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Mass and decay constant of the newly observed exotic X(5568) state
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The mass and decay constant of the X(5568) state newly observed by D0 Collaboration are
computed within the two-point sum rule method using the diquark-antidiquark interpolating current.
In calculations, the vacuum condensates up to eight dimensions are taken into account. The obtained
result for the mass of the X(5568) state is in a nice agreement with the experimental data.
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I. INTRODUCTION

During the last decade, due to a wide flow of experi-
mental information rushing from Belle, BABAR, BESIII,
LHCb, CDF, D0 and some other collaborations, investi-
gation of exotic states, i.e. states that can not be included
into the quark-antiquark and three-quark bound schemes
of the traditional hadron spectroscopy, became one of the
interesting and growing fields in the hadron physics. The
period of intensive experimental and theoretical stud-
ies of exotic particles started from the discovery of the
charmonium-like resonance X(3872) by Belle Collabora-
tion [1], confirmed later in some other experiments [2–4].
The exotic states were produced and observed in B me-
son decays, in the e+e− and pp annihilations, in the dou-
ble charmonium production processes, in the two-photon
fusion and pp collisions. Experimental investigations en-
compass measurements of the masses and decay widths
of these states, exploration of their spins, parities and C-
parities. The charmonium-like exotic states observed and
studied till now form the wide family of XYZ particles.

These discoveries necessitated generation of new the-
oretical approaches to interpret underlying quark-gluon
structure of the exotic states, and invention of methods
for calculation of their properties. (see, the reviews [5–
12] and references therein). Naturally, efforts were done
to consider new charmonium-like resonances as excita-
tions of the ordinary cc charmonium and describe their
features applying updated quark-antiquark potentials. It
should be noted that some of new resonances really al-
low interpretation as the excited cc states. But the main
part of the collected experimental data can not be en-
tered into this frame, and therefore for understanding of
the phenomenology of XYZ states various quark-gluon
models were suggested.

One of the mostly employed models is the four-quark
or tetraquark picture of the exotic states. In accor-
dance with this approach new charmonium-like states are
formed by two heavy and two light quarks. These quarks
may cluster into the colored diquark and antidiquark,
which are organized in such a way that to reproduce
quantum numbers of the corresponding exotic states [13].
This tetraquark model is known as diquark-antidiquark

model of the exotic states. In the meson-molecule model
the exotic particle may appear as a bound state of two
color-singlet mesons. There are other models within the
tetraquark approach Refs.[14, 15], as well as ones that
exploit alternative ideas (see, for example Ref. [16]).

Recently, the D0 Collaboration reported the observa-
tion of a narrow structure X(5568) in the decay chain
X(5568) → B0

sπ
±, B0

s → J/ψφ, J/ψ → µ+µ−, φ →
K+K− [17] based on pp̄ collision data at

√
s = 1.96 TeV

collected at the Fermilab Tevatron collider. In order to
distinguish it from the ”traditional” members of the X
family of exotic resonances, in what follows we will use
for this state the notation Xb(5568). As it was empha-
sized in Ref. [17] this is the first observation of a hadronic
state with four quarks of different flavors. Namely, from
the observed decay channel Xb(5568) → B0

sπ
± it is

not difficult to conclude that the state Xb(5568) con-
sists of b, s, u, d quarks. The assigned quantum num-
bers for the Xb state are JPC = 0++, its mass ex-
tracted from the experiment is equal to mXb

= 5567.8±
2.9(stat)

+0.9
−1.9(syst)MeV, and the decay width was esti-

mated as Γ = 21.9± 6.4(stat)+5.0
−2.5(syst)MeV. First sug-

gestions concerning the quark-antiquark organization of
the new state were made in Ref. [17], as well. Thus,
within the diquark-antidiquark model the Xb may be
described as [bu][d̄s̄], [bd][s̄ū], [su][b̄d̄] or [sd][b̄ū] bound
state. Alternatively, it may be considered as a molecule
composed of B and K mesons.

In the present work for the Xb we adopt [su][b̄d̄] di-
quark model, and calculate for the first time its mass
and decay constant using the QCD two-point sum rule.

This article is organized in the following manner. In
section II, we calculate the mass and decay constant of
the Xb state employing two-point QCD sum rule ap-
proach including into analysis the vacuum condensates
up to eighth dimension. Our numerical results are pre-
sented in Section III and compared with the experimental
data of the D0 Collaboration. This section contains also
our concluding remarks. The explicit expressions of the
spectral density required for calculation of the mass and
decay constant are written down in Appendix A.
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II. THE SUM RULES FOR THE MASS AND

DECAY CONSTANT

To calculate the mass and decay constant of the Xb

state in the framework of QCD sum rules, we start from
the two-point correlation function

Π(p) = i

∫
d4xeip·x〈0|T {JXb(x)JXb†(0)}|0〉, (1)

where JXb(x) is the interpolating current with required
quantum numbers. We consider Xb(5568) state as a par-
ticle with the quantum numbers JPC = 0++. Then in
the diquark model the current JXb(x) is defined by the
following expression

JXb(x) = εijkεimn
[
sj(x)Cγµu

k(x)
] [
b
m
(x)γµCd

n
(x)

]
.

(2)
In Eq. (2) i, j, k,m, n are color indexes and C is the
charge conjugation matrix.
In order to derive QCD sum rule expression we cal-

culate the correlation function in terms of the physical
degrees of freedom. Performing integral over x in Eq.
(1), we get

ΠPhys(p) =
〈0|JXb |Xb(p)〉〈Xb(p)|JXb†|0〉

m2
Xb

− p2
+ ...

where mXb
is the mass of the Xb(5568) state, and dots

stand for contributions of the higher resonances and con-
tinuum states. We define the decay constant fXb

through
the matrix element

〈0|JXb |Xb(p)〉 = fXb
mXb

.

Then in terms of mXb
and fXb

the correlation function
can be written in the form

ΠPhys(p) =
m2

Xb
f2
Xb

m2
Xb

− p2
+ . . . (3)

The Borel transformation applied to Eq. (3) yields

Bp2ΠPhys(p) = m2
Xb
f2
Xbe

−m2

X
b
/M2

+ . . . (4)

The theoretical expression for the same function,
ΠQCD(p), has to be determined employing of the quark-
gluon degrees of freedom. To this end, we contract the
heavy and light quark fields, and for the correlation func-
tion ΠQCD(p) find:

ΠQCD(p) = i

∫
d4xeipxεijkεimnεi

′j′k′

εi
′m′n′

×Tr
[
γµS̃

n′n
d (−x)γνSm′m

b (−x)
]

×Tr
[
γν S̃jj′

s (x)γµSkk′

u (x)
]
. (5)

In Eq. (5) we introduce the notation

S̃ij
q (x) = CSijT

q (x)C,

with Sij
q (x) and Sij

b (x) being the light (q ≡ u, d and s)
and heavy quark propagators, respectively. We choose
the light quark propagator Sij

q (x) in the x-space in the
form

Sij
q (x) = iδij

/x

2π2x4
− δij

mq

4π2x2
− δij

〈qq〉
12

+iδij
/xmq〈qq〉

48
− δij

x2

192
〈qgσGq〉+ iδij

x2/xmq

1152
〈qgσGq〉

−i
gGαβ

ij

32π2x2
[/xσαβ + σαβ/x]− iδij

x2/xg2〈qq〉2
7776

−δij
x4〈qq〉〈g2GG〉

27648
+ . . . (6)

For the heavy quark propagator Sij
b (x) we employ the

expression [18]

Sij
b (x) = i

∫
d4k

(2π)4
e−ikx

[
δij (/k +mb)

k2 −m2
b

−
gGαβ

ij

4

σαβ (/k +mb) + (/k +mb)σαβ
(k2 −m2

b)
2

+
g2

12
GA

αβG
Aαβδijmb

k2 +mb/k

(k2 −m2
b)

4
+ . . .

]
. (7)

In Eqs. (6) and (7) the short-hand notation

Gαβ
ij ≡ Gαβ

A tAij , A = 1, 2 . . . 8,

is used, where i, j are color indexes, and tA = λA/2
with λA being the standard Gell-Mann matrices. The
first term in Eq. (7) is the free (perturbative) massive
quark propagator, next ones are nonperturbative gluon
corrections. In the nonperturbative terms the gluon field
strength tensor GA

αβ ≡ GA
αβ(0) is fixed at x = 0.

In general, the QCD sum rule expressions are derived
after fixing the same Lorentz structures in the both phe-
nomenological and theoretical expressions of the correla-
tion function. In the case under consideration this struc-
ture is trivial and ∼ I. Then there is only one invariant
function ΠQCD(p2), which can be written down as the
dispersion integral

ΠQCD(p2) =

∫ ∞

(mb+ms)2

ρQCD(s)

s− p2
+ ..., (8)

where ρQCD(s) is the corresponding spectral density.
The problem posed in this section is calculation of the

spectral density ρQCD(s) necessary for the mass and de-
cay constant analysis. In the present work we include
into the sum rule calculations the quark, gluon and mixed
vacuum condensates up to and including ones with the
dimension 8. For computation of the components of the
spectral density we use the technique, essential steps of
which and main formulas for their realization were pro-
vided in Ref. [19]. This computational scheme includes
the following stages: we apply the integral transforma-
tion for the terms ∼ 1/(x2)n coming from the light quark
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Parameters Values

mb (4.18± 0.03) GeV

ms (95± 5) MeV

〈q̄q〉 (−0.24 ± 0.01)3 GeV3

〈s̄s〉 0.8 〈q̄q〉

〈αsG
2

π
〉 (0.012 ± 0.004) GeV4

m2

0 (0.8± 0.1) GeV2

〈qgσGq〉 m2

0〈q̄q〉

TABLE I: Input parameters used in calculations

propagators, when necessary replace xµ by −i∂/∂qµ, and
then calculate the obtained x integral. The Dirac delta
function appeared in a result of such integration allows
us to remove one of the momentum integrals. In order to
carry out the remaining integration we use the Feynman
parametrization rearranging denominators obtained after
this operation, and derive the final expressions applying
the well known formulas [19]. The imaginary part of the
correlation function can now be extracted by applying in
the D → 4 limit the replacement

Γ

(
D

2
− n

)(
− 1

L

)D

2
−n

→ (−1)n−1

(n− 2)!
(−L)n−2 ln(−L).

(9)
As a result, we get the imaginary part of the correlation
function, and hence the components of the spectral den-
sity as the integrals over the Feynman parameter z. The
expressions derived for ρQCD(s) in accordance with these
recipes are collected in Appendix A.
Applying the Borel transformation on the variable p2

to the invariant amplitude ΠQCD(p2), equating the ob-
tained expression with the relevant part of Bp2ΠPhys(p),
and subtracting the continuum contribution, we finally
obtain the required sum rule. Thus, the mass of the Xb

state can be evaluated from the sum rule

m2
Xb

=

∫ s0
(mb+ms)2

dssρQCD(s)e−s/M2

∫ s0
(mb+ms)2

dsρQCD(s)e−s/M2
, (10)

whereas to extract the numerical value of the decay con-
stant fXb

we employ the formula

f2
Xb
m2

Xb
e−m2

X
b
/M2

=

∫ s0

(mb+ms)2
dsρQCD(s)e−s/M2

. (11)

The Eqs. (10) and (11) are the sum rules required for
evaluating of the Xb state’s mass and decay constant,
respectively.

III. NUMERICAL RESULTS AND

CONCLUSIONS

The QCD sum rules expressions for the mass and de-
cay constant of the Xb contain various parameters that

s0=33.5 GeV2

s0=34.5 GeV2

s0=35.5 GeV2
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FIG. 1: The mass mXb
as a function of the Borel parameter

M2 for different values of s0.
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FIG. 2: The decay constant fXb
vs Borel parameter M2. The

values of the parameter s0 are shown in the figure.

should be fixed in accordance with the standard proce-
dures. Thus, for numerical computation of the Xb state’s
mass and decay constant we need values of the quark,
gluon and mixed condensates. In addition to that, QCD
sum rules depend on the b and s quark masses. The
values of these parameters can be found in Table I.
Sum rules calculations require fixing of the threshold

parameter s0 and a region within of which it may be
varied. For s0 we employ

33.5 GeV2 ≤ s0 ≤ 35.5 GeV2. (12)

We also find the range 3 GeV2 < M2 < 6 GeV2 as a
reliable one for varying the Borel parameter, where the
effects of the higher resonances and continuum states,
and contributions of the higher dimensional condensates
meet all requirements of QCD sum rules calculations.
Additionally, in this interval the dependence of the mass
and decay constant on M2 is stable, and we may expect
that the sum rules give the correct results. By varying
the parameters M2 and s0 within the allowed ranges, as
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well as taking into account ambiguities arising from other
input parameters we estimate uncertainties of the whole
calculations. The results for the mass mXb

and decay
constant fXb

are depicted as the functions of the Borel
parameter in Figs. 1 and 2, respectively. The sensitivity
of the obtained predictions to the choice of s0 are also
seen in these figures, where three different values for s0
are employed. Our prediction for the mass mXb

is:

mXb
= (5584± 137)MeV. (13)

For the decay constant we get:

fXb
= (0.24± 0.02)× 10−2 GeV4. (14)

As is seen our prediction for the mass of the Xb(5568)
state agrees with experimental data of the D0 Collabo-
ration.
In this paper we have studied the new exotic resonance

state with the mass 5568MeV and quantum numbers
JPC = 0++, that was observed recently by D0 Collab-
oration utilizing the collected data of pp̄ collision. We
have adopted for this state a label Xb(5568) because it
is composed of four different quark flavors and differs
from the usual charmonium-like members of the X fam-
ily. We have also accepted the diquark-antidiquarkmodel
[su][b̄d̄] for the Xb(5568) state and computed its mass
and decay constant employing QCD two-point sum rule
method. Our prediction for the mass mXb

is in agree-
ment with the finding of D0 Collaboration. Results of
our explorations of the Xb(5568) state obtained by ap-
plying other diquark-antidiquark structures and interpo-
lating currents as well as calculation of its decay width,

which can be crucial in making decision between various
models, will be published elsewhere.
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Appendix: A

In this appendix we have collected the results of our
calculations of the spectral density

ρQCD(s) = ρpert(s) +

k=8∑

k=3

ρk(s), (A.1)

used for evaluation of the Xb meson mass mXb
and its

decay constant fXb
from the QCD sum rule. In Eq. (A.1)

by ρk(s) we denote the nonperturbative contributions to
ρQCD(s). In calculations we have neglected the masses of
the u and d quarks and taken into account terms ∼ ms.
The explicit expressions for ρpert(s) and ρk(s) are pre-
sented below as the integrals over the Feynman parame-
ter z:
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ρpert(s) =
1

1536π6

a∫

0

dzz4

(z − 1)3
[
m2

b + s(z − 1)
]3 [

m2
b + 3s(z − 1)

]
,

ρ3(s) =
1

32π4

a∫

0

dzz2

(z − 1)2
[
m2

b + s(z − 1)
] {

〈dd〉mb

[
m2

b + s(z − 1)
]
+ 2ms(〈ss〉 − 〈uu〉)

[
m2

b + 2s(z − 1)
]
(z − 1)

}
,

ρ4(s) =
1

2304π4
〈αs

G2

π
〉

a∫

0

dzz2

(z − 1)3
{
m4

b [z(8z − 15) + 9] + 3m2
bs(z − 1) [z(7z − 15) + 9] + 6s2(z − 1)3(2z − 3)

}
,

ρ5(s) =
m2

0

192π4

a∫

0

dzz

(1− z)

{
3mb〈dd〉

[
m2

b + s(z − 1)
]
+ms(z − 1)(2〈ss〉 − 3〈uu〉)

[
2m2

b + 3s(z − 1)
]}
,

ρ6(s) =
1

324π4

a∫

0

dzzg2(〈uu〉2 + 〈dd〉2 + 〈ss〉2)
[
2m2

b + 3s(z − 1)
]
,

ρ7(s) =
1

576π2
〈αs

G2

π
〉

a∫

0

dz

(1− z)

{
2mb〈dd〉(5z − 2) +ms(z − 1) [3〈ss〉+ 4〈uu〉(4z − 1)]

}
,

ρ8(s) = − 11

9216π2
〈αs

G2

π
〉2 (m

2
b − s)2

s2
−m2

0〈s̄s〉〈ūu〉
a∫

0

dz
z − 1

6π2
, (A.2)

where a = (s−m2
b)/s.
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