+) 0.13 0.03 0.76 0.42

BR(H++
1 → W+W+) 3.1× 10−20 1.9× 10−20 1.2× 10−19 2.8× 10−21

BR(H++
1 → `+

i `
+
j ) 0.03 8.9× 10−3 0.24 0.58

Scenario 2 BR(H++
2 → W+W+) 1.9× 10−19 2.8× 10−19 1.8× 10−20 3.7× 10−19

BR(H++
2 → `+

i `
+
j ) 0.99 0.99 0.99 0.99

σ(pp→ H++
1 H−−1 ) 1.01 fb 1.02 fb 1.56 fb 1.43 fb

σ(pp→ H++
2 H−−2 ) 3.60 fb 4.04 fb 3.97 fb 3.95 fb

BR(H++
1 → H++

2 h) 0.99 0.99 not allowed not allowed

BR(H++
1 → H+

2 W
+) 2.1× 10−3 1.3× 10−2 0.99 0.99

BR(H++
1 → W+W+) 2.6× 10−14 3.1× 10−14 4.3× 10−10 2.8× 10−11

BR(H++
1 → `+

i `
+
j ) 1.5× 10−11 2.3× 10−11 3.7× 10−7 5.4× 10−8

Scenario 3 BR(H++
2 → W+W+) 0.03 0.01 0.04 0.02

BR(H++
2 → `+

i `
+
j ) 0.97 0.99 0.96 0.98

σ(pp→ H++
1 H−−1 ) 0.77 fb 0.74 fb 1.45 fb 1.58 fb

σ(pp→ H++
2 H−−2 ) 3.61 fb 2.75 fb 3.95 fb 3.98 fb

Table 3: Decay branching ratios and production cross sections for doubly-charged scalars for

phase α = 30◦.
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α = 45◦ Mass (GeV) BP 1 BP 2 BP 3 BP 4

H++
1 542.27 539.35 549.85 566.55

Scenario 1 H++
2 406.60 405.20 438.46 450.96

H+
1 542.22 539.20 548.73 564.92

H+
2 405.90 405.07 422.28 428.94

H++
1 543.30 538.15 551.62 564.34

Scenario 2 H++
2 405.10 404.10 440.10 448.82

H+
1 542.50 537.65 550.90 563.65

H+
2 405.00 403.20 439.72 447.90

H++
1 545.82 540.32 550.90 567.80

Scenario 3 H++
2 409.80 405.00 439.50 452.45

H+
1 544.71 539.46 550.15 565.90

H+
2 409.00 404.75 425.38 432.80

Table 4: Charged scalar masses for phase α = 45◦.
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α = 45◦ Mass (GeV) BP 1 BP 2 BP 3 BP 4

H01 766.78 762.75 774.79 797.22

Scenario 1 H02 766.60 762.11 774.23 797.00

H03 573.00 572.50 575.50 576.17

H04 572.65 572.00 575.15 575.95

h 125.15 125.22 125.19 125.13

H01 768.10 760.37 772.90 795.85

Scenario 2 H02 768.00 760.13 772.75 795.50

H03 575.32 570.00 574.30 576.85

H04 575.15 569.22 573.78 576.20

h 125.12 125.16 125.24 125.17

H01 771.10 758.52 778.10 798.37

Scenario 3 H02 770.85 758.00 777.85 798.00

H03 577.31 568.75 578.29 577.21

H04 577.00 568.13 578.00 577.00

h 125.18 125.21 125.13 125.16

Table 5: Neutral scalar masses for phase α = 45◦.
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α = 45◦ Data BP 1 BP 2 BP 3 BP 4

BR(H++
1 → H++

2 h) 0.99 0.99 not allowed not allowed

BR(H++
1 → H+

2 W
+) 8.2× 10−4 9.1× 10−4 0.90 0.96

BR(H++
1 → W+W+) 2.4× 10−5 1.7× 10−4 0.09 0.04

BR(H++
1 → `+

i `
+
j ) 3.1× 10−22 3.8× 10−22 6.1× 10−19 4.2× 10−20

Scenario 1 BR(H++
2 → W+W+) 0.99 0.99 0.99 0.99

BR(H++
2 → `+

i `
+
j ) 7.4× 10−19 8.3begin× 10−19 2.1× 10−19 6.7× 10−19

σ(pp→ H++
1 H−−1 ) 0.88 fb 0.87 fb 0.80 fb 0.71 fb

σ(pp→ H++
2 H−−2 ) 3.39 fb 3.33 fb 2.43 fb 2.13 fb

BR(H++
1 → H++

2 h) 0.99 0.99 not allowed not allowed

BR(H++
1 → H+

2 W
+) 4.5× 10−4 3.9× 10−4 0.64 0.88

BR(H++
1 → W+W+) 1.3× 10−21 9.1× 10−22 7.6× 10−20 6.4× 10−21

BR(H++
1 → `+

i `
+
j ) 3.1× 10−6 1.7× 10−4 0.36 0.12

Scenario 2 BR(H++
2 → W+W+) 2.7× 10−20 2.5× 10−19 3.2× 10−19 5.7× 10−20

BR(H++
2 → `+

i `
+
j ) 0.99 0.99 0.99 0.99

σ(pp→ H++
1 H−−1 ) 0.93 fb 0.89 fb 0.86 fb 0.75 fb

σ(pp→ H++
2 H−−2 ) 2.55 fb 3.35 fb 2.46 fb 2.18 fb

BR(H++
1 → H++

2 h) 0.99 0.99 not allowed not allowed

BR(H++
1 → H+

2 W
+) 3.6× 10−5 1.4× 10−4 0.99 0.99

BR(H++
1 → W+W+) 8.6× 10−14 7.3× 10−13 1.4× 10−9 5.8× 10−10

BR(H++
1 → `+

i `
+
j ) 4.8× 10−11 3.7× 10−11 5.6× 10−11 4.7× 10−9

Scenario 3 BR(H++
2 → W+W+) 0.02 0.04 0.97 0.05

BR(H++
2 → `+

i `
+
j ) 0.98 0.96 0.03 0.95

σ(pp→ H++
1 H−−1 ) 0.92 fb 0.95 fb 0.84 fb 0.73 fb

σ(pp→ H++
2 H−−2 ) 3.42 fb 3.37 fb 2.44 fb 2.15 fb

Table 6: Decay branching ratios and production cross sections for doubly-charged scalars for

phase α = 45◦.
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α = 60◦ Mass (GeV) BP 1 BP 2 BP 3 BP 4

H++
1 557.90 563.51 564.20 556.56

Scenario 1 H++
2 412.20 411.51 434.37 439.71

H+
1 557.62 563.25 559.18 548.00

H+
2 411.65 411.18 423.27 426.15

H++
1 558.20 565.20 566.40 554.30

Scenario 2 H++
2 411.90 413.61 436.56 438.12

H+
1 558.00 564.50 565.90 553.65

H+
2 410.75 412.85 435.85 435.32

H++
1 556.65 560.30 567.80 552.90

Scenario 3 H++
2 410.25 408.35 437.90 436.59

H+
1 556.00 559.75 563.21 550.00

H+
2 409.85 407.80 425.56 429.11

Table 7: Charged scalar masses for phase α = 60◦.
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α = 60◦ Mass (GeV) BP 1 BP 2 BP 3 BP 4

H01 788.52 796.91 784.64 765.05

Scenario 1 H02 788.35 796.27 784.21 764.62

H03 581.43 583.16 579.62 577.78

H04 581.32 582.95 579.13 577.21

h 125.16 125.24 125.14 125.20

H01 790.21 793.82 786.52 762.90

Scenario 2 H02 790.00 793.11 786.09 762.42

H03 579.32 580.16 582.32 574.21

H04 579.00 579.92 582.00 573.86

h 125.15 125.10 125.21 125.09

H01 786.51 790.63 785.00 760.71

Scenario 3 H02 786.00 790.27 784.32 760.29

H03 577.82 576.21 580.14 570.90

H04 577.50 576.00 579.55 570.58

h 125.23 125.14 125.23 125.18

Table 8: Neutral scalar masses for phase α = 60◦.
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α = 60◦ Data BP 1 BP 2 BP 3 BP 4

BR(H++
1 → H++

2 h) 0.99 0.98 0.99 not allowed

BR(H++
1 → H+

2 W
+) 3.9× 10−4 2.6× 10−2 0.01 0.94

BR(H++
1 → W+W+) 1.7× 10−5 8.9× 10−3 6.9× 10−5 0.05

BR(H++
1 → `+

i `
+
j ) 2.6× 10−22 4.7× 10−21 3.1× 10−22 5.6× 10−20

Scenario 1 BR(H++
2 → W+W+) 0.99 0.99 0.99 0.99

BR(H++
2 → `+

i `
+
j ) 6.7× 10−19 7.2× 10−19 5.3× 10−20 3.5× 10−15

σ(pp→ H++
1 H−−1 ) 0.79 fb 0.71 fb 0.72 fb 0.84 fb

σ(pp→ H++
2 H−−2 ) 3.22 fb 3.15 fb 2.48 fb 2.51 fb

BR(H++
1 → H++

2 h) 0.99 0.79 0.99 not allowed

BR(H++
1 → H+

2 W
+) 3.2× 10−5 0.21 3.1× 10−3 0.88

BR(H++
1 → W+W+) 3.9× 10−22 5.6× 10−22 5.9× 10−22 4.3× 10−22

BR(H++
1 → `+

i `
+
j ) 2.1× 10−4 1.4× 10−4 3.7× 10−4 0.12

Scenario 2 BR(H++
2 → W+W+) 3.2× 10−19 5.6× 10−20 7.8× 10−18 6.3× 10−19

BR(H++
2 → `+

i `
+
j ) 0.99 0.99 0.99 0.99

σ(pp→ H++
1 H−−1 ) 0.77 fb 0.74 fb 0.81 fb 0.86 fb

σ(pp→ H++
2 H−−2 ) 3.26 fb 3.19 fb 2.46 fb 2.53 fb

BR(H++
1 → H++

2 h) 0.99 0.90 0.99 not allowed

BR(H++
1 → H+

2 W
+) 2.5× 10−4 0.10 1.2× 10−2 0.99

BR(H++
1 → W+W+) 9.3× 10−15 2.7× 10−14 5.3× 10−11 5.1× 10−11

BR(H++
1 → `+

i `
+
j ) 6.4× 10−11 1.7× 10−12 7.6× 10−13 2.3× 10−9

Scenario 3 BR(H++
2 → W+W+) 0.03 0.04 0.89 0.02

BR(H++
2 → `+

i `
+
j ) 0.97 0.96 0.11 0.98

σ(pp→ H++
1 H−−1 ) 0.81 fb 0.75 fb 0.72 fb 0.83 fb

σ(pp→ H++
2 H−−2 ) 3.28 fb 3.20 fb 2.50 fb 2.54 fb

Table 9: Decay branching ratios and production cross sections for doubly-charged scalars for

phase α = 60◦.

22



5 Summary and conclusions

We have considered a one-doublet, two-triplet Higgs scenario, with one CP-violating phase
in the potential. It is noticed that a larger phase leads to bigger mass-separations be-
tween the two doubly-charged mass eigenstates, and also between the states H++

1 and H+
2 .

Consequently, this scenario admits a larger region of the parameter space, when the decay
H++

1 → H++
2 h opens up. When it is allowed, this decay often overrides H++

1 → H+
2 W

+.
While the role of the latter decay as a characteristic signal of such models was discussed
in our earlier work, we emphasize here that the former mode leads to another interesting
signal, arising from H++

1 → `+
i `

+
j h. This would mean that the production of SM-like Higgs

together with same-sign dileptons peaking at the mass of the lighter doubly-charged scalar.
Such a signal, too, may give us a distinctive signature of a two-triplet scenario at the LHC.
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Appendix

The various elements of Mneut, the neutral scalar mass matrix, are as follows :

m11 = 2(b22 +
1

2
(e22 − h22)v2 + 2(3d22w

2
2 + d12|w1|2cos2α + 2(g + g′)|w1|2))) (41)

m12 = m21 = 2b12 + (e12 − h12)v2 + 4(d12 + 2(g + g′))|w1|cosαw2, (42)

m13 = m31 =
√

2v(2t2 + (e12 − h12)|w1|cosα + (e22 − h22)w2), (43)

m14 = m41 = 2d12|w1|2sin2α, (44)

m15 = m51 = −4(d12 − 2(g + g′))w2|w1|sinα, (45)

m16 = m61 = 0, (46)

m22 = 2(b11 +
1

2
(e11 − h11)v2 + (d12 + 2(g + g′))w2

2 + d11|w1|2(2cos2α + 1)), (47)

m23 = m32 =
√

2v(2|t1|cosβ + (e11 − h11)|w1|cosα + (e12 − h12)w2), (48)

m24 = m42 = 4d12w2|w1|sinα, (49)
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m25 = m52 = 2d11|w1|2sin2α, (50)

m26 = m62 = 2
√

2v|t1|sinβ, (51)

m33 =
1

4
(2a+ 6cv2 + 4|t1||w1|cos(α + β)− h11w

2
1 + 4t2w2 + (52)

2(e12 − h12)|w1|cosαw2 + (e22 − h22)w2
2 − h11|w1|2sin2α + e11|w1|2),

m34 = m43 =
√

2(e12 − h12)v|w1|sinα, (53)

m35 = m53 =
√

2v((e11 − h11)|w1|sinα− 2|t1|sinβ), (54)

m36 = m63 = 2|t1||w1|sin(α + β), (55)

m44 = 2(b22 +
1

2
(e22 − h22)v2 + d22w

2
2 + d12|w1|2cos2α + 2(g + g′)|w1|2), (56)

m45 = m54 = 2b12 + (e12 − h12)v2 + 4d12|w1|cosαw2, (57)

m46 = m64 = 4
√

2t2v, (58)

m55 = 2(b11 +
1

2
(e11 − h11)v2 − 2(d12 − 2(g + g′))w2

2 + 2d11|w1|2(2sin2α + 1)), (59)

m56 = m65 = 2
√

2|t1|vcosβ, (60)

m66 =
1

4
(2a+ 2cv2 − 4|t1||w1|cos(α + β)− (e11 − h11)|w1|2 − 4t2w2 + (61)

2(e12 − h12)|w1|w2cosα + (e22 − h22)w2
2),
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