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Abstract

We point out the several experimental manifestations of thenew reflec-
tive scattering mode in elastic scattering and multiparticle production at the
LHC energy range.
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Introduction

Discussion of the geometry of the soft hadron processes is often focused on the
impact–parameter dependence of the inelastic interactions since those are consid-
ered to be a driving force for the elastic scattering (shadowing). This geometry is
determined by the nonperturbative QCD dynamics. It should be noted that during
a long time the elastic scattering was considered to be consistent with the BEL
picture, i.e. the picture where the interaction region becomes blacker, edgier and
larger [1]. Such behavior corresponds to the black–disk limit saturation due to the
incoherent parton interactions [2]. The model-based conclusions on the black-disk
limit do not exclude an existence of another option for the hadron asymptotical
dependence.

As it was noted on the model ground in [3], the inelastic overlap function
at the asymptotical energies can acquire a peripheral form in the impact param-
eter representation. The above-mentioned peripherality of the inelastic overlap
function was treated as a manifestation of an emerging transparency in the cen-
tral hadron collisions (or in vicinity of impact parameter of the colliding particles
b = 0). Later on, the interpretation based on the peripheral formof the inelastic
overlap function has been generalized and specified in papers [4, 5, 6, 7] where
such phenomenon was related to antishadowing or reflection in the hadron inter-
actions. The concept of the on-shell optical potential alsoleads to conclusion on
the central grayness in the inelastic overlap function [8].

A recent analysis [9] of the elastic scattering data obtained by the TOTEM
Collaboration at

√
s = 7 TeV [10] has revealed an existence of this novel feature

in strong interaction dynamics due to transition to this scattering mode referred
nowadays also as resonant scattering [11]. Contrary to the black disk limit asymp-
totics, this new mode corresponds to the coherent parton interactions relevant for
the confinement dynamics and is in agreement with the Chew andFrautschi con-
jecture that the strong interactions are to be “as strong as possible” [12, 13].

A gradual transition to the REL picture, i.e. picture when the interaction re-
gion becomes reflective (the term reflective means that the elastic scattering matrix
element acquires negative values) at the center (b = 0) and simultaneously being
edgier, larger and completely black in the ring at periphery, seems to be observed
by the TOTEM under the measurements of thedσ/dt in elasticpp–scattering
[10]. Several phenomenological models are able to reproduce such transition and
among them the one based on the rational unitarization of theleading vacuum
Regge–pole contribution with intercept greater than unity[3], and similar models
known under the generic name of the unitarized supercritical Pomeron (cf. [11]
for a recent discussion and the references).

There are two aspects of the asymptopia that can be emphasized in connection
with what has been said above. What is the limit for the partial or impact parame-

2



ter amplitude reached ats → ∞: the black disk limit of1/2 or the limit imposed
by unitarity,1. The second related issue in case if the unitarity saturation occurs:
at what energy value the black limit1/2 is crossed. The analysis performed in
[9] indicates that the black-disk limit has already been crossed at

√
s = 7 TeV,

while a simple extrapolation based on the gaussian impact parameter dependence
of the elastic scattering amplitude assumes the crossing happening at higher en-
ergies [14] but such a dependence is at variance with large−t data measured at√
s = 7 TeV.

In this note we address the above matters in the elastic scattering and multi-
particle production processes at the LHC energy range. The aim is to indicate the
experimental observables whose measurements could provide an information on
the asymptotic mode.

1 The experimental evidence for the reflective mode
in elastic scattering

We are using here a common conjecture on the pure imaginary scattering ampli-
tude1 and perform the replacementf → if at high energies. On the base of the
existing experimental trends, it seems natural to suppose amonotonic increase of
the elastic scattering amplitudef(s, b) with the energy without oscillations over
s.

The analysis [9] provides a clue that the unitarity limit andnot a black disk
one is saturated. This analysis deals with reconstruction of the elastic scattering
amplitude in the impact parameter representation. It should be noted that we
are discussing asymptotic behavior of the impact-parameter dependent amplitude
and not particular models for it. It has been shown that the amplitudef(s, b) is
greater than the black-disk limit of1/2 at

√
s = 7 TeV at small impact parameters,

f(s, b) = 1/2[1 + α(s, b)], and the relative excessα being positive is still rather
small at this energy in the region of the smallb. The value ofα is about0.08 at
b = 0 [9]. Therefore, the most relevant quantities to study crossing the black-
disk limit at the LHC energies are the elastic scattering amplitudef(s, b) and the
elastic overlap functionhel(s, b), while the inelastic overlap functionhinel(s, b))
is less sensitive since its relative negative deviation at small values ofb is of the
order ofα2, i.e. hinel(s, b) = 1/4[1 − α2(s, b)], whereα(s, b) does not vanish in
the region0 ≤ b < r(s) (α(s, b) = 0 at b = r(s) and is negative atb > r(s)).

1It should be noted that saturation of the black–disk limit orthe unitarity limit leads to a vanish-
ing real part of the scattering amplitude, Ref → 0 in the region where the both limits are saturated
[15]. The recent data [16] on the precise measurements of theratio of the real to the imaginary
part of the forward amplitude are consistent with decreasing energy dependence of this ratio.
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The quantitiesf , hel andhinel enter the unitarity relation in the impact parameter
representation:

Imf(s, b) = hel(s, b) + hinel(s, b) (1)

and in the case under consideration it can be rewritten in theform:

hinel(s, b) = f(s, b)[1− f(s, b)]. (2)

To pinpoint the crossing of the black disk limit one should not be concentrated
on the integrated observables only since those are much lessinformative and less
sensitive than the differential ones. The analysis performed in [9] is based on the
consideration of thedifferentialcross–sections since it is a most relevant method
of the study of the transverse plane interaction geometry. Since the deviationα is
small, the effective reconfirmation of a conclusion on the black disk limit crossing
requires another indications in favor of the black-disk limit overshooting (with the
subsequent unitarity limit saturation).

Saturation of the unitarity limit corresponds to the limiting behaviorS(s, b) →
−1 at fixedb ands → ∞ and, by analogy with the reflection of light in optics,
can be referred as a pure reflective scattering [6]. The emergence of the reflective
scattering is associated with increasing proton’s densitywith the collisions’ energy
growth. It can be interpreted that far beyond some critical value of the density
(corresponding to the black-disk limit) the colliding protons scatter like the hard
billiard balls. Such a behavior can be compared to reflectionof the incoming
wave by a metal (changing phase of the incoming wave by1800 due to presence
of free electrons in a metal). An increasing reflection ability emerging that way is
associated with a decreasing absorption according to the probability conservation
expressed in the form of unitarity relation. The principal point of the reflective
scattering is fulfillment of the inequalities1/2 < f(s, b) < 1 and0 > S(s, b) >
−1 allowed by the unitarity relation [4, 5]. Our goal here is to discuss some of the
experimental manifestations of this novel scattering regime.

It was already noted that exceeding the black-disk limit is aprincipal conclu-
sion of the model–independent analysis of the impact–parameter dependencies of
the amplitude performed in [9]. The amplitude at smallb values is most sensitive
to thet–dependence of the scattering amplitudeF (s, t) in the region of large val-
ues of−t (referred as deep–elastic scattering [17]). In [18] it was shown that the
saturation of the unitarity limit corresponds to the relation

(dσrfl
deepel/dt)/(dσ

abs
deepel/dt) ≃ 4. (3)

Since at the LHC energy
√
s = 7 TeV the positive deviation from the black-disk

limit at b = 0 is small, the following approximation is valid

(dσrfl
deepel/dt)/(dσ

abs
deepel/dt) ∼ 1 + 2α(s, b = 0). (4)
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The absorptive models do not reproduce crossing of the black-disk limit and
provide a rather poor description of the LHC data in the deep–elastic scattering re-
gion (cf. e.g. [19, 20, 21]). Without fit to the data on the differential cross-section
in this region of−t the crossing of the black-disk limit can be easily missed.
This fact emphasizes again the importance of considerationof the unintegrated
quantities. In contrast to the absorptive models, the Donnachie-Landshoff model
[22], where the black disk limit is exceeded, is in a good agreement with the LHC
experimental data ondσ/dt at

√
s = 7 TeV in the whole region of transferred mo-

mentum. This is also true for the models based on the rationalor U–matrix form
of unitarization. Fig. 1 illustrates the above statements.Namely, the absorptive
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Figure 1:Description [23] of differential cross–section ofpp-scattering at
√
s = 7 TeV

with the use of absorptive (solid line) and reflective (dashed line) forms of unitarization.

(eikonal) models based on the exponential unitarization predict lower values for
the differential cross-section inpp-scattering at

√
s = 7 TeV and lead to appear-

ance of the secondary bumps and dips in the region of large−t values.
This important qualitative dissimilarity ofdσ/dt in the deep-elastic scattering

region originates from the adopted forms of the scattering amplitude in the im-
pact parameter representation for the two unitarization schemes. Concerning the
amplitude

f(s, b) =
1

4π

dσtot

db2
(5)

the following observations can be made:
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Figure 2: Schematic impact-parameter dependence of the amplitudef(s, b) in the two
cases of absorptive (solid line) and reflective (dashed line) forms of unitarization.

• The models based on absorptive form of unitarization have analmost flatb-
dependence off(s, b) in the region of small and moderate impact parameter
values since at the energy of

√
s = 7 TeV the black-disk limit is believed

as already reached atb = 0 [21] (cf. Fig.2). The result of such flatness is
appearance (cf. [24]) of the secondary dips and bumps (solidline at Fig. 1).

• In an unitarized model (absorptive or reflective) the correct reproduction of
the experimentally observed total cross-section values requires the areas un-
der the solid and dashed curves (cf. Fig. 2) to be equal. We consider that the
dashed curve corresponds to the experimental situation. Then, to reproduce
the observed total cross-section value, the solid curve (being almost flat at
small b since it cannot exceed1/2) should be extended to larger values of
the impact parameter, Fig. 2. Since the slope parameterB(s)

B(s) ≡ d

dt
ln

dσ

dt
|
−t=0

is determined by an average value〈b2〉, one can conclude that the observed
value ofB(s) cannot not be well reproduced that way.

The observed excess above the black disk limit is not very significant at√
s = 7 TeV, but its increase is to be expected at higher energies. Thus the
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difficulties in the simultaneous description of the total cross-section and the
slope parameter in absorptive (eikonal) models would become more notice-
able with the collision energy increase.

2 The clues for the reflective mode in multiparticle
production

The most essential feature of the reflective scattering modeaffecting observables
in multiparticle production is the peripheral impact profile of the inelastic overlap
function

hinel(s, b) ≡
1

4π

dσinel

db2
. (6)

However, this peripheral form will be reached at very high energies, and at the
LHC energies the peripherality is not very distinctive. When the unitarity is sat-
urated the transformation of the inelastic overlap function behavior is shown on
Fig. 3. The total probability of an inelastic processes in the hadron collision at the

Figure 3:Transformation of the inelastic overlap function with the energy increase from
its initial central to peripheral form.

energys and impact parameterb is the following

Pinel(s, b) = 4hinel(s, b) =
dσinel

2πbdb
, (7)

i.e.

σinel(s) = 2π

∫
∞

0

Pinel(s, b)bdb. (8)

Any observable, which desribes a multiparticle productionprocess,A(s, ξ) (where
ξ is a variable or a set of variables), can be obtained from the corresponding
impact-parameter dependent functionA(s, b, ξ) by integrating it with the weight
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functionPinel(s, b). Since this weight function has a prominent peripheral depen-
dence with a peak atb = r(s), at asymptotically high energies (cf. Fig. 3) the
following approximate relation is valid in the limits → ∞ [25]:

A(s, ξ) ≃ A(s, b, ξ)|b=r(s). (9)

The functionr(s) corresponds to the solution of the equationPinel(s, b) = 1. Eq.
(9) is applicable at very high energies for such observablesas mean multiplicity,
average transverse momentum, anisotropic flowsvn and multiplicity distribution
Pn(s). In general, this relation means that for the production processes the relative
range of variations of the impact parameter is decreasing with the energy and the
most typical inelastic event at very high energy is the eventwith a non-zero value
of the impact parameter in the region nearb = r(s) while the inelastic events at
small and large impact parameter values should be suppressed. This suppression
is strong ats → ∞. For the elastic scattering, the impact parameter profile is
central and expanding one with the energy.

We are going now to evaluate energy dependence of the averagetransverse
momentum of produced particles at the asymptotic energies using Eq. (9). The
geometrical picture of hadron collisions discussed earlier (cf. [27]) supposes that
at high energies and non-zero impact parameters the constituent quarks produced
in the overlap region under the hadron collisions carry large orbital angular mo-
mentum. It has been estimated as

L(s, b) ∝ b

√
s

2
DC(b), (10)

whereDC(b) ≡ D1
C⊗D2

C is a convolution of the peripheral condensates’ distribu-
tions in the two colliding hadrons. Due to preasumed strong interaction between
the quarks this orbital angular momentum should lead to a coherent rotation of the
overlap region as a whole. This rotation is similar to rotation of a liquid which is
considered to be a quark-pion liquid [27]. This collective coherent rotation is con-
sidered to be an only source of the secondary particles’ transverse momentum at
s → ∞. Namely, it is assumed that the rotation of transient matteris affecting av-
erage transverse momentum of the secondary hadrons in proton-proton collisions.
The following relation can be used

〈pT 〉(s, b) = κL(s, b), (11)

whereL(s, b) is given by Eq. (10) andκ is a constant (it has dimension of inverse
length), which can be related to the inverse hadron radius. The average transverse
momentum〈pT (s)〉 ats → ∞ can be calculated then using Eq. (9) if one assumes
that the condensate distributions in the hadrons are controlled by the pion mass,
i.e.

D1
C ⊗D2

C ∼ exp(−mπb).

8



With the model described in [27] for the average transverse momentum〈pT 〉(s)
at asymptotically high energies we will have

〈pT 〉(s) = csδC ln s, (12)

whereδC = 1/2−mπ/mQ andmQ is the mass of the constituent quarkQ. Using
the valuemQ ≃ 0.35 GeV one will have for the exponentδC ≃ 0.1. Of course,
Eq. (12) is valid ats → ∞. The experimental data up to the energy

√
s = 2.36

TeV can be well described using the fit

〈pT 〉(s) = a + csδ̃C (13)

with the parametersa = 0.337 GeV/c,c = 6.52 · 10−3 GeV/c andδ̃C = 0.207.
Eq. (13) is in a good agreement with the experimental data at

√
s ≤ 2.36 TeV

(cf. Fig. 4). As it is evident from Fig. 4, one might expect a slow-down of the

<
p
T
>
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),
 G
e
V
/c

0,4
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√s, GeV
10 100 1 000 10 000

Figure 4:Slow-down of an energy dependence of the average transversemomentum.

increase of the average transverse momentum, the point at
√
s = 7 TeV lies below

the respective extrapolation. Such slow-down can be interpreted as a beginning
of transition to the asymptotic dependence Eq. (12) which has a lower value
of the exponent. Thus, this slow-down then can be correlatedwith transition to
the reflective scattering mode and serve as its clue. Reflective scattering should
also lead to slow-down of the average multiplicity energy dependence [26]. The
presence of the reflective scattering mode would lead to the simultaneous slow-
down of the average transverse momentum and average multiplicity. It should
also be noted that multiplicity distribution would have a form of the product of
the two stochastic distributions at the asymptotic energies if one adopt the Chou
and Yang geometric picture of multiparticle production [28], i.e. the product of
the two Poisson distribution one innF and another one innB wherenF andnB are
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the multiplicities of the secondary particles in forward and backward hemispheres.
The average multiplicity for both distributions would be

〈n〉(s, b)|b=r(s)/2.

In the model [27] it has power-like energy dependence ats → ∞, i.e.

〈n〉(s) = csδ, (14)

whereδ = δC = 1/2 − mπ/mQ ≃ 0.1. Thus, the transition with energy from
the nonstochastic to stochastic multiplicity distribution can be envisaged, in the
case of the unitarity limit saturation since the product of two Poisson distributions
gives another Poisson distribution multiplied by the binominal factor [28]. But,
the Chou-Yang approach would provide nonstochastic multiplicity distribution in
case of the black limit saturation.

Another interpretation there was proposed in [29]. Namely,the energy de-
pendence of the average transverse momentum which has started to change in the
region

√
s > 3 TeV has been related to an appearance of the decoherence in the

proton interactions which in its turn might results from thegradual phase transi-
tion of the strongly interacting transient state (quark-pion liquid) into the weakly
interacting gas of quarks and gluons (quark-gluon plasma).

Conclusion on the validity of the particular interpretation could be done on
base of the average multiplicity measurements. If there is no simultaneous changes
in the energy dependencies of〈pT 〉(s) and〈n〉(s) (when average transverse mo-
mentum changes its energy dependence but average multiplicity does not) one
should choose the option based on the emergence of the decoherence in the pro-
ton interactions. Further experimental studies at higher energies are necessary to
make a choice between the two above options.

Conclusion

Thus, the two above discussed alternatives—saturation of the black disk limit or
saturation of the unitarity limit—generate different mechanisms of the total cross–
section growth at the energies

√
s > 7 TeV. Namely, saturation of the black disk

limit assumes the growth of the total cross–section due to increasing effective
impact parameter values only, while the growth of the total cross-section can, in
fact, be due to both factors — increase of impact parameter values combined with
an increase of the elastic scattering amplitudef(s, b) with the energy at fixedb.
Therefore, the measurements of the elastic scattering at

√
s = 13 TeV especially

in the region of large−t could be quite decisive regarding the asymptotic picture
and would help to determine which scattering picture —absorptive or reflective
— should be expected at the asymptotical energies.
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The saturation of the black disk limit and saturation of the unitarity limit
lead to the qualitatively different multiplicity distributions ats → ∞. The mea-
surements of the average transverse momentum, average multiplicity, multiplic-
ity distribution, correlations of multiplicities in the forward and backward hemi-
spheres as well as the other particle correlations related,in particular, the ridge
and double–ridge effects also could be useful in the searches for further possible
experimental traces of the reflective scattering mode in hadron interactions.
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