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Abstract

Our article is devoted to the study of the rare Bs → φℓ+ℓ− decay where ℓ = µ, τ . We compute

the relevant form factors in the framework of the covariant quark model with infrared confinement

in the full kinematical momentum transfer region. The calculated form factors are used to evaluate

branching fractions and polarization observables in the cascade decay B → φ(→ K+K−)ℓ+ℓ−. We

compare the obtained results with available experimental data and the results from other theoretical

approaches.
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I. INTRODUCTION

The transition b→ sℓ+ℓ− mediated by Flavor-Changing Neutral Current (FCNC) is one

of the key point in the Standard Model (SM) which allows one to look for the possible

manifestation of New Physics (NP). The physical processes induced by this transition are

currently studied in great details at the LHC. The most popular and well–analyzed among

them are the rare B-meson decays B → K∗(→ Kπ)µ+µ− and Bs → φ(→ K+K−)µ+µ−.

The decay Λb → Λ(→ pπ) ℓ+ℓ− can be considered to be a welcome complement to the above

decay channels.

The LHCb Collaboration [1] reported a measurement of form-factor independent angular

observables in the decay B → K∗µ+µ−. One observable was found to be in disagreement

with the SM on the level of 3.7 σ.

The improved measurements of the isospin asymmetries and branching fractions for B →
Kµ+µ− and B → K∗µ+µ− decays were reported in [2]. The isospin asymmetries were

consistent with the SM, whereas some branching fractions were found to be slightly lower

than the theoretical predictions.

An angular analysis and a measurement of the differential branching fraction of the decay

B0
s → φµ+µ− were presented in [3]. The results of the angular analysis are consistent with

the SM. However, the differential branching fraction in one bin was found to be more than

3 σ below the SM predictions.

The observed discrepancies (sometimes called “b → sℓℓ anomalies”) have generated a

plenty of theoretical studies [4]-[15] involving the various scenarios of NP and analysis of

the uncertainties from hadronic contributions. The form factors obtained from unquenched

lattice QCD [16] were used in [17, 18] to calculate the differential branching fractions of the

decays B → K∗µ+µ− and Bs → φµ+µ−.

In this paper we calculate all form factors which appear in the Bs → φ transition by

using the covariant quark model. The expressions for the Wilson coefficients C7 and C9

are taken on the two-loop level of accuracy by using the results obtained in Refs. [19, 20].

Then we evaluate the branching fraction, the forward-backward asymmetry and the so-

called optimized observables in the cascade decay Bs → φ(→ K+K−)µ+µ−. We compare

our results with the recent experimental data reported in Ref. [3] for various q2-bins.
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II. MODEL

The covariant confined quark model [21–24] is an effective quantum field approach to

hadronic interactions based on an interaction Lagrangian of hadrons interacting with their

constituent quarks. The value of the coupling constant follows form the compositeness con-

dition ZH = 0, where ZH is the wave function renormalization constant of the hadron.

Matrix elements of the physical processes are generated by a set of quark loop diagrams

according to the 1/Nc expansion. The ultraviolet divergences of the quark loops are reg-

ularized by including vertex functions for the hadron-quark vertices. These functions also

describe finite size effects related to the non-pointlike hadrons. The quark confinement [24]

is built-in through an infrared cutoff on the upper limit of the scale integration to avoid the

appearance of singularities in matrix elements. The infrared cutoff parameter λ is universal

for all processes. The covariant confined quark model has limited number of parameters: the

light and heavy constituent quark masses, the size parameters which describe the size of the

distribution of the constituent quarks inside the hadron and the infrared cutoff parameter

λ. They are determined by a fit to available experimental data.

Let us start with the effective Lagrangian describing the transition of a meson M(q1q̄2)

to its constituent quarks q1 and q̄2

Lint(x) = gMM(x) · JM(x) + h.c.,

JM(x) =

∫
dx1

∫
dx2FM(x, x1, x2)q̄2(x2)ΓMq1(x1) (1)

with ΓM a Dirac matrix which projects onto the spin quantum number of the meson field

M(x). The vertex function FM characterizes the finite size of the meson. Translational

invariance requires the function FM to fulfill the identity FM(x + a, x1 + a, x2 + a) =

FM(x, x1, x2) for any four-vector a. A specific form for the vertex function is adopted

FM(x, x1, x2) = δ(x− w1x1 − w2x2)ΦM((x1 − x2)
2), (2)

where ΦM is the correlation function of the two constituent quarks with masses mq1 , mq2

and the mass ratios wi = mqi/(mq1 +mq2).

A simple Gaussian form of the vertex function Φ̄M (− k2) is selected

Φ̄M(− k2) = exp
(
k2/Λ2

M

)
(3)
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with the parameter ΛM linked to the size of the meson. The minus sign in the argument is

chosen to indicate that we are working in the Minkowski space. Since k2 turns into − k2E

in the Euclidean space, the form (3) has the appropriate fall-off behavior in the Euclidean

region. Any choice for ΦM is appropriate as long as it falls off sufficiently fast in the

ultraviolet region of the Euclidean space to render the corresponding Feynman diagrams

ultraviolet finite. We choose a Gaussian form for calculational convenience.

The fermion propagators for the quarks are given by

Si(k) =
1

mqi− 6k (4)

with an effective constituent quark mass mqi.

The so-called compositeness condition [22, 25–27] is used to determine the value of the

coupling constants gM . It means that the renormalization constant ZM of the elementary

meson field M(x) is set to zero, i.e.,

ZM = 1− 3g2M
4π2

Π̄′
M(m2

M) = 0, (5)

where Π̄′
M is the derivative of the meson mass operator. Its physical meaning in Eq. (5)

becomes clear when interpreted as the matrix element between the physical and the cor-

responding bare state: ZM = 0 implies that the physical state does not contain the bare

state and is appropriately described as a bound state. The interaction makes the physical

particle dressed, i.e. its mass and wave function have to be renormalized. The condition

ZM = 0 also effectively excludes the constituent degrees of freedom from the space of physi-

cal states. It thereby guarantees the absence of double counting for the physical observable

under consideration, the constituents exist only in virtual states. The tree-level diagram

together with the diagrams containing self-energy insertions into the external legs (i.e. the

tree-level diagram times ZM − 1) give a common factor ZM which is equal to zero.

The mass functions for the pseudoscalar meson (spin S = 0) and vector meson (spin

S = 1) are defined as

ΠP (x− y) = + i 〈T
{
JP (x)JP (y)

}
〉0, (6)

Πµν
V (x− y) = − i 〈T

{
JµV (x)J

ν
V (y)

}
〉0. (7)

By using the Fourier transforms of the vertex functions in Eq. (3) and quark propagators in
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Eq.(4) one can easily find the Fourier transforms of the mass functions

Π̃P (p
2) = Nc

∫
d4k

(2π)4i
Φ̃2
P (−k2)tr

(
γ5S1(k + w1p)γ

5S2(k − w2p)
)
, (8)

Π̃µν
V (p) = Nc

∫
d4k

(2π)4i
Φ̃2
V (−k2)tr

(
γµS1(k + w1p)γ

νS2(k − w2p)
)

= gµνΠ̃V (p
2) + pµpνΠ̃

‖
V (p

2) (9)

where Nc = 3 is the number of colors. Due to the transversality of the vector field the second

term in Eq. (9) is irrelevant in our consideration. The first term in Eq. (9) may be picked

out as

Π̃V (p
2) =

1

3

(
gµν −

pµpν
p2
)
Π̃µν
V (p). (10)

The loop integrations in Eqs. (8) and (9) are done with the help of the Fock-Schwinger

representation of the quark propagator

Sq(k + p) =
1

mq− 6k− 6p =
mq+ 6k+ 6p

m2
q − (k + p)2

= (mq+ 6k+ 6p)
∞∫

0

dα e−α[m
2
q−(k+p)2] , (11)

where k is the loop momentum and p is the external momentum. As described later on,

the use of the Fock-Schwinger representation allows one to do tensor loop integrals in a

very efficient way since one can convert loop momenta into derivatives of the exponential

function.

All loop integrations are performed in Euclidean space. The transition from Minkowski

space to Euclidean space is performed by using the Wick rotation

k0 = ei
π
2 k4 = ik4 (12)

so that k2 = k20 − ~k2 = −k24 − ~k2 = −k2E ≤ 0. Simultaneously one has to rotate all external

momenta, i.e. p0 → ip4 so that p2 = −p2E ≤ 0. Then the quadratic form in Eq. (11) becomes

positive-definite

m2
q − (k + p)2 = m2

q + (kE + pE)
2 > 0,

and the integral over α is absolutely convergent. We will keep the Minkowski notation to

avoid excessive relabeling. We simply imply that k2 ≤ 0 and p2 ≤ 0.
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Collecting the representations for the vertex functions and quark propagators given by

Eqs. (3) and (11), respectively, one can perform the Gaussian integration in the expressions

for the matrix elements in Eqs. (8) and (9). The exponent has the form ak2 + 2kr + z0,

where r = b p. Using the following properties

kµ exp(ak2 + 2kr + z0) =
1

2

∂

∂rµ
exp(ak2 + 2kr + z0)

kµkν exp(ak2 + 2kr + z0) =
1

2

∂

∂rµ

1

2

∂

∂rν
exp(ak2 + 2kr + z0)

etc.

(13)

one can replace 6 k by 6∂r = γµ ∂
∂rµ

which allows one to exchange the tensor integrations for

a differentiation of the Gaussian exponent e−r
2/a which appears after integration over loop

momentum. The r-dependent Gaussian exponent e−r
2/a can be moved to the left through

the differential operator 6∂r by using the following properties

∂

∂rµ
e−r

2/a = e−r
2/a

[
−2rµ

a
+

∂

∂rµ

]
,

∂

∂rµ

∂

∂rν
e−r

2/a = e−r
2/a

[
−2rµ

a
+

∂

∂rµ

]
·
[
−2rν

a
+

∂

∂rν

]
,

etc. (14)

Finally, one has to move the derivatives to the right by using the commutation relation
[
∂

∂rµ
, rν
]
= gµν . (15)

The last step has been done by using a FORM code which works for any numbers of loops and

propagators. In the remaining integrals over the Fock-Schwinger parameters 0 ≤ αi < ∞
we introduce an additional integration which converts the set of Fock-Schwinger parameters

into a simplex. We use the transformation:

n∏

i=1

∞∫

0

dαif(α1, . . . , αn) =

∞∫

0

dttn−1
n∏

i=1

∫
dαiδ

(
1−

n∑

i=1

αi

)
f(tα1, . . . , tαn) (16)

Finally, one finds

Π̃M(p2) =
3

4π2

∞∫

0

dt t

a2M

1∫

0

dα e−t z0+zM
{nM
aM

+mq1mq2 +
(
w1 −

b

aM

)(
w2 +

b

aM

)
p2
}

(17)

z0 = αm2
q1
+ (1− α)m2

q2
− α(1− α)p2, zM =

2sM t

2sM + t
(α− w2)

2p2,

aM = 2sM + t , b = (α− w2)t .
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Here nM = 2 for a pseudoscalar and nM = 1 for vector particle. The parameter sM is related

to the size parameter ΛM as sM = 1/Λ2
M .

The integral over “t” is well-defined and convergent below the threshold p2 < (mq1+mq2)
2.

The convergence of the integral above threshold p2 ≥ (mq1 + mq2)
2 is guaranteed by the

addition of a small imaginary part to the quark mass, i.e. mq → mq − iǫ, ǫ > 0 in the

quark propagator. It allows one to rotate the integration variable “t” to the imaginary

axis t → it. As a result the integral becomes convergent but obtains an imaginary part

corresponding to quark pair production.

However, by cutting the scale integration at the upper limit, which corresponds to the

introduction of an infrared cutoff

∞∫

0

dt(. . .) →
1/λ2∫

0

dt(. . .) (18)

one can remove all possible thresholds present in the initial quark diagram [24]. Thus the

infrared cutoff parameter λ effectively guarantees the confinement of quarks within hadrons.

This method is quite general and can be used for diagrams with an arbitrary number of

loops and propagators.

III. FORM FACTORS OF THE BS → φ TRANSITION

The Feynman diagram describing the Bs → φ transition in the framework of our covariant

quark model is depicted in Fig. 1. The matrix element is expressed through dimensionless

form factors [28, 29]:

〈φ(p2, ǫ2) | s̄ O µ b |Bs(p1)〉 =

= Nc gBs
gφ

∫
d4k

(2π)4i
Φ̃Bs

(
− (k + w13p1)

2
)
Φ̃φ

(
− (k + w23p2)

2
)

× tr

[
O µ Sb(k + p1) γ

5 Ss(k) 6ǫ †
2 Ss(k + p2)

]

=
ǫ †ν

m1 +m2

(
− gµν P · q A0(q

2) + P µ P ν A+(q
2) + q µ P ν A−(q

2)

+i εµναβ Pα qβ V (q2)
)
, (19)
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〈φ(p2, ǫ2) | s̄ (σ µνqν(1 + γ5)) b |Bs(p1)〉 =

= Nc gBs
gφ

∫
d4k

(2π)4i
Φ̃Bs

(
− (k + w13p1)

2
)
Φ̃φ

(
− (k + w23p2)

2
)

× tr

[
(σ µνqν(1 + γ5))Sb(k + p1) γ

5 Ss(k) 6ǫ †
2 Ss(k + p2)

]

= ǫ †ν

(
− (gµν − q µq ν/q2)P · q a0(q2) + (P µ P ν − q µ P ν P · q/q2) a+(q2)

+i εµναβ Pα qβ g(q
2)
)
. (20)

Here, P = p1 + p2, q = p1 − p2, ǫ
†
2 · p2 = 0, p21 = m2

1 ≡ m2
Bs
, p22 = m2

2 ≡ m2
φ and the

weak matrix O µ = γ µ(1 − γ5). Since there are three quarks involved in these processes,

we introduce the notation with two subscripts wij = mqj/(mqi + mqj) (i, j = 1, 2, 3) so

that wij + wji = 1. The form factors defined in Eq. (20) satisfy the physical requirement

a0(0) = a+(0), which ensures that no kinematic singularity appears in the matrix element

at q2 = 0 GeV2.

k + p1 k + p2

k

q1 q2

q̄3 q̄3

Bs(p1) φ(p2)

Jµ = γµ(1 − γ5), iσµνqν(1 + γ5)

ΦBs
( − (k + w13 p1)

2) Φφ( − (k + w23 p2)
2)

FIG. 1: Diagrammatic representation of the matrix elements describing Bs → φ transitions. Iden-

tification of quarks: q1 = b, q2 = q3 = s, w13 = ms/(mb +ms) and w23 = 1/2.

Herein we use the updated values of the model parameters [28] which are shown in
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Eq. (21).

mu/d ms mc mb λ ΛBs
Λφ

0.241 0.428 1.67 5.05 0.181 2.05 0.88 GeV

(21)

Performing the loop integration in Eqs. (19) and (20) in a manner described in the

previous section, one can obtain the form factors in the form of three-fold integrals which

are calculated numerically by using the FORTRAN code with NAG library. The form factors

are calculated in the full kinematical region of momentum transfer squared. The curves are

depicted in Fig. 2.

The results of our numerical calculations are with high accuracy approximated by the

parametrization

F (q2) =
F (0)

1− as + bs2
, s =

q2

m2
1

, (22)

the relative error is less than 1%. The values of F (0), a, and b are listed in Table I.

TABLE I: Parameters for the approximated form factors in Eq. (22).

A0 A+ A− V a0 a+ g

F (0) 0.40 0.27 −0.29 0.31 0.27 0.27 0.27

a 0.62 1.41 1.48 1.51 0.66 1.41 1.52

b −0.30 0.38 0.45 0.47 −0.26 0.39 0.49

For reference it is useful to relate the above form factors to those used, e.g., in Ref. [30]

(we denote them by the superscript c). The relations read

A0 =
m1 +m2

m1 −m2
Ac1 , A+ = Ac2 ,

A− =
2m2(m1 +m2)

q2
(Ac3 − Ac0) , V = V c ,

a0 = T c2 , g = T c1 , a+ = T c2 +
q2

m2
1 −m2

2

T c3 . (23)

We note in addition that the form factors (23) satisfy the constraints

Ac0(0) = Ac3(0)

2m2A
c
3(q

2) = (m1 +m2)A
c
1(q

2)− (m1 −m2)A
c
2(q

2) . (24)
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FIG. 2: The q2-dependence of the vector and axial form factors (upper plot) and tensor form

factors (lower plot).
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TABLE II: The form factors at maximum recoil q2 = 0.

V c(0) Ac0(0) Ac1(0) Ac2(0) T c1 (0) T c3 (0)

This work 0.31± 0.03 0.28 ± 0.03 0.27 ± 0.03 0.27 ± 0.03 0.27 ± 0.03 0.18± 0.02

Ref. [29] 0.32 0.29 0.28 0.28

Ref. [31] 0.434±0.035 0.474 ± 0.037 0.311±0.029 0.234±0.028 0.349±0.033 0.175 ± 0.018

Ref. [32] 0.406 ± 0.020 0.322 ± 0.016 0.320 ± 0.016 0.318 ± 0.016 0.275 ± 0.014 0.133 ± 0.006

Ref. [33] 0.43 0.38 0.30 0.26 0.35 0.25

Ref. [34] 0.25± 0.05 0.30 ± 0.05 0.19 ± 0.04

Ref. [35] 0.44 0.42 0.34 0.31 0.38 0.26

Ref. [36] 0.26± 0.07 0.31 ± 0.07 0.18+0.06
−0.05 0.12 ± 0.03 0.23+0.06

−0.05 0.19± 0.05

Ref. [37] 0.329 0.279 0.232 0.210 0.276 0.170

Ref. [38] 0.339 ± 0.017 0.271 ± 0.014 0.212 ± 0.011 0.299 ± 0.016 0.191 ± 0.010

Since a0(0) = a+(0) = g(0) we display in Table II the form factors Ac0(0) = (m1 −
m2)[A0(0)−A+(0)]/(2m2), A

c
1(0) = A0(0)(m1−m2)/(m1+m2), A

c
2(0) = A+(0), T

c
1 (0) = g(0)

and T c3 (0) = lim q2→0(m
2
1 −m2

2)(a+ − a0)/q
2 obtained in our model and compare them with

those from other approaches.

IV. EFFECTIVE HAMILTONIAN

The rare decay b→ sℓ+ℓ− is described in terms of the effective Hamiltonian [39]:

Heff = −4GF√
2
λt

10∑

i=1

Ci(µ)Oi(µ), (25)

where Ci(µ) and Oi(µ) are the Wilson coefficients and local operators, respectively.

λt = |VtbV ∗
ts| is the product of Cabibbo-Kobayashi-Maskawa (CKM) matrix elements.

Note that we drop small corrections proportional to λu = |VubV ∗
us|. The standard set [39] of

local operators obtained within the SM for b → sl+l− transition is written as

11



O1 = (s̄a1γ
µPLca2)(c̄a2γµPLba1), O2 = (s̄γµPLc)(c̄γµPLb),

O3 = (s̄γµPLb)
∑

q(q̄γµPLq), O4 = (s̄a1γ
µPLba2)

∑
q(q̄a2γµPLqa1),

O5 = (s̄γµPLb)
∑

q(q̄γµPRq), O6 = (s̄a1γ
µPLba2)

∑
q(q̄a2γµPRqa1),

O7 =
e

16π2 m̄b (s̄σ
µνPRb)Fµν , O8 =

g
16π2 m̄b (s̄a1σ

µνPRTa1a2ba2)Gµν ,

O9 =
e2

16π2 (s̄γ
µPLb)(ℓ̄γµℓ), O10 =

e2

16π2 (s̄γ
µPLb)(ℓ̄γµγ5ℓ),

(26)

where Gµν and Fµν are the gluon and photon field strengths, respectively; Ta1a2 are the

generators of the SU(3) color group; a1 and a2 denote color indices (they are omitted in

the color-singlet currents). The chirality projection operators are PL,R = (1 ∓ γ5)/2 and

µ is a renormalization scale. O1,2 are current-current operators, O3−6 are QCD penguin

operators, O7,8 are ”magnetic penguin” operators, and O9,10 are semileptonic electroweak

penguin operators. We denote the QCD quark masses by the bar symbol to distinguish

them from the constituent quark masses used in the model.

By using the effective Hamiltonian defined by Eq. (25) one can write the matrix element

of the exclusive transition Bs → φℓ+ℓ− as

M =
GF√
2
· αλt
π

·
{
Ceff

9 < φ | s̄ γµ PL b |Bs >
(
ℓ̄γµℓ

)

− 2m̄b

q2
Ceff

7 < φ | s̄ iσµνqν PR b |Bs >
(
ℓ̄γµℓ

)

+ C10 < φ | s̄ γµPL b |Bs >
(
ℓ̄γµγ5ℓ

)}
, (27)

where Ceff
7 = C7−C5/3−C6. One has to note that matrix element in Eq.(27) contains both

a free quark decay amplitude coming from the operators O7, O9 and O10 (gluon magnetic

penquin O8 does not contribute) and, in addition, certain long-distance effects from the

matrix elements of four-quark operators Oi (i = 1, . . . , 6) which usually are absorbed into a

redefinition of the short-distance Wilson-coefficients. The Wilson coefficient Ceff
9 effectively

takes into account, first, the contributions from the four-quark operators Oi (i = 1, ..., 6)

and, second, the nonperturbative effects coming from the cc̄-resonance contributions which
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are as usual parametrized by the Breit-Wigner ansatz [40]:

Ceff
9 = C9 + C0



h(m̂c, s) +

3π

α2
κ

∑

Vi=ψ(1s),ψ(2s)

Γ(Vi → l+l−)mVi

mVi
2 − q2 − imViΓVi





− 1

2
h(1, s) (4C3 + 4C4 + 3C5 + C6)

− 1

2
h(0, s) (C3 + 3C4) +

2

9
(3C3 + C4 + 3C5 + C6) , (28)

where C0 ≡ 3C1 + C2 + 3C3 + C4 + 3C5 + C6. Here the charm-loop function is written as

h(m̂c, s) = −8

9
ln
m̄b

µ
− 8

9
ln m̂c +

8

27
+

4

9
x

− 2

9
(2 + x)|1− x|1/2





(
ln
∣∣∣
√
1−x+1√
1−x−1

∣∣∣− iπ
)
, for x ≡ 4m̂2

c

s
< 1,

2 arctan 1√
x−1

, for x ≡ 4m̂2
c

s
> 1,

h(0, s) =
8

27
− 8

9
ln
m̄b

µ
− 4

9
ln s+

4

9
iπ,

where m̂c = m̄c/m1, s = q2/m2
1 and κ = 1/C0. In what follows we drop the charm resonance

contributions by putting κ = 0. We will use the value of µ = m̄b pole for the renormalization

scale. Besides the charm-loop perturbative contribution, two loop contributions have been

calculated in [19, 20]. They effectively modify the Wilson coefficients as

Ceff
7 → Ceff

7 − αS
4π

(
C1F

(7)
1 + C2F

(7)
2

)
,

Ceff
9 → Ceff

9 − αS
4π

(
C1F

(9)
1 + C2F

(9)
2

)
(29)

where the two-loop form factors F
(7,9)
1,2 are available in Ref. [20] as the Mathematica files.

The SM Wilson coefficients are taken from Ref. [6]. They were computed at the matching

scale µ0 = 2MW and run down to the hadronic scale µb = 4.8 GeV. The evolution of couplings

and current quark masses proceeds analogously. The values of the model independent input

parameters and the Wilson coefficients are listed in Table III.

A global analysis of b → sℓℓ anomalies has been performed in Ref. [4] with the Next-to-

Next-to-Leading Logarithmic (NNLL) corrections included. It was shown that they amount

up to 15%. The discussion of the non-local cc̄ contributions maybe also found in Ref. [11].
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TABLE III: Values of the input parameters.

mW sin2 θW α(MZ) m̄c m̄b m̄t λt

80.41 GeV 0.2313 1/128.94 1.27 GeV 4.68 GeV 173.3 GeV 0.041

C1 C2 C3 C4 C5 C6 Ceff
7 C9 C10

−0.2632 1.0111 −0.0055 −0.0806 0.0004 0.0009 −0.2923 4.0749 −4.3085

V. NUMERICAL RESULTS

We are aiming to compare our results for the branching fractions and angular observables

with the experimental data recently reported by the LHCb Collaboration [3] and the results

of global analyses performed in Ref. [4]. The four-fold distribution in the cascade decay

B → φ(→ K+K−)ℓ̄ℓ allows one to define a number of physical observables which can be

measured experimentally. The observables accessible in the decay Bs → φµ+µ− [3] are the

CP averaged differential branching ratio dB/dq2, the CP-averaged φ longitudinal polarization

fraction FL, forward-backward asymmetry AFB and the CP-averaged angular observables

S3,4,7 which may be related to the optimized observables Pi [4]. The CP asymmetries A5,6,8,9

[41] in the SM are induced by the weak phase from the CKM matrix. For the b → s

transitions the CP asymmetries are proportional to Im(λ̂u) ≡ Im(VubV
∗
us/VtbV

∗
ts) which is of

order 10−2 [41]. The experimental data reported by [3] contain huge statistical uncertainties

(see, Table 3 in [3]). For these reasons we restricted ourselves to the CP-averaged quantities.

We start with the branching fraction of the rare decay Bs → φℓ̄ℓ. The width of this decay

is computed by integration of the q2-differential distribution

dΓ(B → φℓ̄ℓ)

dq2
=

G2
F

(2π)3

(
αλt
2π

)2 |p2| q2 βℓ
12m2

1

Htot ,

Htot =
1

2

(
H11
U +H22

U +H11
L +H22

L

)
+ δℓℓ

[
1

2
H11
U −H22

U +
1

2
H11
L −H22

L +
3

2
H22
S

]
. (30)

In what follows we will use the short notation m1 = mBs
, m2 = mφ, βℓ =

√
1− 4m2

ℓ/q
2,

δℓℓ = 2m2
ℓ/q

2. Then |p2| = λ1/2(m2
1, m

2
2, q

2)/(2m1) is the momentum of the φ-meson given

in the Bs-rest frame. The bilinear combinations of the helicity amplitudes H are defined as

14



(see, Ref. [23] for details):

Hii
U = |H i

+1+1|2 + |H i
−1−1|2, Hii

L = |H i
00|2, Hii

S = |H i
t0|2, (31)

where the helicity amplitudes are expressed via the form factors appearing in the matrix

element of the rare decay Bs → φℓ̄ℓ as

H i
t0 =

1

m1 +m2

m1 |p2|
m2

√
q2

(
Pq (−Ai0 + Ai+) + q2Ai−

)
,

H i
±1±1 =

1

m1 +m2

(
−Pq Ai0 ± 2m1 |p2| V i

)
,

H i
00 =

1

m1 +m2

1

2m2

√
q2

(
−Pq (m2

1 −m2
2 − q2)Ai0 + 4m2

1 |p2|2Ai+
)
. (32)

The form factors Ai and V i (i = 1, 2) are related to the form factors in the Bs−φ transitions,

see Eqs. (19) and (20), in the following manner

V (1) = Ceff
9 V + Ceff

7 g
2m̄b(m1 +m2)

q2
,

A
(1)
0 = Ceff

9 A0 + Ceff
7 a0

2m̄b(m1 +m2)

q2
,

A
(1)
+ = Ceff

9 A+ + Ceff
7 a+

2m̄b(m1 +m2)

q2
,

A
(1)
− = Ceff

9 A− + Ceff
7 (a0 − a+)

2m̄b(m1 +m2)

q2
Pq

q2
,

V (2) = C10 V, A
(2)
0 = C10A0, A

(2)
± = C10A±. (33)

The differential rate of the decay Bs → φνν̄ is calculated according to

dΓ(Bs → φνν̄)

dq2
=

G2
F

(2π)3

(αλt
2π

)2[Dν(xt)

sin2 θW

]2 |p2| q2
4m2

1

· (HU +HL) , (34)

where xt = m̄2
t/m

2
W and the function Dν is given by

Dν(x) =
x

8

(
2 + x

x− 1
+

3x− 6

(x− 1)2
ln x

)
. (35)

The relevant bilinear helicity combinations are defined as

HU = |H+1+1|2 + |H−1−1|2, HL = |H00|2,

H±1±1 =
1

m1 +m2

(−Pq A0 ± 2m1 |p2| V ) ,

H00 =
1

m1 +m2

1

2m2

√
q2

(
−Pq (m2

1 −m2
2 − q2)A0 + 4m2

1 |p2|2A+

)
. (36)
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The width of the color-suppressed nonleptonic decay Bs → J/ψ φ decay is given by [29]

Γ(Bs → J/ψ φ) =
G2
F

16π

|p2|
m2

1

|VcbVcs|2
(
C eff

1 + C eff
5

)2 (
mJ/ψ fJ/ψ

)2
(HU +HL) (37)

where the momentum transfer squared is taken on the mass of J/ψ, i.e. q2 = m2
J/ψ,

Vcb = 0.406, Vcs = 0.975 and fJ/ψ = 415 MeV. The Wilson coefficients are combined

as C eff
1 = C1 + ξ C2 + C3 + ξ C4 and C eff

5 = C5 + ξ C6 in accordance with the naive factor-

ization. The terms multiplied by the color factor ξ = 1/Nc will be dropped in the numerical

calculations according to the 1/Nc-expansion.

Finally, we calculate the width of radiative decay Bs → φγ defined by

Γ(Bs → φγ) =
G2
Fαλ

2
t

32π4
m̄2
bm

3
1

(
1− m2

2

m2
1

)3
|Ceff

7 |2 g2(0) . (38)

One has to note that the experimental observables in the decays of neutral Bs-mesons

are affected by Bs− B̄s mixing. The theoretical framework for studying the time-dependent

decays with taking into account such mixing has been recently developed in Ref. [42]. The

mixing effects change the values of rates and CP averages within a few percents.

In Table IV the calculated values of branching fractions Bs → φµ+µ−, Bs → φτ+τ−,

Bs → φγ, Bs → φνν̄ and Bs → φJ/ψ are given. The experimental errors shown in Table IV

result from combining the partial uncertainties in quadrature. The model uncertainties

are estimated to be within 10%. We compare our results with those obtained in other

approaches.

TABLE IV: Total branching fractions.

This work Ref. [32] Ref. [33] Ref. [38] Ref. [43] Ref. [3, 44]

107B(Bs → φµ+µ−) 9.11 ± 1.82 11.1 ± 1.1 19.2 11.8 ± 1.1 16.4 7.97± 0.77

107B(Bs → φτ+τ−) 1.03 ± 0.20 1.5 ± 0.2 2.34 1.23 ± 0.11 1.51

105B(Bs → φγ) 2.39 ± 0.48 3.8 ± 0.4 3.52± 0.34

105B(Bs → φνν̄) 0.84 ± 0.16 0.796 ± 0.080 1.165 < 540

102B(Bs → φJ/ψ) 0.16 ± 0.03 0.113 ± 0.016 0.108 ± 0.009

The full four-fold angular decay distribution for the rare B decay has been derived in

Ref. [23] in terms of helicity amplitudes including lepton mass effects. It is described by the

three angles and the squared momentum q2 of the lepton pair. This distribution allows one to
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define a number of physical observables which can be measured experimentally. Among them

are three natural observables: the branching ratio, the longitudinal polarization fraction of

the φ-meson and the forward-backward asymmetry. The differential branching fraction is

obtained from the full four-fold angular decay distribution by integration over all three

angles. The explicit expression is given by Eq. (30) in terms of helicity amplitudes. The

relation of helicity amplitudes and the transversality amplitudes is obtained in Ref. [28].

The longitudinal polarization fraction and the forward-backward asymmetry are defined

as

FL =
1

2
β2
ℓ

H11
L +H22

L

Htot

, (39)

FT =
1

2
β2
ℓ

H11
U +H22

U

Htot
, (40)

AFB =
1

dΓ/dq2




1∫

0

−
0∫

−1



 dcos θ d2Γ

dq2dcos θ
= −3

4
βℓ

H12
P

Htot
, (41)

where θ is the polar angle between the ℓ+ℓ−-plane and z-axis. As follows from the definition,

the quantities AFB and FL are the ratios of the hadronic amplitudes which are supposed to

be less dependent on the theoretical uncertainties.

The behavior of the differential branching fraction dB/dq2, forward-backward asymmetry

AFB and longitudinal polarization FL is shown in Figs. 3, 4 and 5, respectively.
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FIG. 3: Differential branching fraction in GeV−2.

A set of so-called optimized observables Pi has been constructed (see [6] and references

therein) by taking appropriate ratios of the form factors in such a way to minimize the

hadronic uncertainties. These observables have been constructed with aim to reduce the
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FIG. 4: Forward-backward asymmetry AFB.
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FIG. 5: Longitudinal polarization FL.

form factor dependence and increase the discrimination power between the SM and NP,

together with preserving a good experimental accessibility. It seems however more difficult

to give them a clean physical interpretation, as it was the case for AFB and FL.

The optimized observables have not been given explicitly in [3]. Their numerical values

were obtained in [4] by converting the results for the CP averages S3,4,7 into the optimized

observables.

We will calculate directly the optimized observables Pi expressed through the helicity

amplitudes as was done in Ref. [28]. The q2-dependence of the optimized observables P1

and P ′
4 is displayed in Fig.6.

The q2–averages of polarization observables over the whole allowed kinematic region are

given in Table V. For comparison reasons, we also give the values of the S3,4,7 by using the

relations [5]:

S3 =
1

2
FTP1, S4 =

1

2

√
FTFLP

′
4, S7 = −

√
FTFLP

′
6. (42)
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FIG. 6: Clean observables P1 and P ′
4.

TABLE V: q2–averages of polarization observables over the whole allowed kinematic region.

Bs → φℓ+ℓ−

< AFB > < FL > < P1 > < P ′
4 > < S3 > < S4 >

µ −0.24± 0.05 0.45 ± 0.09 −0.52± 0.1 1.05 ± 0.21 −0.14 ± 0.03 0.26 ± 0.05

τ −0.18± 0.04 0.090 ± 0.02 −0.76 ± 0.15 1.33 ± 0.27 −0.067 ± 0.013 0.083 ± 0.017

We use the Wilson coefficients obtained at the next-to-leading logarithmic (NLL) order

in our calculation of the observables in the full kinematical region of the momentum transfer

squared. At this order only the coefficient Ceff
9 has imaginary part. Since our form factors are

real, the optimized observable P ′
6 is identically zero at this order. The optimized observable

P1 is small for large recoil for any choice of the Wilson coefficients. It is easy to check that

P1 ∝ A0(0)− V (0) at q2 = 0. In our model A0(0) = 0.40 and V (0) = 0.31 so it leads to the

really small value of the P1. Note that A0(0) = V (0) in the heavy quark limit.

Finally, we present our results for the binned observables in Table VI. Here, we take
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into account the NNLL corrections for the Wilson coefficients which have been calculated

in [19, 20]. They effectively modify the Wilson coefficients Ceff
7 and Ceff

9 . The two-loop

corrections to the decay b→ sℓ+ℓ− were given in [19] as expansions in the small parameters

ŝ = q2/m̄2
b and z = m̄2

c/m̄
2
b . The q

2-region was restricted to the range 0.05 ≤ ŝ ≤ 0.25. The

NNLL corrections in the high q2 region above the charm threshold q2 > 4m̄2
c were presented

in [20]. The high q2-region was restricted to the range 0.4 ≤ ŝ ≤ 1.0. By using the value of

QCD bottom quark m̄b = 4.68 GeV from Table III one can obtain the q2 regions where the

two-loop corrections are valid:

1.1 ≤ q2 ≤ 5.5 GeV2 (low region) and 8.8 ≤ q2 ≤ 22 GeV2 (high region). (43)

However, for the 2-loop calculation in the low q2 region, it was important that q2/m̄2
b and

q2/(4m̄2
c) are both much smaller than 1. So one can safely use the results of Ref. [19] for

low q2 in the region 0.1 ≤ q2 ≤ 6 GeV2. The two-loop expansion in the high q2 region [20]

can be justified only for q2/m̄2
b > 0.4. For this reason, we exclude the bin [5, 8] from the

consideration of two-loop corrections [45].

Now the observable P ′
6 and hence S7 become different from zero. The NNLL corrections

contribute up to 20% in the region of small transferred momentum squared q2 ≤ 6 GeV2

but their influence in the region of large q2 is really negligible.

VI. DISCUSSION AND CONCLUSION

The level of agreement with experiment can be estimated by combining in quadrature

the experimental errors with the theoretical ones: if the difference in observable values is

smaller, then it can be seen as compatible with zero.

Using this optics one can address the 3.3 σ deviation seen by [3] for branching fraction

in the 1 − 6 GeV2 range. In the covariant confined quark model this discrepancy is much

reduced. The remaining deviation (0.9 σ) shrinks even further if the two-loop corrections

for the Wilson coefficients are taken into account, down to 0.7 σ. With such error reduction

one cannot claim a discrepancy with the SM any longer.

Overall one observes a good description of the data by the covariant quark model and

the agreement becomes even better if the two-loop corrections are taken into account. The

biggest discrepancy of 1.9 σ observed for FL in the lowest bin 0.1 ≤ q2 ≤ 2 GeV2 is reduced
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to 1.4 σ when these corrections are taken into account.

The remaining deviations do not exceed 1.7 σ and only one of them is greater than 1.4 σ

if the two loops corrections are neglected ( S4 for 15 ≤ q2 ≤ 17 GeV2). When they are taken

into account most measurements lie within one standard deviation, the only one exceeding

1.4 σ is S4 for 15 ≤ q2 ≤ 17 GeV2.

The largest deviation of the obtained results from the SM [4] predictions is found for the

branching fraction at lower q2. One has to emphasize that the branching fraction is the

most affected by the uncertainties related to the hadronic form factors. The global analysis

performed in [4] has basically used a specific set of form factors determined from light-cone

sum rules (LCSR) [13, 30, 31].

As discussed above, the value of P1 at small q2 is really small and lays within uncertainties

given by both the experiment and global fit [4]. There is agreement between our approach

and [4] for large q2. The values of P ′
6 are identical zero at one-loop level. The results

obtained by using two-loop expansion are in agreement with the experiment and with [4]

within uncertainties.

One can conclude that the results provided by the covariant confined quark model do not

allow to claim a significant deviation from the SM and they demonstrate the non-negligible

effect of the two-loop corrections for the Wilson coefficients which bring the theoretical

predictions closer to the data.
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TABLE VI: Binned observables.

107B(Bs → φµ+µ−) 2 loop 1 loop SM [4] Expt. [3]

[0.1, 2] 0.99 ± 0.2 0.86± 0.17 1.81 ± 0.36 1.11 ± 0.16

[2, 5] 0.90 ± 0.18 0.95± 0.19 1.88 ± 0.31 0.77 ± 0.14

[5, 8] −− 1.25± 0.25 2.25 ± 0.41 0.96 ± 0.15

[11, 12.5] 0.84 ± 0.17 0.88± 0.18 −− 0.71 ± 0.12

[15, 17] 1.15 ± 0.23 1.19± 0.24 −− 0.90 ± 0.13

[17, 19] 0.75 ± 0.15 0.77± 0.15 −− 0.75 ± 0.13

[1., 6.] 1.56 ± 0.31 1.64± 0.33 −− 1.29 ± 0.19

[15, 19] 1.89 ± 0.28 1.95± 0.29 2.20 ± 0.16 1.62 ± 0.20

FL(Bs → φµ+µ−) 2 loop 1 loop SM [4] Expt. [3]

[0.1, 2] 0.37 ± 0.07 0.46± 0.09 0.46 ± 0.09 0.20 ± 0.09

[2, 5] 0.72 ± 0.14 0.74± 0.15 0.79 ± 0.03 0.68 ± 0.15

[5, 8] −− 0.57± 0.11 0.65 ± 0.05 0.54 ± 0.10

[11, 12.5] 0.40 ± 0.08 0.40± 0.08 −− 0.29 ± 0.11

[15, 17] 0.34 ± 0.07 0.34± 0.07 −− 0.23 ± 0.09

[17, 19] 0.33 ± 0.06 0.33± 0.06 −− 0.4 ± 0.14

[1, 6] 0.69 ± 0.14 0.71± 0.14 −− 0.63 ± 0.09

[15, 19] 0.34 ± 0.07 0.34± 0.07 0.36 ± 0.02 0.29 ± 0.07

P1(Bs → φµ+µ−) 2 loop 1 loop SM [4] Expt. [3]

[0.1, 2] 0.013 ± 0.003 0.012 ± 0.002 0.11 ± 0.08 −0.13 ± 0.33

[2, 5] −0.26 ± 0.05 −0.31 ± 0.06 −0.10 ± 0.09 −0.38 ± 1.47

[5, 8] −− −0.39 ± 0.08 −0.20 ± 0.10 −0.44 ± 1.27

[11, 12.5] −0.50 ± 0.10 −0.50 ± 0.10 −− −−

[15, 17] −0.71 ± 0.14 −0.70 ± 0.14 −− −−

[17, 19] −0.86 ± 0.17 −0.86 ± 0.17 −− −−

[1, 6] −0.22 ± 0.04 −0.28 ± 0.06 −− −−

[15, 19] −0.77 ± 0.15 −0.77 ± 0.15 −0.69 ± 0.03 −0.25 ± 0.34
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P ′
4(Bs → φµ+µ−) 2 loop 1 loop SM [4] Expt. [3]

[0.1, 2] −0.18 ± 0.04 −0.15 ± 0.03 −0.28 ± 0.14 −1.35 ± 1.46

[2, 5] 0.86 ± 0.17 0.96± 0.19 0.80 ± 0.11 2.02 ± 1.84

[5, 8] −− 1.15± 0.23 1.06 ± 0.06 0.40 ± 0.72

[11, 12.5] 1.22 ± 0.24 1.22± 0.24 −− −−

[15, 17] 1.31 ± 0.26 1.30± 0.26 −− −−

[17, 19] 1.36 ± 0.27 1.36± 0.27 −− −−

[1, 6] 0.75 ± 0.15 0.86± 0.17 −− −−

[15, 19] 1.33 ± 0.26 1.33± 0.26 1.30 ± 0.01 0.62 ± 0.49

P ′
6(Bs → φµ+µ−) 2 loop 1 loop SM [4] Expt. [3]

[0.1, 2] −0.016 ± 0.003 0 −0.06 ± 0.02 −0.10 ± 0.30

[2, 5] −0.015 ± 0.003 0 −0.05 ± 0.02 0.06 ± 0.49

[5, 8] −− 0 −0.02 ± 0.01 −0.08 ± 0.40

[11, 12.5] −0.0043 ± 0.0008 0 −− −−

[15, 17] −0.0018 ± 0.0004 0 −− −−

[17, 19] −0.00071 ± 0.00014 0 −− −−

[1, 6] −0.014 ± 0.003 0 −− −−

[15, 19] −0.0014 ± 0.0003 0 −0.00 ± 0.07 −0.29 ± 0.24

S3(Bs → φµ+µ−) 2 loop 1 loop SM [4] Expt. [3]

[0.1, 2] 0.0031 ± 0.0006 0.0023 ± 0.0005 0.02 ± 0.02 −0.05 ± 0.13

[2, 5] −0.035 ± 0.007 −0.039 ± 0.008 −0.01 ± 0.01 −0.06 ± 0.21

[5, 8] −− −0.082 ± 0.016 −0.03 ± 0.02 −0.10 ± 0.25

[11, 12.5] −0.15 ± 0.03 −0.15 ± 0.03 −− −0.19 ± 0.21

[15, 17] −0.23 ± 0.05 −0.23 ± 0.05 −− −0.06 ± 0.18

[17, 19] −0.29 ± 0.06 −0.29 ± 0.06 −− −0.07 ± 0.25

[1, 6] −0.034 ± 0.007 −0.039 ± 0.008 −− −0.02 ± 0.13

[15, 19] −0.25 ± 0.05 −0.25 ± 0.05 −0.22 ± 0.01 −0.09 ± 0.12

S4(Bs → φµ+µ−) 2 loop 1 loop SM [4] Expt. [3]

[0.1, 2] −0.038 ± 0.008 −0.031 ± 0.006 −0.06 ± 0.03 −0.27 ± 0.23

[2, 5] 0.19 ± 0.04 0.21± 0.04 0.16 ± 0.03 0.47 ± 0.37
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[5, 8] −− 0.28± 0.06 0.25 ± 0.02 0.10 ± 0.17

[11, 12.5] 0.30 ± 0.06 0.30± 0.06 −− 0.47 ± 0.25

[15, 17] 0.31 ± 0.06 0.31± 0.06 −− 0.03 ± 0.15

[17, 19] 0.32 ± 0.06 0.32± 0.06 −− 0.39 ± 0.3

[1, 6] 0.17 ± 0.03 0.19± 0.04 −− 0.19 ± 0.14

[15, 19] 0.31 ± 0.06 0.31± 0.06 0.31 ± 0.00 0.14 ± 0.11

S7(Bs → φµ+µ−) 2 loop 1 loop SM [4] Expt. [3]

[0.1, 2] 0.0065 ± 0.0013 0 0.03 ± 0.01 0.04 ± 0.12

[2, 5] 0.0065 ± 0.0013 0 0.02 ± 0.01 −0.03 ± 0.21

[5, 8] −− 0 0.01 ± 0.00 0.04 ± 0.18

[11, 12.5] 0.0021 ± 0.0004 0 −− 0.00 ± 0.16

[15, 17] 0.00087 ± 0.0002 0 −− 0.12 ± 0.15

[17, 19] 0.00034 ± 0.00007 0 −− 0.20 ± 0.26

[1, 6] 0.0065 ± 0.0013 0 −− −0.03 ± 0.14

[15, 19] 0.00066 ± 0.00013 0 0.00 ± 0.03 0.13 ± 0.11
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