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Exact vector channel sum rules at finite temperature

and their applications to lattice QCD data analysis
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We derive three exact sum rules for the spectral function of the electromagnetic current with zero
spatial momentum at finite temperature. Two of them are derived in this paper for the first time.
We explicitly check that these sum rules are satisfied in the weak coupling regime and examine which
sum rule is sensitive to the transport peak in the spectral function at low energy or the continuum
at high energy. Possible applications of the three sum rules to lattice computations of the spectral
function and transport coefficients are also discussed: We propose an ansatz for the spectral function
that can be applied to all three sum rules and fit it to available lattice data of the Euclidean vector
correlator above the critical temperature. As a result, we obtain estimates for both the electrical
conductivity σ and the second order transport coefficient τJ .

PACS numbers: 12.38.Mh, 11.10.Wx, 11.55.Hx

I. INTRODUCTION AND SUMMARY

Among the properties of hadronic matter at finite tem-
perature, whose dynamics is described by quantum chro-
modynamics (QCD), the spectral function of the elec-
tromagnetic current plays an important role since it con-
tains the full information on the dilepton/photon produc-
tion rate [1], the electrical conductivity, and the mod-
ification of the spectral properties of vector mesons at
finite temperature. All these quantities have been in-
tensively studied in the context of heavy ion collisions.
The spectral function has therefore naturally been in-
vestigated within many approaches, such as perturbative
QCD [2], the AdS/CFT correspondence [3], model calcu-
lations [4], low-energy effective theory based on hadronic
degrees of freedom [5, 6], sum rules [7–10], and lattice
QCD [11–19], which have led to a large number of di-
verse results. Under such circumstances, it is useful to
have exact constraints on the spectral function that all
approaches should satisfy. Especially in lattice QCD,
which can be directly applicable only for static quanti-
ties, it would be useful to have such constraints since the
spectral function is a dynamical quantity and thus can
not be computed directly. One goal of the present paper
is to provide such constraints in the form of sum rules,
and discuss their applications to lattice QCD analysis.

In the first part of the manuscript, we derive the three
sum rules of Eqs. (9), (15), and (24), of which the second
and third one are written down here for the first time.
The third one is valid in the largeNc limit while the other
two are exact for general Nc. For this purpose, we make
use of a method developed for the energy-momentum ten-
sor channel in an earlier work by Romatschke and Son
[20]. We emphasize that these sum rules are exact, and
valid both in hadron and quark-gluon plasma phases, as
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FIG. 1: The contour C, used in the integral of Eq. (1).

long as hydrodynamics is reliable there. We furthermore
check that the sum rules are satisfied at weak coupling
by explicit perturbative calculations, and examine their
sensitivity to the peak in the spectral function which is
caused by the transport process of the quarks (trans-
port peak) and the continuum generated by free quark
pair creation processes. Next, we discuss potential ap-
plications of the sum rules to lattice QCD studies of the
spectral function. These include the possibility of pro-
viding constraints to the spectral function ansatz used to
fit the Euclidean vector correlator lattice data, improve-
ments for this ansatz, and the extraction of the second
order transport coefficient τJ from the spectral function
obtained from a fit to lattice data.

II. SUM RULES

A. Sum Rule 1

The quantity we are interested in is
the retarded Green function of the elec-
tromagnetic (EM) current: GRµν(ω,p) ≡
i
∫

dt
∫

d3xeiωt−ip·xθ(t)〈[jµ(t,x), jν(0,0)]〉, where

jµ ≡ e
∑

f qfψfγ
µψf is the EM current, and the average

is taken over the thermal ensemble. Here e is the
electromagnetic coupling constant, qf the charge in
each quark flavor, and ψf the quark field with flavor f ,
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respectively. At |p| = 0, there is only one independent
component in the spatial components of this tensor,
GR(ω) ≡ GR

ii(ω,0)/3, due to isotropy. In this paper, we
limit ourselves to this case for simplicity.
First, to introduce the method developed in Ref. [20],

we rederive the sum rule of Eq. (9), which has already
been obtained in Ref. [15] from the current conservation
law. The retarded Green function is known to be analytic
in the upper half of the complex ω plane. This property
enables us to derive various sum rules. Because of the
residue theorem, we have

δGR(iω)− δGR
∞ =

1

2πi

∮

C

dω′ δG
R(ω′)− δGR

∞

ω′ − iω
, (1)

for which the contour C is shown in Fig. 1. Here δ
stands for the subtraction of the T = 0 value of GR(ω),
δGR(ω) ≡ GR(ω)−GR(ω)|T=0. Due to this subtraction,
the ultraviolet behavior of GR is improved so that the
contribution from the arc with infinite radius becomes
negligible. Another subtraction of δGR

∞ ≡ δGR(iω)|ω→∞

is for removing any possibly remaining ultraviolet diver-
gence. Taking the infinitesimal ω limit, we get

δGR(0)− δGR
∞ =

2

π

∫ ∞

0

dω

ω
δρ(ω), (2)

where we have made use of the fact that the real (imagi-
nary) part of GR(ω) is an even (odd) function of ω, and
introduced the spectral function, ρ(ω) ≡ ImGR(ω). We
also changed the integration variable to ω for simplicity.
On the left-hand side, the ultraviolet (UV) and infrared

(IR) limits of GR constrain the spectral function integral
through Eq. (2). The former quantity can be evaluated
using the operator product expansion (OPE) [21, 22].
Because of the subtraction of the T = 0 piece, all terms
with operators of mass dimensions less than four vanish,
so that the asymptotic behavior at large ω is described by
the operators with mass dimensions four. By computing
the coefficients of such operators at leading order in αs,
we get

δGR(ω) = e2
∑

f

q2f
1

ω2

[

2mfδ〈ψfψf 〉+
1

12
δ
〈αs

π
G2

〉

+
8

3
δ〈T 00

f 〉

]

+O
(

ω−4
)

,

(3)

where Gµν
a ≡ ∂µAν

a − ∂νAµ
a − gfabcA

µ
bA

ν
c is the field

strength, G2 ≡ Ga
µνG

aµν , Tαβ
f ≡ iST ψfγ

αDβψf is the
quark component to the traceless part of the energy-
momentum tensor, Dµ ≡ ∂µ + igAµ

at
a the covariant

derivative, Aµ
a the gluon field, ta the generator of the

SU(Nc) group in the fundamental representation, fabc
the structure constant of the SU(Nc) group, mf the cur-
rent quark mass, g the QCD coupling constant, αs ≡
g2/(4π), and Nc the number of the colors. ST makes

a tensor symmetric and traceless: ST Oαβ ≡ (Oαβ +
Oβα)/2−gαβOµ

µ/4. We note that having dropped higher
order corrections to the coefficients above will be justified
in the ω → ∞ limit, which allows us to use asymptotic
freedom. Also note that the traceless gluonic compo-
nent of the energy-momentum tensor [T 00

g , defined above
Eq. (4)] can also in principle appear in the OPE at finite
temperature. We have dropped such a term since it van-
ishes at leading order in αs, but we will discuss below
that it shows up once the operator mixing is taken into
account. We retained the gluon condensate term though
formally it is of higher order in αs, as it turns out to
be finite even in the ω → ∞ limit due to its vanishing
anomalous dimension. When considering the ω → ∞
limit, we need to take into account the effects of scaling
and mixing of the operators, reflected in their anomalous
dimensions. The anomalous dimensions of the chiral and
gluon condensates are zero, so they do neither scale nor
mix. On the other hand, the quark energy momentum
tensor both scales and mixes with a respective gluonic
operator. To understand this behavior, we rewrite the
operator as T 00

f = T ′00
f + (T 00 + 2T̃ 00/Nf )/(4CF +Nf ),

where T ′00
f ≡ T 00

f −
∑

f ′ T 00
f ′ /Nf , T

00 ≡
∑

f ′ T 00
f ′ + T 00

g ,

and T̃ 00 ≡ 2CF

∑

f ′ T 00
f ′ − NfT

00
g /2. Here, T µν

g ≡

−Gµα
a Gν

αa + gµνG2/4 is the gluon component of the
traceless part of the energy-momentum tensor, Nf the
flavor number, and CF ≡ (N2

c − 1)/(2Nc). A standard
renormalization group (RG) analysis yields the following
scaling properties [23]:

T ′00
f (κ) =

[

ln (κ0/ΛQCD)

ln (κ/ΛQCD)

]a′

T ′00
f (κ0),

T̃ 00(κ) =

[

ln (κ0/ΛQCD)

ln (κ/ΛQCD)

]ã

T̃ 00(κ0),

(4)

while T 00 is independent of κ. Here κ and κ0 are renor-
malization scales, ΛQCD is the QCD scale parameter,
a′ ≡ 8CF /(3b0), and ã ≡ 2(4CF + Nf)/(3b0), where
b0 ≡ (11Nc − 2Nf)/3, which appears in the expression
αs(κ) = 2π/[b0(ln(κ/ΛQCD))]. We see that, except for
the T 00 term, all terms are suppressed logarithmically at
large ω. Thus, the resultant expression becomes

δGR(ω) = e2
∑

f

q2f
1

ω2

[

2mfδ〈ψfψf 〉+
1

12
δ
〈αs

π
G2

〉

+
8

3

δ〈T 00〉

4CF +Nf

]

.

(5)

This vanishes at ω → ∞ and hence its contribution to
Eq. (2) is zero. We note that, in ω → ∞ limit, which is
relevant to the derivation of the sum rule, the asymptotic
freedom of QCD guarantees that the above expression is
exact.
On the other hand, the IR limit is well described

by hydrodynamics. At |p| = 0, it suffices to con-
sider the constitutive relation for the system at rest,
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j = σE − στJ∂tE + O(∂2E), since the conservation law
of the current is trivial (∂tj

0 = −∇· j = 0). Here σ is the
electrical conductivity, τJ the second order transport co-
efficient for ∂tE, E ≡ −∇A0−∂0A the electric field, and
Aµ the vector potential. We have dropped magnetic field
dependent terms and the diffusion term from the consti-
tutive relation, since they vanish in the |p| = 0 case. The
linear response theory enables us to extract the retarded
function through the relation,

jµ(ω) = −GR
µν(ω)A

ν(ω), (6)

which results in

GR(ω) = iωσ (1 + iτJω) +O(ω3), ρ(ω) = σω +O(ω3).

(7)

To get δGR, we need to knowGR|T=0. Lorentz invariance
guarantees the following form:

GR(ω)|T=0 = ω2G2(ω
2). (8)

Here the real part of G2 contains a UV divergence com-
ing from the T = 0 part, so the renormalization of the
photon wave function [23, 24] is necessary, which implies
G2(0) = 0. We note that σ and τJ in Eq. (7) need to be
defined for the renormalized version of GR(ω). Also the
imaginary part of G2 at small ω is zero because even the
lightest vector meson (the ρ meson) has non-zero mass
and its spectral strength vanishes below the ππ thresh-
old, so that the spectral weight around ω = 0 is zero.
For these two reasons, we see that the left-hand side of
Eq. (7) is actually equal to δGR. This is not the case for
the higher order terms that are of order ω4 or higher.
We also note that Eq. (7) is correct only in the large

Nc limit, in which the coupling effect among the hydro
modes is negligible [25]. Beyond this limit, a nonanalytic
term (∼ω3/2) appears in ρ(ω). Nevertheless, this does
not affect the sum rules 1 and 2 we derive in this work.
Applying the UV and IR results of Eqs. (5), (7), Eq. (2)
becomes

0 =

∫ ∞

0

dω

ω
δρ(ω). (9)

This is the first sum rule (sum rule 1) to be discussed
in this paper. We should mention here that this is the
|p| = 0 version of the sum rule derived in Ref. [15].
Let us check that this sum rule is satisfied at weak

coupling and in the chiral limit (mf = 0). In this case,
the spectral function consists of a transport peak at low
energy (ω ∼ g4T ) and a continuum in the high energy re-
gion (ω ∼ T ). We first evaluate the former contribution,
which can be described by the Boltzmann equation

Dn±f (k, X)− τ−1nF (|k|)

= ∓eqf (E+ v ×B) (X) · ∇kn±f(k, X),
(10)

where D ≡ v · ∂X + τ−1, n±f (k, X) is the distribution
function for the quark (anti-quark) with momentum k at

point X , nF (|k|) ≡ [exp(|k|/T )+ 1]−1 is the distribution
function at equilibrium, and vµ ≡ (1,v) with v ≡ k/|k|.
We have adopted here the relaxation time approxima-
tion, which considerably simplifies the collision term1. τ
is called relaxation time, and its order of magnitude is de-
termined by collision effects. Since we are interested in
the retarded Green function, we only need the linearized
equation: Dδn±f (k, X) = ∓eqfE(X) · vn′

F (|k|), where
δn±f ≡ n±f − nF . After performing the Fourier trans-
formation X → p and setting |p| = 0, this results in the
solution

δn±f(k, ω) = ∓ieqf
E(ω) · v

ω + iτ−1
n′
F (|k|). (11)

The induced current is given by j(ω) =
2eNc

∑

f qf
∫

d3kv
∑

s=±1 sδnsf (k, ω)/(2π)
3, where

the factor 2 comes from the spin degeneracy of the
quarks. This expression and Eq. (11), together with the
linear response relation of Eq. (6), give us the following
result for GR and the spectral function:

GR(ω) =−
T 2CemNc

9

ω

ω + iτ−1
,

ρ(ω) =
T 2CemNc

9

ωτ−1

ω2 + τ−2
.

(12)

Here we have introduced the factor, Cem ≡ e2
∑

f q
2
f . We

note that this is reduced to Eq. (7) when ω ≪ τ−1, and
we can identify σ = T 2CemNcτ/9 and τJ = τ . We note
that collisional effects are essential for the evaluation of
σ: If we take the τ−1 → 0 limit, ρ(ω) will be proportional
to ωδ(ω) and σ proportional to τ , which is infinitely large.
This abnormal behavior indicates that collisions are im-
portant in the small ω region. Its contribution to the
sum rule Eq. (9) reads

∫ ∞

0

dω

ω
δρ(ω) =

πT 2CemNc

18
, (13)

which is of order e2T 2, and independent of τ . Here the
T = 0 component does not contribute because of the
absence of the transport peak in the vacuum.
Next, we evaluate the contribution from the contin-

uum. From a one-loop calculation [29], we have

ρ(ω) =
NcCem

12π
ω2

(

1− 2nF

(ω

2

))

. (14)

The pair creation/annihilation process of the quark and
the anti-quark is responsible for this expression: one
can see that by rewriting the distribution function fac-
tor 1− 2nF as [1− nF ]

2 − n2
F . The former (latter) term

1 This is a very simple approximation, which was however found
to work well by solving the Boltzmann equation without relying
on it [26]: The full calculation produces a solution for ρ(ω)/ω
that is an almost perfect Lorentzian, which is also obtained by
the relaxation time approximation [see Eq. (12)].
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comes from the pair creation (annihilation) process. It is
noted that, after subtracting the T = 0 part, the spectral
function becomes negative. Performing the integral over
ω, it is straightforward to see that its contribution to
the sum rule cancels the contribution from the transport
peak, Eq. (13), so that the sum rule Eq. (9) is satisfied.

B. Sum Rule 2

In a similar way (replacing GR with ω2GR in the
derivation), we derive another sum rule which contains
two more powers of ω in the integrand. In analogy to
the derivation of sum rule 1, we get δGR2

0 − δGR2
∞ =

2
∫∞

0
dωωδρ(ω)/π, where δGR2

∞ ≡ ω2δGR(ω)|ω→∞ and

δGR2
0 ≡ ω2δGR(ω)|ω→0. By using the UV/IR limits of

GR, Eqs. (5) and (7), we obtain

2

π

∫ ∞

0

dωωδρ(ω) = −e2
∑

f

q2f

[

2mfδ〈ψfψf 〉

+
1

12
δ
〈αs

π
G2

〉

+
8

3(4CF +Nf )
δ〈T 00〉

]

.

(15)

This is the second sum rule (sum rule 2)2 we discuss in
this work.
It should be emphasized here that the condensates ap-

pearing on the right-hand side of this sum rule are static
quantities, that can be evaluated non-perturbatively
from lattice QCD. The gluon condensate can be com-
puted by using the relation at leading order in αs,

e− 3p =
∑

f

mfδ〈ψfψf 〉 −
11Nc − 2Nf

24
δ
〈αs

π
G2

〉

.

(16)

We note that though the sum rule (15) is exact, the
evaluation of the gluon condensate using the expression
above is valid only perturbatively. In this study, we take
the chiral condensate, energy and pressure from a recent
Nf = 2 + 1 lattice calculation by the HotQCD Collabo-
ration [30]. To understand the behavior of the different
terms on the right-hand side of Eq. (15), they are shown
in the first plot of Fig. 2 as a function of temperature. It
is seen in this figure that the quark and gluon condensate
terms are relatively small, comparable in magnitude and
have opposite signs. Their contributions therefore cancel
to a large degree, so that the right-hand side of Eq. (15)
is almost completely determined by the dominant δ〈T 00〉
term. Because this term does not depend on quark flavor,

2 We note that this sum rule in the case of Nf = 1 and Nc = 3
was derived in Ref. [9]. However, the coefficient of T 00 in this
reference is not the correct one (Eq. (15)), but is equal to that in
the expression (Eq. (17)), where the effect of the mixing/rescaling
of the energy-momentum tensor is neglected.

the decomposition of Eq. (15) into its flavor components
is determined simply by the quark charges qf , meaning
that the u-quark contribution is about a factor of four
larger than those of the d and s-quarks.
For future convenience, we also write the expression

obtained by neglecting the scaling and mixing of the op-
erators, which is obtained from Eq. (3):

2

π

∫ ∞

0

dωωδρ(ω) =

− e2
∑

f

q2f

[

2mfδ〈ψfψf 〉+
1

12
δ
〈αs

π
G2

〉

+
8

3
δ〈T 00

f 〉

]

.

(17)

Lattice data for δ〈T 00
f 〉 are not available at present, so

that we need to employ model to estimate the conden-
sates in Eq. (17). This is done by using a free pion/quark
gas model, which is reliable at small/large T . In the

former model, δ〈T 00
f 〉 is evaluated as [10] δ〈Tαβ

f 〉 =

3
∫

d3knB(Ek)
(

kαkβ − k2gαβ/4
)

Af
2,π(κ

2)/[(2π)32Ek],

where Ek ≡
√

k2 +m2
π, mπ is the pion mass,

and nB(E) ≡ [eE/T − 1]−1. Af
2,π(κ

2) are mo-
ments of the quark distribution functions of
quarks and anti-quarks in the pion at scale κ2:

Af
2,π(κ

2) ≡ 2
∫ 1

0
dxx[qfπ(x, κ

2) + qfπ(x, κ
2)]. We will use

Au+d
2,π (1GeV2) = 0.97 [27] and ignore the strange quark

contribution, which is about an order of magnitude
smaller than that of the u and d quarks [28]. We then
have

δ〈T 00
f 〉 =

3

2
Af

2,π(κ
2)

[

3

4
m2

πI
π
1 + Iπ2

]

, (18)

with Iπn ≡
∫∞

0
d|k||k|2nnB(Ek)/(2π

2Ek). On the other
hand, in the latter model, the results reads

δ〈T 00
f 〉 = Nc

7π2T 4

60
. (19)

Both results are plotted in the second plot of Fig. 2,
combined with the other terms of the right-hand side
of Eq. (17). From this figure, one can see that the shown
function must have an increasing behavior as the temper-
ature is changed from below Tc, where pions dominate, to
temperatures where perturbative QCD becomes reliable.
We can check that the sum rule 2 is satisfied at weak

coupling and in the chiral limit. First, it is noted that
the contribution from the continuum to the integral of
the spectral function dominates over that from the trans-
port peak. Using Eq. (14), the continuum contribution is
evaluated as −14π2T 4CemNc/45. The contribution from
the low energy region is much smaller: It is estimated by
using Eq. (12) as

2

π

∫ Λ

0

dωωδρ(ω) =
2

π

T 2Cem

9
τ−1Nc

∫ Λ

0

dω
ω2

ω2 + τ−2

∼ e2T 2τ−1Λ,
(20)
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where Λ is the UV cutoff of the transport peak. The
Boltzmann equation is applicable when ω ≪ gT since the
instantaneous scattering description breaks down [26],
which gives the UV cutoff Λ ∼ gT . By using this order
estimate, we find that the transport peak contribution is
much smaller than the continuum contribution ∼ e2T 4

because of τ−1 ∼ g4T . On the other hand, the condition
mf = 0 eliminates the chiral condensate term in the sum
rule. At leading order in g, the gluon condensate also
vanishes and the right-hand side of Eq. (17) is reduced
to −14π2T 4CemNc/45 by using Eq. (19). From these two
expressions, one sees that the contribution from the con-
tinuum leads to a satisfied Eq. (17), which is the sum
rule without operator scaling or mixing, not the correct
one of Eq. (15). In fact, it was shown that a two-loop
contribution yields an additional structure in the spec-
tral function, namely a power-suppressed tail in the UV
region (ω ≫ T ) [21]:

δρ(ω) ≃ e2
∑

f

q2f
1

ω2

8

9
αs(ω)

[

2CF δ〈T
′00
f (ω)〉

+
1

Nf
δ〈T̃ 00(ω)〉

]

.

(21)

By considering the operator scaling effect of Eq. (4), and
the running coupling, the contribution of this UV-tail to
the sum rule is found to be

2

π

∫ ∞

ωmin

dωωδρ(ω)

= e2
∑

f

q2f
32

9b0

×

∫ ∞

Xmin

dX
1

Nf
δ〈T̃ 00(κ0)〉 [ln (κ0/ΛQCD)]

ã 1

X ã+1

= e2
∑

f

q2f
8

3

4CF δ〈T
00
f (ωmin)〉 − δ〈T 00

g (ωmin)〉

4CF +Nf
,

(22)

where X ≡ ln(ω/ΛQCD), Xmin ≡ ln[ωmin/ΛQCD], and
ωmin ∼ T is the IR cutoff of the tail. We have furthermore
made use of the fact that that 〈T 00

f 〉 does not depend
on f in the chiral limit. Applying the expression of the
energy density in the free and massless limit [Eq. (19)],
the sum of the contributions from the UV tail of Eq. (22)
and the continuum (−e2

∑

f q
2
f8δ〈T

00
f 〉/3) is found to be

−Cem8δ〈T
00〉/[3(4CF + Nf)]. This is nothing but the

right-hand side of Eq. (15), which demonstrates that the
sum rule is satisfied only considering the contribution of
the UV tail in the above limits. Also, it is easy to see that
such contribution to the other two sum rules is negligible
at weak coupling (with order estimate ωmin ∼ T ).

C. Sum Rule 3

In the sum rule to be discussed in this subsection, the
integrand of sum rule 1 is in essence divided by ω2. To

-0.25
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  )
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FIG. 2: The right-hand sides of Eq. (15) (upper plot) and
Eq. (17) (lower plot), divided by T

4 and shown as a function
of temperature T . To extract the temperature dependence
of the condensates, lattice QCD data provided in Ref. [30]
were used. T

00

f in Eq. (17) was estimated within a free pion
gas model, reliable at low T , and leading order perturbative
QCD, which should give the correct behavior at high T . We
used the value e

2 = 0.092 for the plots. For the free pion gas
model, we employ the free pion mass averaged over the three
isospin states, mπ = 138MeV. The cross at the lower right
side of the lower plot marks the of our fitted spectral function
given in Eq. (37). For details, see the main text of Section
III.

avoid potential IR divergences, the derivation however
has to be carried out with some care. Equation (1) can
be written as

δGR(iω)− δGR
∞ =

1

2π

∫ ∞

−∞

dω′ 1

ω′2 + ω2

× (ω′δρ(ω′) + ωRe[δGR(ω′)− δGR
∞])

=
1

π

∫ ∞

−∞

dω′ ω
′δρ(ω′)

ω′2 + ω2
,

(23)
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where in the second line we have used the property that
the contributions from the first and the second terms are
equal, which can be shown by evaluating the right-hand
side of Eq. (1) using the residue theorem with the contour
closing in the lower half plane. Subtracting Eq. (2) and
−σω from this expression and using Eq. (7) on the left-
hand side, we get

−στJ =
2

π

∫ ∞

0

dω

ω3
[δρ(ω)− σω] , (24)

in which the −σω term in the integrand is included to
remove the IR singularity. This is the third sum rule
(sum rule 3) we have derived in this paper.
Let us again check that this sum rule is satisfied at

weak coupling. The contribution from the transport peak
is found to be

2

π

∫ ∞

0

dω

ω3
[δρ(ω)− σω] = −

T 2Cem

9
Ncτ

2, (25)

where we have used Eq. (12) and the expression of σ in
the relaxation time approximation. Taking into account
τJ = τ , we find that Eq. (25) is equal to the left-hand
side of sum rule 3. The contribution from the contin-
uum is much smaller than that from the transport peak,
due to the negative power of ω in the integrand: From
Eq. (14), the continuum contributes to the sum rule as
2
∫∞

µ
dω [δρ(ω)− σω] /(πω3) ∼ σ/µ, where µ is the IR

cutoff. The one-loop result of Eq. (14) is reliable for
ω ≫ gT , while for ω ≤ gT the effect of thermal modi-
fication of the quark spectrum and the vertex becomes
important so that the hard thermal loop resummation is
necessary [26, 31]. It is thus natural to set the IR cutoff
to µ ∼ gT . With this order estimate, the contribution
from the continuum turns out to be much smaller than
−στJ ∼ e2g−8.
A comment on the sensitivity on the contin-

uum/transport peak of the sum rules is in order here.
From the discussions above, sum rule 1 was found to be
equally sensitive to both of them, at least in the weak
coupling regime. Meanwhile, sum rule 2 (3) is more sen-
sitive to the continuum (transport peak) because of posi-
tive (negative) power of ω in the integrand. This suggests
that, if one wishes to extract information of one of these
objects from the sum rules, one should use the most suit-
able one, which is most sensitive to the object of interest.

III. APPLICATION TO LATTICE QCD DATA

ANALYSIS

Let us demonstrate that the sum rules we have derived
can be used to give constraints to the spectral ansatz used
in fits to lattice QCD data. As a first trial, we consider
the simple3 ansatz introduced in Ref. [13] (all quantities

3 A more complicated ansatz, which also contains information on
vacuum bound states, was introduced in Refs. [14, 16]. In these

proportional to ρ(ω) or GR in this work are multiplied by
a factor of 1/6 compared to the corresponding expressions
in Ref. [13]),

ρ(ω) = Cem [cBW ρpeak(ω) + (1 + k)ρcont(ω)] , (26)

where

ρpeak(ω) ≡
1

3

ωΓ/2

ω2 + (Γ/2)2
, (27)

ρcont(ω) ≡
ω2

4π

(

1− 2nF

(ω

2

))

, (28)

correspond to the transport peak and the continuum in
the weak coupling limit. We note that, δρ(ω) can be
obtained by subtracting ρT=0(ω). Data for this func-
tion can be obtained from the experimental (e+e− →
hadrons) cross section (see for instance the compilation
of data given in the particle data group [32]), or from
zero temperature lattice calculations. In this paper, we
will however for simplicity confine ourselves to the aver-
aged form Cemω

2(1 + k)/(4π). Equation (26) contains
three parameters (cBW ,Γ, k) that need to be determined
by fitting the data. Sum rule 1 of Eq. (9) provides a
constraint on these parameters:

cBW = (1 + k)T 2. (29)

This constraint may be used to reduce the number of
fitting parameters in the ansatz. Here, we simply check
whether the values of the parameters obtained from the
fit [13] satisfy the sum rule. The fitted values at T =
1.45Tc are k ≃ 0.047,Γ ≃ 2.2T, cBW ≃ 1.2T 2, which
give 1.2T 2 on the left-hand side of Eq. (29) while 1.0T 2

is obtained on the right-hand side. We see that, even
though the agreement is not perfect, the fit satisfies the
constraint with reasonable precision.
Nevertheless, the ansatz Eq. (26) can not be applied

to the other two sum rules, Eqs. (15) and (24), because
it would cause a UV divergence in sum rule 2 and an
IR divergences in sum rule 3. Therefore, to construct a
spectral function that can satisfy all three sum rules, an
improved parametrization is necessary. We hence pro-
pose the following ansatz (ansatz A):

ρ(ω) = Cem

[

cBW ρpeak(ω)[1−A(ω)]

+A(ω)(1 + k)ρcont(ω)
]

,
(30)

where A(ω) ≡ tanh(ω2/∆2). For consistency, the spec-
tral function at T = 0 is modified as ρT=0(ω) =
CemA(ω)ω

2(1 + k)/(4π). As one can easily check, the
cutoff function A(ω) removes all IR and UV divergences
in Eqs. (15) and (24).

works, the sum rule of Eq. (9) was furthermore used to constrain
the parameters appearing in their ansatz.
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The values of Γ, cBW , k, and ∆ should be determined
from lattice data. To demonstrate that this functional
form is feasible, we have performed a simple trial analy-
sis, making use of the Euclidean vector correlator and
second thermal moment data provided in Ref. [13] for
T = 1.45Tc. These data were also used to fit the ansatz
of Eq. (26), as explained above. The Euclidean vector
correlator is given in terms of the spectral function as

GE(τ, T ) =

∫ ∞

0

dω

2π
ρ(ω)

cosh[ω(τ − 1/2T )]

sinh(ω/2T )
, (31)

with Euclidian time τ , while the second thermal moment
is defined as

G(2)(T ) =
1

2

∫ ∞

0

dω

2π

(ω

T

)2 ρ(ω)

sinh(ω/2T )
. (32)

In Ref. [13] the latter quantity was given relative to its
free counterpart:

G(2)(T )

G
(2)
free(T )

= 1.067± 0.012 (T = 1.45Tc). (33)

Here, the free second thermal moment can be computed
analytically and is in our conventions given as

G
(2)
free(T ) =

14π2

15
T 3. (34)

We moreover employ the sum rule 1 of Eq. (9) to con-
strain our fit, as it was done in Ref. [14, 16]. Specifically,
the constraints of the second thermal moment [Eqs. (32)
and (33)] and sum rule 1 allow us to determine cBW and
k and therefore to reduce the number of undetermined
parameters to two (Γ and ∆), which are then fitted to
the Euclidean vector correlator data. In this fit, we do
not only use the central value of Eq. (33), but probe the
whole range to look for the value that gives the small-
est overall χ2. Following this procedure, we have found
that the best fit is obtained for very large values of Γ,
with values of ∆/T of the order of one. This means that
the transport peak at low energy is not generated by the
Lorentzian of Eq. (27), but by the function 1 − A(ω),
with the width 2∆. As will be shown in Fig. 3, these two
functional forms are quite alike and share many qualita-
tive features. Quantitatively, our best fit is obtained for,

k = 0.058,

2cBW /(TΓ) = 1.7,

Γ/T = infinity,

∆/T = 1.2,

(35)

which gives a χ2/d.o.f of 0.53. The respective (vacuum
subtracted) spectral function is shown in Fig. 3, together
with the fit result of Ref. [13], for which Eq. (26) was
used. To give the reader a better idea on the quality of
the fit, we show in Fig. 4 the Euclidean vector correla-
tor lattice data with our fitted curve. For comparison,

we also plot the curve corresponding to the fit performed
in Ref. [13] with Eqs. (26-28). GV(τ, T ), which is used
in Fig. 4 is defined as GV(τ, T ) = GE(τ, T ) − χqT/6.
For the quark number susceptibility χq we employ the
value provided in Ref. [13]: χq/T

2 = 0.897. Further-
more, Gfree

V (τ, T ) is related to the free Euclidean vector
correlator and can be given analytically as

Gfree
V (τ, T ) = T 3

[

π(1− 2τT )
1 + cos2(2πτT )

sin3(2πτT )

+ 2
cos(2πτT )

sin2(2πτT )

]

.

It is seen in Fig. 4 that the fit of Ref. [13] generally agrees
better with the central values of the lattice data points.
Their errors are however too large to discriminate the
two fits. Reduced errors and more data points at smaller
τT values will likely improve this situation and impose
tougher constraints on the various functional forms used
to parametrized the spectral function.
Having the fitted and well behaved spectral function of

Eq. (30) at hand, we can now proceed to compute various
quantities of interest. First of all, one can easily extract
the electrical conductivity as

σ

T
= lim

ω→0

ρ(ω)

ωT
= Cem

2cBW

3TΓ
= 0.57× Cem,

(36)

which is about 50% larger than the value reported in
[13].
Next, we can check to what degree our spectral func-

tion satisfies sum rule 2 of Eq. (17). As we have explained
in Section II B, the difference between the sum rules of
Eqs. (15) and (17) corresponds to a non-exponentially
suppressed UV tail of the spectral function. As this tail
is not included in the parametrization of Eq. (30), its in-
tegral should be compared to Eq. (17) and not Eq. (15).
Computing the integral with the values of Eq. (35), we
get

2

π

∫ ∞

0

dωωδρ(ω) = −0.59T 4, (37)

with Nf = 3. This value is marked as a cross on the
lower right corner in the second plot of Fig. 2. Note that
the lattice data of Ref. [13] are given at 1.45Tc. For
Tc, we have used Tc = 270MeV, suitable for quenched
QCD. As can be seen in this plot, the integrated value
of Eq. (37) lies very close to the leading order perturba-
tive QCD result, showing that sum rule 2 can be satis-
fied with reasonable precision, if the condensates on its
right-hand-side approach the perturbative limit quickly
enough. To study this question in more detail, an explicit
lattice calculation of δ〈T 00

f 〉 will however be needed.
In this context, we note that one could try to construct

a spectral function that is consistent with the sum rule
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of Eq. (15). For this purpose, one would need to include
the above-mentioned UV tail in the ansatz (ansatz B):

ρ(ω) = Cem

[

cBWρpeak(ω)[1 −A(ω)]

+A(ω)(1 + k)ρcont(ω) + cUV θ(ω − ωmin)ρtail(ω)
]

,

(38)

where

ρtail(ω) ≡
4CFπ

2T 4

9ω2
αs(eΛQCD)[ln(ω/ΛQCD)]

−ã−1.

(39)

e in the above expression stands for Euler’s number. This
form has two extra fitting parameters ωmin and cUV , and
would in principle allow us to use the exact sum rule of
Eq. (15). Here cUV = 1 corresponds to the perturba-
tive result at mf = 0, Eq. (21). In this work, we will
not pursue this possibility any further and only illustrate
the potential effect of ρtail(ω) by adding it to our fitted
spectral function, using Nc = Nf = 3, T/ΛQCD = 1.5,
cUV = 1, and ωmin = 4.0T . The result is shown as a blue
dotted line in Fig. 3. As one can see in this figure, the
UV tail just modestly modifies the spectral function in
the plotted energy region, at least with the parameters
used here. It should also be noted that the parametriza-
tion of Eq. (38) does not provide a completely realistic
description of the spectral function around ω ∼ ωmin,
where it contains a discontinuity. Our low energy step-
function cutoff however provides the most simple descrip-
tion of the onset of the UV tail with the fewest numbers
of parameters, and does not cause any divergence in our
sum rules. For these reasons, we have adopted this sim-
ple cut-off scheme. It is also likely to be useful for future
spectral function fits to lattice QCD data, which take the
UV tail into account.
As a last point, we next discuss the application of sum

rule 3 given in Eq. (24). At first, let us clarify the defi-
nition of the parameter appearing in the left-hand side,
τJ . It is expressed in terms of the retarded Green func-
tion as, τJ ≡ −GR′′(ω = 0)/(2σ) as can be seen from
Eq. (7). τJ therefore does not explicitly appear in the
spectral function since it corresponds to the real part of
GR. As the transport coefficient τJ is furthermore at
present not known, this sum rule can not be used as an
additional fitting constraint. If the spectral function is
however already determined from other sources, Eq. (24)
can be used to estimate τJ . Using Eqs. (30-36), we get

τJ = 0.067Cem/T (T = 1.45Tc). (40)

To our knowledge, this is the first time that this transport
coefficient has been determined non-perturbatively. Note
that the above number is a quenched QCD estimate, as
we have made use of quenched lattice data to fix the
spectral function. We do not expect that introducing
the UV-tail such as in ansatz B in Eqs. (38) and (39)
will strongly modify the above numerical result for τJ ,
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/(
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ω/T

this work
UV tail

Ding et al. [13]

FIG. 3: Ansatz A (red solid line), ansatz B (blue dotted
line), and the ansatz used in Ref. [13] (green dashed line)
as functions of ω. Note that ansätze A and B are identical
for ω < ωmin = 4.0 T , where they overlap. The unit of the
vertical axis is CemTω while that of the horizontal axis is T .

because the contribution from the high energy part of the
spectral function to the sum rule 3 is strongly suppressed,
as we have discussed at the end of the previous section.
We have explicitly checked this by computing τJ from
sum rule 3 of Eq. (24), using both ansätze A and B with
the parameter values given above. As a result, we found
that the extracted values of τJ only differ by about 0.1%,
which shows that in practice it does not matter which
ansatz is used for sum rule 3. We should furthermore
mention here that, all the ansätze used in this section do
not take into account the largeNc suppressed nonanalytic
behavior at small ω (which seems to be challenging to see
in current lattice QCD analysis) caused by hydro mode
coupling. It is therefore consistent to use sum rule 3 (24),
which does not consider this effect as well.

IV. CONCLUDING REMARKS

We give a few final comments on future perspectives of
this work. In this paper we have so far for simplicity only
analyzed the zero-momentum (|p| = 0) case. Generaliz-
ing our analysis to finite, but small |p| is straightforward
and is worth investigating in detail. In this case, one
needs to analyze both the longitudinal and the transverse
channels separately. Apart from that, other transport co-
efficients such as the diffusion constant and another one
related to the magnetic sector will appear in the sum
rules. Also, since the sum rules are exact, it would be
interesting to check their validity by explicit calculations
in the hadron phase below Tc and/or the strong coupling
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adapted from Ref. [13] (black points), the fit result using
Eqs. (26-28) (red solid line) and the fit result using the im-
proved functional form of Eq. (30) (blue dashed line).

regime. We plan to report on parts of these generaliza-
tions in a full publication in the near future.
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