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Abstract: Production of Higgs bosons at the LHC is affected by the contribution of light

quarks, that mediate the gg → Hg transition. Although their impact is suppressed by small

Yukawa couplings, it is enhanced by large logarithms of the ratio of the Higgs boson mass or

its transverse momentum to light quark masses. We study the origin of this enhancement,

focusing on the abelian corrections to gg → Hg amplitudes of the form (CFαsL2)n, where

L ∈ {ln(s/m2
b), ln(p

2
⊥/m

2
b)}. We show how these non-Sudakov double logarithmic terms

can be resummed to all orders in the strong coupling constant. Interestingly, we find that

the transverse momentum dependence of these corrections is very weak due to a peculiar

cancellation between different logarithmic terms. Although the abelian part of QCD cor-

rections is not expected to be dominant, it can be used to estimate missing higher-order

corrections to light quark contributions to Higgs boson production at the LHC.
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1 Introduction

The Higgs boson discovered at the LHC by ATLAS and CMS collaborations almost four

years ago [1, 2] is a mysterious particle. Indeed, it seems to fit perfectly into the Standard

Model (SM) of particle physics and its mass is numerically close to the weak scale v. How-

ever, the mechanism that would tie these two quantities together in a more general theory

requires presence of other, relatively light, particles that couple to the Higgs boson. Such

particles have not been observed so far and limits on their masses gradually become so

tight that the “natural” relation mH ∼ v is endangered. Further exploration of Higgs boson

properties, including its couplings and quantum numbers, will be essential for understand-

ing to what extent the observed particle is indeed described by the Standard Model and,

hopefully, for discovering clues as to what the mass scale of physics beyond the Standard

Model can actually be.

An important observable in Higgs physics is the Higgs boson transverse momentum dis-

tribution. There are several reasons for that. On one hand, precise knowledge of the Higgs

boson p⊥-distribution is important for understanding jet-vetoed cross sections and, more

generally, observables subject to experimental constraints. The uncertainties in modeling

the p⊥-distribution affect values of the Higgs coupling constants extracted from such fiducial

quantities. Since the total inclusive Higgs boson production cross section is currently known

through next-to-next-to-next-to-leading order in perturbative QCD [3], the uncertainty in

the Higgs p⊥-distribution may become the dominant one when future experimental data is

confronted with theoretical predictions for the Higgs boson production.
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Further motivation for the precise description of the Higgs boson p⊥-spectrum comes

from the observation that the p⊥-distribution is, potentially, a good observable for detecting

relatively light (m ∼ mH) colored particles that couple to the Higgs boson [4]. Indeed the

contribution of a particle with the mass m ∼ mH to the Higgs boson production in gluon

fusion is almost independent of p⊥ for p⊥ < m while for p⊥ > m it rapidly decreases. Thus

the p⊥-distribution of Higgs bosons or jets recoiling against it, may serve as a sensitive

probe of this type of physics beyond the Standard Model.

High-precision theoretical predictions for Higgs boson p⊥-distribution within the Stan-

dard Model are necesary to pursue this program [5, 6]. Unfortunately, despite significant

progress in understanding the Higgs p⊥-spectrum in recent years, the overall situation is

unsatisfactory. The main challenge is to describe the bottom quark contribution to the

Higgs boson production in gluon fusion at moderate values of the transverse momentum.

Indeed, the gg → H transition in the Standard Model is dominated by the top-quark loop,

thanks to the large Higgs-top Yukawa coupling. Since the top quark mass is large com-

pared to the Higgs mass, it is possible to integrate out the top quark and describe the

Higgs production at sufficiently low transverse momentum in the effective field theory with

a local ggH interaction. This reduces the number of loops in perturbative computations by

one and allows us to push them to very high orders in QCD perturbation theory. Within

this approximation, the Higgs p⊥-distribution has been evaluated through next-to-next-to-

leading order at high p⊥ < mt [7, 8] and to next-to-next-to-leading logarithmic accuracy at

low p⊥ < mH [9, 10].1

At the same time understanding the bottom-quark contribution to gg → Hg turned

out to be more involved.2 Indeed, since mb ∼ 4.2 GeV, the point-like approximation for

the bottom quark contribution to ggH vertex is only valid for tiny transverse momenta

p⊥ < mb. In a broader and more interesting momentum region p⊥ > mb, the local vertex

approximation for the bottom quark-mediated ggH interaction is invalid and we must

deal with the computation of complicated box diagrams with internal masses. Calculation

of such diagrams at two and more loops is beyond the reach of existing computational

techniques. As the result, the gg → Hg amplitudes for p⊥ > mb are only known in the

leading (one-loop) approximation.

The bottom quark contribution to Higgs boson production is small, compared to the

contribution of the top quark. However, it is still relevant phenomenologically because of

the high precision of forthcoming experimental measurements of the Higgs-gluon coupling

and because the bottom quark contribution is dynamically enhanced. Indeed, although

the coupling of the bottom quark to the Higgs boson is small compared to the Higgs-top

coupling, the n-loop bottom quark contribution to gg → Hg is enhanced by two powers of

large logarithms per one power of αs, i.e. O(αn
sL2n), where L ∈ {ln(m2

H/m2
b), ln(p

2
⊥/m

2
b)}.

For relevant values of the transverse momentum p⊥ ∼ 30 GeV and the Higgs boson mass

mH = 125 GeV, these logarithms can be numerically quite large L2 ∼ 20− 50. In fact, the

magnitude of the double logarithmic corrections suggests that the all-order resummation

1For a recent discussion and further references see Ref. [11].
2Contributions of even lighter quarks are negligible.
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may be necessary.

The origin of these logarithmically enhanced terms is currently not well understood.

Although their double logarithmic nature suggests a mechanism similar to the Sudakov en-

hancement [12], as we explain below the mass suppression of the amplitude Mgg→Hg ∼ m2
b

makes such an interpretation problematic. Contribution of bottom quarks to the Higgs

boson production in gluon fusion was discussed in Refs. [13–15] in the context of p⊥-

resummation. There it was pointed out that the standard technology of p⊥-resummation

only applies for p⊥ < mb, while for larger values of p⊥ it is incomplete. The authors

of Refs. [13–15] then used differences between various resummation prescriptions to esti-

mate the uncertainty in the Higgs p⊥-distribution, caused by unknown higher-order QCD

corrections to the bottom quark contribution.

The goal of this paper is to make a step towards a better understanding of the origin

of double logarithmic corrections to the Higgs boson production, their computation in the

two-loop approximation and to their resummation. Since these tasks are very challenging,

we restrict our analysis to abelian QCD corrections, i.e. corrections associated with the

abelian color factor Cn
F in the n-th order of QCD perturbation theory. Note that the

abelian radiative corrections are generated by the coupling of virtual gluons to massive off-

shell quarks. As a consequence, these corrections are infra-red finite on their own, so that

physical results can be obtained without the need to consider processes with additional soft

and collinear radiation.

The paper is organized as follows. In the next section we introduce our notation. In

Section 3 we describe evaluation of one-loop double logarithmic corrections to the bottom

quark contribution to gg → Hg helicity amplitudes. In Section 4 we extend this analysis

to two loops. In Section 5 we show how these logarithmic corrections can be resummed to

all orders in the strong coupling constant. Numerical estimates of the corrections are given

in Section 6. We conclude in Section 7.

2 Setup and notations

We consider the Higgs boson production in the process gg → Hg mediated by the bottom

quark loop. The Higgs boson has a non-vanishing transverse momentum. The particle

momenta are assigned in the following way

g(p1) + g(p2) → g(p3) +H(pH). (2.1)

Our goal is to find the double logarithmic contributions to helicity amplitudes in a kinematic

situation where the energy of the final state gluon E3 is much smaller than the energies of

the colliding gluons E1,2 and the Higgs boson mass. At the same time, we consider E3 to

be much larger than the mass of the quark that mediates the gg → H transition. When

written in terms of kinematic invariants, these conditions imply

m2
b ≪ p2⊥ ≪ t, u ≪ s,m2

H , (2.2)

where s = (p1 + p2)
2, t = (p1 − p3)

2, u = (p2 − p3)
2 and p2⊥ = tu/s is the square of the

transverse momentum of the Higgs boson or the gluon in the final state.
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To illustrate this kinematic situation further, consider the production of a Higgs boson

through a bottom quark loop accompanied by an emission of a soft gluon. We take mb =

4.2 GeV,
√
s ≈ mH , p⊥ ≈ 20 GeV and assume central production (small rapidity), so that

E3 ≈ p⊥. Numerically we find

mb

E1
∼ λ2,

mb

E3
∼ λ,

E3

E1
∼ λ, (2.3)

with λ ∼ 0.25. We consider λ to be a small parameter and adopt the scaling rules Eq.(2.3).

In the limit λ → 0 the gg → Hg amplitude develops the 1/λ singularity, characteristic to

the soft gluon emissions; this allows us to write the perturbative series for the amplitude

in the following way

Mgg→Hg =
gs
λ

∞
∑

n=1

Cnα
n
s ln

2n(λ) + . . . . (2.4)

In Eq.(2.4), we neglected all terms that are less singular than λ−1αn
s ln

2n λ in the λ → 0

limit. We are interested in the abelian part of the coefficients Cn, which determine the

double logarithmic approximation for the amplitude. The leading-order coefficient C1 is

well-known and can be extracted from the one-loop result for the gg → Hg amplitude

[16]. In what follows, we explain how to obtain this coefficient without following the stan-

dard route of a one-loop computation. We then compute the two-loop coefficient C2 and

generalize the result to arbitrary n.

We begin by fixing the notation for helicity amplitudes. There are eight helicity am-

plitudes that are needed to describe g1g2 → Hg3 process. However, when the gluon g3
is soft, the Higgs boson is effectively produced in the collision of two energetic gluons g1
and g2. This can only happen when helicities of these gluons are equal. The constraint

λ1 = λ2 leaves us with four helicity amplitudes which are pair-wise related by the parity

conjugation. We take M+++ and M++− as the two independent amplitudes that we need

to compute.

It is convenient to write the amplitudes in such a way that their spin-helicity structure

in the soft limit is factored out, and the remaining part only depends on the Mandelstam

invariants of the process

M soft
+++ = −gs

√
2fa1a2a3

g2sgymb

16π2

〈12〉2
[12]〈23〉〈13〉 A+++(t, u,m

2
H ,m2

b),

M soft
++− = −gs

√
2fa1a2a3 g

2
sgY mb

16π2

〈12〉
[23][13]

A++−(t, u,m
2
H ,m2

b).

(2.5)

Two helicity-dependent form factors A++± are given by the series in the strong coupling

constant

A++± = A
(0)
++± +

(αs

2π

)(

CFA
(1A)
++± + CAA

(1NA)
++±

)

+O(α2
s), (2.6)

where the abelian and non-abelian parts are separated. Our goal is to compute abelian

contributions at two loops and beyond.
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Figure 1. One-loop diagrams representing the leading order bottom quark contribution to gg → Hg

process. Symmetric diagrams corresponding to the opposite direction of the quark flow and to the

soft emissions off the opposite gluon/quark line are not shown.

3 One-loop helicity amplitudes in the double logarithmic approximation

In this section, we will study the double logarithmic contributions to the one-loop gg → Hg

amplitude mediated by a quark of mass m. A well-known example of a double logarithmic

enhancement is provided by the Sudakov logarithms [12]. However, the situation with

gg → Hg is different. Indeed, as we will show, in contrast to the Sudakov logarithms

[12] associated with the radiation of soft virtual gauge bosons by highly energetic on-shell

charged particles, the double logarithmic enhancement of the gg → Hg amplitude is caused

by a soft quark exchange. Such non-Sudakov double logarithms are typical for amplitudes

that are mass-suppressed at high energy [17–19]. Since physics of these non-Sudakov double

logarithmic corrections is not well-known, we begin by discussing the one-loop case in detail.

In total, there are ten one-loop Feynman diagrams contributing to the leading order

gg → Hg amplitude, Fig.1. However, up to differences in color factors that ensure that the

final result is proportional to structure constants fabc of the gauge group SU(3), diagrams

that differ only by the direction of the quark flow in the loop give identical contributions.

The number of relevant diagrams can be further reduced by a judicious choice of gluon polar-

ization vectors. Indeed, each polarization vector can be chosen to satisfy two transversality

conditions. It is convenient to require

ǫi · pi = 0, i ∈ {1, 2, 3}, ǫ1 · p2 = 0, ǫ2 · p1 = 0, ǫ3 · p2 = 0. (3.1)

Explicit expressions for polarization vectors satisfying Eq.(3.1) in terms of spinor products

are given in Appendix. Emission of a soft gluon g3 off the gluon or quark line carrying

large momentum pi can be described by an effective vertex proportional to pi · ǫ3. Thus the

condition ǫ3 · p2 = 0 ensures that there are no soft gluon emissions off the gluon and quark

lines carrying the external momentum p2. As the result, only diagrams shown in Fig.1 need

to be considered.

To determine the double logarithmic asymptotic behavior of the amplitude we follow

the original method of Ref. [12]. We start by evaluating the diagram Fig.1a together with

the diagram with the opposite direction of the quark flow. By calculating the trace we find

that the diagram is proportional to mb. The mass suppression is caused by the fact that
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the Higgs-quark interaction flips quark helicity. Since strong interactions conserve helicity

in the massless limit, the mass term provides the required second helicity flip in the quark

loop. This helicity flip is caused by a mass term of the soft quark propagator

l̂ +mb

l2 −m2
b

→ mb

l2 −m2
b

. (3.2)

It follows from Eq.(3.2) that once the mass term is selected, the soft quark propagator

becomes a propagator of a scalar particle, which is sufficiently singular at small momenta

to develop a double logarithmic contribution. We note that if the mass term is taken from

the quark propagator that carries large momentum, the double logarithmic contribution

does not develop because the soft quark propagator 1/l̂ is insufficiently singular. By virtue

of a similar argument, the soft loop momentum l can often be neglected in the numerators of

contributing diagrams, since we are only interested in the leading logarithmic enhancement.

We note that the last feature is not generic (see e.g. the analysis of the diagram Fig.1c

below). With all these simplifications it is straightforward to derive contributions of the

diagram Fig.1a to the helicity-dependent form factors. They read

A
(0),1a
++± = −32 i π2s C(s, t,m2

b), (3.3)

where

C(s, t,m2
b) =

∫

d4l

(2π)4
1

(l2 −m2
b)((p1 − p3 − l)2 −m2

b)((p2 + l)2 −m2
b)

(3.4)

is the three-point function with two of its legs off-shell. To compute C(s, t,m2
b) in the double

logarithmic approximation, we follow Ref. [12] and introduce the Sudakov parametrization

of the virtual momentum l = αp1 + βp2 + l⊥. We integrate over the transverse momentum

components l⊥ by taking the residue of the soft quark propagator pole

1

l2 −m2
b + i0

→ −iπδ(l2 −m2
b) = −iπδ(sαβ − l2⊥ −m2

b). (3.5)

This allows for a symmetric treatment of the soft and collinear parts of the double loga-

rithmic contribution. The two remaining propagators in Eq.(3.4) become

1

(p2 − l)2 −m2
b

→ 1

sα
,

1

(p1 − p3 − l)2 −m2
b

→ 1

t− βs
. (3.6)

To obtain the double logarithmic contribution we require both α and β integrations to be

logarithmic. This requirement is automatically satisfied for the integration over α. At the

same time the integration over β is logarithmic only for β > |t|/s. Hence, in the double

logarithmic approximation Eq.(3.4) reduces to

C(s, t,m2
b) ≈

i

16π2s

∫ 1

m2

b
/s

dα

α

∫ 1

|t|/s

dβ

β
θ(αβ −m2

b/s), (3.7)

where the intervals |t|/s < β < 1 and m2
b/s < α < 1 are determined by the effective infrared

and ultraviolet cutoffs of the logarithmic integral, and additional kinematic constraint αβ >

– 6 –



m2
b/s ensures that the pole of the soft quark propagator is in the integration domain. It is

convenient to factor out the large logarithm L = ln (m2
b/s) ≈ ln (m2

b/m
2
H) and introduce

the normalized variables η = lnα/L and ξ = ln β/L. By using Eqs.(3.3,3.4,3.7) we find

A
(0),1a
++± = ±2L2

∫ 1−τt

0
dη

∫ 1−η

0
dξ = ±L2(1− τ2t ), (3.8)

where τt = ln
(

m2
b/|t|

)

/L.

Next, we consider the diagram Fig.1b. To compute this diagram in the double loga-

rithmic approximation, we again pick up a mass term from the soft quark in the t-channel

and neglect the momenta l and p3 everywhere in the numerator. Then the contribution of

the diagram Fig.1b reduces to

A
(0),1b
++± = −16iπ2tsD(s, t,m2

H ,m2
b), (3.9)

where D(s, t,m2
H ,m2

b) is the four-point integral

D =

∫

d4l

(2π)4
1

(l2 −m2
b)((p1 − l)2 −m2

b)(p1 − p3 − l)2 −m2
b)((p2 + l)2 −m2

b)
. (3.10)

We use the same Sudakov parametrization l = αp1 + βp2 + l⊥ as before. Upon inspecting

the infrared structure of Eq.(3.10) we find that the double logarithmic contribution can

only be obtained when the propagator

1

(p1 − p3 − l)2 −m2
b

≈ 1

t− βs
(3.11)

becomes independent of β. This leads to a constraint β < |t|/s. The logarithmic integration

intervals become m2
b/s < α < 1, m2

b/s < β < |t|/s and we obtain

A
(0),1b
++± = ±L2

∫ 1

1−τt

dη

∫ 1−η

0
dξ = ±L2 τ

2
t

2
. (3.12)

We will now discuss the diagram shown in Fig.1c where the gluon is emitted off the

soft quark line. Similar to the previous case we deal here with the box diagram and need to

“remove” one of its propagators to obtain the proper (logarithmic) scaling of the integrand.

In fact, the underlying box diagram has two non-overlapping momenta regions that lead

to a double logarithmic enhancement. These regions are characterized by the choice of the

soft momentum in the diagram. Indeed, we can choose the soft momentum l in such a way

that the momentum of the emitted gluon p3 flows through the lower (upper) half of the

quark loop Fig.1c in region I (II), respectively. Consider region I and choose the momentum

decomposition l = αp1 + βp3 + l⊥. After omitting irrelevant terms, the quark propagators

– 7 –



become

l̂ +mb

l2 −m2
b

→ −iπmbδ(|t|αβ − l2⊥ −m2
b), (3.13)

p̂1 − l̂ +mb

(p1 − l)2 −m2
b

→ p̂1
tβ

, (3.14)

p̂3 − l̂ +mb

(p3 − l)2 −m2
b

→ p̂3 − αp̂1
tα

, (3.15)

p̂2 + p̂3 − l̂ +mb

(p2 − p3 + l)2 −m2
b

→ p̂2
u+ sα

. (3.16)

It follows from Eqs.(3.13,3.14,3.15,3.16) that the double logarithmic contribution can be

obtained in two different ways: (i) for α < |u|/s only the p3 term in the numerator of

Eq.(3.15) should be kept (the “scalar” contribution) and (ii) for α > |u|/s the αp1 term

should be taken from the numerator in Eq.(3.15) to cancel an extra power of α that ap-

pears in the denominator of Eq.(3.16) in this limit (the “vector” contribution).3 These two

contributions are proportional to

N s
λ1,λ2,λ3

=
Tr [ǫ̂3ǫ̂1p̂1p̂2ǫ̂2p̂3]

2tu
, (3.17)

and

Nv
λ1,λ2,λ3

=
Tr [ǫ̂3ǫ̂1p̂1p̂2ǫ̂2p̂1]

2ts
, (3.18)

respectively. By calculating traces and using explicit expressions for the polarization vectors

given in Appendix, we find the following results

N s
+,+,+ = 0, N s

++− =

√
2〈12〉

[13][23]
,

Nv
+,+,+ =

√
2〈12〉2

[12]〈23〉〈13〉 , Nv
++− = −

√
2〈12〉

[13][23]
,

(3.19)

Note that the vector integral has the usual tensor structure of a color-dipole emission which

gives A+++ = −A++−, similar to all other diagrams. At the same time, the tensor structure

of the scalar integral corresponds to the three-gluon configuration described by a local gauge

invariant operator

Ga
µνG

b
νλG

c
λµf

abc, (3.20)

which does not contribute to the all-plus helicity amplitude.

By crossing symmetry, the scalar contributions of the momentum regions I and II are

equal. Therefore, the total scalar contribution of the diagram Fig.1c can be written in terms

of the double logarithmic integral over the interval m2
b/|t| < α < |u|/s, m2

b/|t| < β < 1 that

originates from region I. This gives

A
(0),1c,s
++− = −2L2

∫ τt

1−τu

dη

∫ τt−η

0
dξ = −L2(1− τt − τu)

2, (3.21)

3 We refer to this contribution as “vector” because it originates from a term in the numerator of the

diagram Fig.1c which is linear in the soft loop momentum l.
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Figure 2. Two-loop diagrams contributing to the abelian double logarithmic corrections. Diagrams

that differ by the direction of the fermion flow are not shown.

whereas A
(0),1c,s
+++ = 0. At the same time, the vector contribution of region II vanishes due

to our choice of the polarization vector for the gluon g3, p2 · ǫ3 = 0. As the result, the total

vector contribution of the diagram Fig.1c is given by the double logarithmic integral over

the interval |u|/s < α < 1, m2
b/|t| < β < 1 from region I. It reads

A
(0),1c,v
++± = ±L2

∫ 1−τu

0
dη

∫ τt−η

0
dξ = ∓L2 (1− τu)(1− 2τt − τu)

2
. (3.22)

We are now in position to present the leading-order bottom-quark contribution to gg → Hg

helicity amplitudes in the double logarithmic approximation. We sum the contributions of

individual diagrams given in Eqs.(3.8,3.12,3.21,3.22) and obtain

A
(0)
+++ = L2

(

1− τ2

2

)

, A
(0)
++− = −L2

(

1 +
τ2

2

)

, (3.23)

where we used τ = ln(m2
b/p

2
⊥)/L. These results coincide with the double logarithmic limits

of the one-loop amplitudes computed in Ref. [16] long time ago.4 Our analysis identifies

the origin of the double logarithmic enhancement of the gg → Hg amplitude mediated by a

light quark. With this understanding, it is straightforward to extend the above calculation

first to two loops and then to all orders in the strong coupling constant αs. We will describe

how to do this in the next sections.

4 Two-loop helicity amplitudes in the double logarithmic approximation

It is easy to convince oneself that a two-loop diagram contributing to gg → Hg can develop

leading O(mb) double logarithmic enhancement only if exactly one of its fermion lines is

4See also Ref. [15] for a recent discussion.
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soft. Indeed, since each soft fermion effectively contributes one power of mb to the final

result, leading O(mb) double logarithms are provided by exchanges of one soft fermion and

one soft virtual gluon.

The abelian part of the two-loop correction originates from a soft gluon exchange

between virtual bottom quarks. The relevant two-loop Feynman diagrams are shown in

Fig.2. We note that the one-loop correction to qq̄H vertex appears as a subdiagram in many

two-loop diagrams in Fig.2. This correction develops a double logarithmic enhancement, so

that the (properly normalized) qq̄H vertex in the one-loop approximation reads [12]

Vqq̄H = 1 + δVqq̄H , δVqq̄H = −CFαs

2π
ln

(

q21
2q1 · q2

)

ln

(

q22
2q1 · q2

)

. (4.1)

In Eq.(4.1), q1 and q2 are the momenta of the off-shell quark lines and we assume that

m2
b ≪ q21, q

2
2 ≪ q1 ·q2. This expression and the one-loop analysis of the previous section can

be used to easily compute the leading logarithmic part of the relevant two-loop diagrams.

We begin with the diagram Fig.2a. The external momenta of the vertex subgraph in

this case are q1 = p1 − l and q2 = p2 + l, where l is the soft momentum of the quark loop.

For l = αp1 + βp2 + l⊥ we get q21 = sβ, q22 = sα, 2q1 · q2 ≈ s, so that

δV 2a
qq̄H = −CFαs

2π
lnα ln β = −xηξ, (4.2)

where x = CFαsL
2/2π and η, ξ and L are defined in the previous section. The double

logarithmic integration over the soft quark momentum is the same as for the diagram

Fig.1a and the correction to the helicity amplitudes is obtained by including δV 2a
qq̄H factor

into the integrand of the one-loop expression Eq.(3.8). For the two-loop abelian coefficient

in Eq.(2.6) we obtain

A
(1A),2a
++± = ∓2L4

∫ 1−τt

0
dη

∫ 1−η

0
dξ η ξ = ∓L4 (1 − 4τ3t + 3τ4t )

12
. (4.3)

The diagram in Fig.2b is computed in a similar way. Virtualities of the quark lines become

q21 ≈ |t| and q22 ∼ sα, and the one-loop vertex reads

δV 2b
qq̄H = −CFαs

2π
ln

|t|
s
lnα = −x(1− τt)ξ. (4.4)

Substituting this result into Eq.(3.12), we obtain

A
(1A),2b
++± = ∓L4

∫ 1

1−τt

dη

∫ 1−η

0
dξ (1− τt) ξ = ∓L4 (τ

3
t − τ4t )

6
. (4.5)

The double logarithmic contribution of the diagram Fig.2c is generated when the quark

propagator between the emission vertex of the soft gluon g3 and the qq̄H vertex becomes

independent of the soft photon loop momenta. In this case the inner loop reduces to the

one-loop vertex with an additional restriction on the integration region. We find

δV 2c
qq̄H = −CFαs

2π
ln

βs

|t| lnα = −x (η − 1 + τt) ξ. (4.6)
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The corresponding two-loop corrections to the amplitudes read

A
(1A),2c
++± = ∓L4

∫ 1

1−τt

dη

∫ 1−η

0
dξ (η − 1 + τt) ξ = ∓L4 τ

4
t

24
. (4.7)

To compute the diagram Fig.2d in the double logarithmic approximation, we again insert

the expression for the qq̄H vertex Eq.(4.1) into the one-loop diagram in Fig.1c. As was

explained in the previous section this diagram receives the double logarithmic contributions

from two independent momentum regions. In region I we parametrize the soft momentum

as l = αp1 + βp3 + l⊥ and find

δV 2d = −CFαs

2π
ln

|t|β
s

ln
|u|+ αs

s
→ −CFαs

2π











ln |t|β
s ln |u|

s α < |u|
s ,

ln |t|β
s lnα α > |u|

s .

(4.8)

We note that the two integration regions, α < |u|/s and α > |u|/s, correspond to scalar

and vector contributions, respectively. The expression for the qq̄H vertex in region II can

be found in the same way. We insert these results into Eqs.(3.21,3.22) and obtain

A
(1A),2d,s
++− = L4

∫ τt

1−τu

dη

∫ τt−η

0
dξ(1− τu) (ξ + 1− τt) + (t ↔ u)

= L4 (2− 2τt + τu)(1− τu)(1− τt − τu)
2

6
+ (t ↔ u).

(4.9)

A
(1A),2d,v
++± = ∓L4

∫ 1−τu

0
dη

∫ τt−η

0
dξ(ξ + 1− τt)η

= ±L4 (1− τu)
2(5− 12τt + 6τ2t − 2τu − 3τ2u)

24
.

(4.10)

We note that the corresponding one-loop expression given in Eq.(3.21) includes equal scalar

contributions from regions I and II. At two loops, contributions of regions I and II are not

equal anymore; we separate them in Eq.(4.9) and indicate contribution of the region I by

the corresponding integral and the contribution of region II by the t ↔ u symmetric term.

The vector contribution Eq.(4.10) comes entirely from region I, as in the one-loop case.

Diagrams shown in Fig.2e and Fig.2f are related by crossing symmetry and we only

consider the evaluation of the former. This diagram receives the scalar contribution from

region I; the double logarithmic term is generated when the propagator between the emission

vertex of the gluon g2 and the qq̄H annihilation vertex becomes independent on the soft

momenta. Thus as in the case of the diagram Fig.2c the inner loop reduces to the one-loop

vertex integral with an additional restriction on the integration region. The effective vertex

in this case reads

δV 2e
qq̄H = −CFαs

2π
ln

αs

u
lnβ = −x (η − 1 + τu) ξ. (4.11)

Since the scalar contribution to the all-plus helicity amplitude vanishes, we obtain

A
(1A),2e
++− =L4

∫ τt

1−τu

dη

∫ τt−η

0
dξ (η − 1 + τu) ξ = L4 (1− τt − τu)

4

24
. (4.12)
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The result for the diagram in Fig.2f is also given by Eq.(4.12) since it is symmetric with

respect to the replacement t ↔ u.

Taking the sum of all the individual contributions in Eqs.(4.3,4.5,4.7,4.9,4.10,4.12),

we obtain the two-loop correction to the gg → Hg amplitude in the double logarithmic

approximation

A
(1A)
+++ = −L2

24

(

2− 3τ2 + 2τ3 + 3τ2ζ2
)

,

A
(1A)
++− =

L2

24

(

2 + 3τ2 − 6τ3 + 4τ4 − 3τ2ζ2
)

,

(4.13)

where the new variable ζ = ln(u/t)/L parametrizes the dependence of the amplitudes on

the soft gluon rapidity.

5 Resummation of the abelian double logarithmic contributions

The perturbative expansion parameter for the double logarithmic corrections x = CFαs

2π L2

is not small numerically, x ∼ 1. For this reason, resummation of such corrections might

be relevant. This problem is also quite interesting theoretically, since very little is known

about the all-order structure of the power-suppressed non-Sudakov logarithms. Indeed, on

the one hand, only few examples of the resummation of non-Sudakov double logarithmic

corrections are known so far [17–19] and, on the other hand, systematic renormalization

group analysis of the high-energy behavior of the on-shell amplitudes beyond the leading-

power approximation is still elusive for existing effective field theory methods.

The problem that we discuss in this paper is, however, simpler than the general case. As

we pointed out already, to leading order in mb, higher-order double logarithmic corrections

to the helicity amplitudes are caused by multiple soft virtual gluon exchanges and a single

soft quark exchange. Thus we have to consider Feynman diagrams similar to Fig.2 but

with multiple soft gluon exchanges between different quark lines. For the abelian part of

the corrections we can use simple factorization properties of soft emissions in QED. It is

well-known that in this case, upon summing over all relevant diagrams, integrations over

soft gluon momenta factorize and the all-order result is given by the exponent of the single

gluon contribution, given by the O(αs) term in Eq.(4.1).

By using the expression Eq.(4.2) specific for the diagram Fig.2a we find the Sudakov

exponent to be e−xξη. The all-order double logarithmic corrections to helicity amplitudes are

then obtained by including this exponent into the integrand of Eq.(3.8). Upon integration

over ξ, we obtain the resummed expression for helicity amplitudes in the form of the one-

parameter integral

AA,a
++± = ±2L2

∫ 1−τt

0

1− e−xη(1−η)

xη
dη. (5.1)

The multiple gluon exchange diagrams related to Fig.2b and Fig.2c must be considered

simultaneously.5 After summing over all possible permutations of the soft gluon emission

5Indeed, already at the two-loop level, these diagrams describe the two possible ways to emit the soft

gluon with momentum p3 and a soft virtual gluon by an energetic quark line.
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vertices, their contributions factorize and produce a product of the exponents of the one-

loop contributions (4.4, 4.6). They combine into the exponential factor e−xξη identical to

the previous case. By including it into the integrand of the one-loop expression Eq.(3.12)

we get the all-order result

AA,bc
++± = ±L2

∫ 1

1−τt

1− e−xη(1−η)

xη
dη. (5.2)

For the diagram Fig.2d the Sudakov factor depends on whether a vector or a scalar contri-

bution is considered, cf. Eq.(4.8). For the vector part, the Sudakov exponent is e−x(ξ+1−τt)η

and the all-order result associated with the leading-order contribution Eq.(3.22) reads

AA,d,v
++± = ±L2

∫ 1−τu

0

e−x(1−τt)η − e−xη(1−η)

xη
dη. (5.3)

As in the case of the diagrams Fig.2b and Fig.2c, the scalar contributions from the mo-

mentum region I of the diagram Fig.2d combine with the diagram Fig.2e, exponentiate

and produce a Sudakov factor e−x(1−τt−τu+τtτu+ηξ). The Sudakov exponent of the scalar

contribution from region II of the diagrams that combine Fig.2d and Fig.2e with additional

soft exchanges is obtained by the replacement t ↔ u. The sum of these contributions is,

therefore, given by

AA,de,s
++− = −2L2

∫ τt

1−τu

e−x(1−τu)(1−τt)
(

1− e−xη(τt−η)
)

xη
dη + (t ↔ u). (5.4)

The sum of individual contributions given in Eqs.(5.1,5.2,5.3,5.4) determines the complete

result for the abelian double logarithmic corrections to the bottom quark contribution to

gg → Hg helicity amplitudes to all orders in QCD perturbation theory.

6 Double logarithmic corrections to the differential cross section

We are now in position to estimate the effect of the corrections, computed in the previous

section, on the differential cross section of the Higgs boson production in association with a

jet. The total amplitude of this process is given by the sum of top and bottom contributions

since contributions of lighter quarks are negligible. We therefore write

M soft
+++ = −gs

√
2fa1a2a3 g2s

16π2v

〈12〉2
[12]〈23〉〈13〉

[

A
(t)
+++ +

m2
b

m2
H

A
(b)
+++

]

,

M soft
++− = −gs

√
2fa1a2a3 g2s

16π2v

〈12〉
[23][13]

[

A
(t)
++− +

m2
b

m2
H

A
(b)
++−

]

.

(6.1)

Thanks to its large Yukawa coupling, the top quark provides the dominant contribution to

the scattering amplitude. In the soft limit the real emission from inside the top-quark loop

is power-suppressed i.e. the soft emission factorizes with respect to the gg → H amplitude.

The result for this contribution is well known and in the limit of an infinitely heavy top

quark reads

A
(t)
++± = ±2

3
. (6.2)
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There are O(αs) corrections to this formula that, however, are not essential for us.

The largest effect of the bottom quark on the differential cross section is caused by its

interference with the top quark contribution. We find

dσgg→Hg = dσ
(0)
gg→Hg ×

[

1− 3

2

m2
b

m2
H

(

A
(b)
+++ −A

(b)
++−

)

+O(m4
b)

]

, (6.3)

where dσ
(0)
gg→Hg is the top quark mediated cross section, and we neglect the finite top

mass effects in the interference term. Note that since the leading bottom quark effect is

due to the interference with the top quark mediated amplitude, to leading order in 1/mt,

any additional real emission contribution involves the three-gluon interaction and does not

contribute to the abelian part of the correction.

We can now use the result derived in the previous section for numerical estimates.

It is convenient to express the correction to the cross section through the variables τ =

ln(m2
b/p

2
⊥)/L and ζ = ln(u/t)/L, which parameterize the dependence of the cross section

on the transverse momentum and rapidity. We obtain

dσgg→Hg = dσ
(0)
gg→Hg ×

[

1− 3

2

m2
b

M2
H

L2f(x, τ, ζ) +O(m4
b)

]

, (6.4)

where

xf(x, τ, ζ) =

∫ 1

0

dη

η

[

(1− e−xη(1−η)) (1 + 2θ (1− τ − ζ − 2η))− (1− e−xηδ(τ,ζ))
]

+ e−xδ(τ,ζ)

(1+τ+ζ)/2
∫

(1−τ+ζ)/2

dη

η

(

1− e−xη(1+τ+ζ−2η)/2
)

+ (ζ → −ζ),

(6.5)

and δ(τ, ζ) = ((1− τ)2 − ζ2)/4. The perturbative expansion of the function f reads

f = 2− x

6

(

1− τ3 + τ4
)

+
x2

24

(

4

15
− τ3 + 2τ4 − 7τ5

5
+

2τ6

5
+ ζ2

(

τ3 − τ4
)

)

+ . . . ., (6.6)

where ellipsis stands for terms suppressed by higher powers of x.

We can use the result Eq.(6.6) to estimate the impact of the QCD corrections to bottom

quark contributions to gg → Hg on the Higgs boson transverse momentum distribution.

In principle, we should convolute the partonic cross section Eq.(6.4) with the parton distri-

bution functions. However, we will now argue that, given the structure of the corrections

shown in Eq.(6.6), this is not necessary. Indeed, within the accuracy of our approximation

L = ln(s/m2
b) ≈ ln(m2

H/m2
b) can be considered independent of the partonic center-of-mass

energy. In addition, series in Eq.(6.6) shows very weak dependence on the rapidity of the

soft gluon. Indeed, the function f in Eq.(6.6) does not depend on the gluon rapidity up

to O(x). Moreover, at O(x2) the rapidity-dependent part of the coefficient includes only

high powers of τ . If the soft gluon is emitted at large rapidity, |ζ| ≈ 1 and τ ≪ 1. On the

contrary, central emission with the large transverse momentum implies |ζ| ≪ 1 and τ ≫ 1.

Therefore, the the rapidity-dependent term is small everywhere and can be neglected. Af-

ter these modifications the function f depends only on the transverse momentum of the
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emitted gluon or the Higgs boson. As a result it remains unaffected by the integration over

parton distribution functions if the transverse momentum of the Higgs boson is kept fixed.

Therefore, we can write

dσpp→H+j

dp2⊥
=
dσ

(0)
pp→H+j

dp2⊥

{

1− 3m2
b

m2
H

L2
eff

[

1− xeff
12

(

1− τ3 + τ4
)

+
x2eff
48

(

4

15
− τ3 + 2τ4 − 7τ5

5
+

2τ6

5

)

+O(x3)

]

+O(m4
b)

}

,

(6.7)

where Leff = ln(m2
H/m2

b) and xeff = αsCF

2π L2
eff . We emphasize that Eq.(6.7) only applies

to the contribution of gg partonic channel to the production of the Higgs boson in proton

collisions and that only abelian corrections are taken into account there.

We note that the series in Eq.(6.7) has peculiar structure. Indeed, the one-loop double

logarithmic correction to dσ/dp⊥ is independent on p⊥, thanks to a cancellation between p⊥-

dependent contributions to individual helicity amplitudes Eq.(3.23), when the differential

cross section is evaluated [15]. In principle, it could have been possible to interpret this

result as an indication that the naive factorization of soft emissions extends to a region

beyond p⊥ > mb, at least inasmuch as the interference with the top quark loop is concerned.

However, our result Eq.(6.7) shows that such an interpretation does not hold and that the

cancellation of p⊥-dependent double logarithmic corrections does not persist beyond one-

loop. In fact, starting from three loops, the double logarithmic corrections to the differential

cross section start to depend on the rapidity of the emitted gluon as Eq.(6.6) shows.

To understand numerical impact of these corrections, we use mH = 125 GeV, mb =

4.2 GeV, αs = 0.12 and consider p⊥ in the range mb < p⊥ < 50 GeV. We note that

the one-loop double logarithmic corrections reduce the cross section by about 16%. This

is somewhat larger than the result of the full computation, but still in the right ballpark.

The two-loop correction increases the result by about 1.5%. This is somewhat smaller than

the next-to-leading order effect in gg → H cross section but, given the fact that we only

consider the abelian contribution here, the two results are not inconsistent.6 However, our

main interest is in p⊥-dependent corrections and these corrections turn out to be quite small.

In fact, the two-loop correction in Eq.(6.7) decreases by just about 0.2% when the transverse

momentum varies from p⊥ ∼ mb to p⊥ ∼ 50 GeV. This tiny change is the result of a strong

cancellation between τ3 and τ4 term in Eq.(6.7). When taken separately, these terms could

have caused a change in the two-loop result that is closer to one percent. The three-loop

correction in Eq.(6.7) changes the prediction by about −0.1% and its p⊥-dependent part is

one order of magnitude smaller.

7 Conclusion

In this paper, we have studied the bottom-quark loop contribution to the production of

the Higgs boson in association with a jet in gluon fusion in the double logarithmic approx-

imation. This contribution is suppressed by the ratio of the bottom-quark mass to the

6 The top-bottom interference changes the mt → ∞ inclusive cross section by approximately −12% at

leading order. QCD corrections to the bottom loop decrease this leading order result by fifty percent.
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Higgs boson mass but, at the same time, it is enhanced by two powers of large logarithms,

ln(s/m2
b) or ln(p2⊥/m

2
b), per one power of the strong coupling constant. As it is repeatedly

emphasized in the literature, these terms may be important for phenomenoly, in particular

for the description of the Higgs boson transverse momentum distribution in an interest-

ing kinematic region mb < p⊥ < mH . We have analyzed the abelian part of the double

logarithmic corrections and computed the gg → Hg helicity amplitudes which incorporate

these terms to all orders in αs.

Numerically, the abelian corrections appear to be moderate. For example, the two-loop

corrections change the transverse momentum distribution by about two percent. However

it is important to note that the p⊥-dependent part of these corrections is only about 0.2%

due to the cancellation between different p⊥-dependent terms. Assuming that, up to an

obvious change in the color factor CF → CA, the non-abelian corrections will be similar to

the abelian ones, we estimate the yet unknown non-abelian corrections to be about three

times larger. We conclude that the description of the Higgs boson transverse momentum

distribution with a few percent precision requires a calculation of the O(αs) logarithmically

enhanced non-abelian corrections to bottom quark contribution while the all-order resum-

mation is, probably, not important. Our analysis sets up a framework for such a calculation.

A new element in the calculation of the non-abelian part is its infra-red sensitivity and a

related need to account for the contribution of soft radiation.
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A Polarization vectors

The initial state gluon with momentum k and the gauge vector r is described by the

following polarization vectors

ǫµ+ = − [rγµk〉√
2[rk]

, ǫµ− =
〈rγµk]√
2〈rk〉

. (A.1)

The polarization vectors for the final state gluon are obtained by exchanging ǫ+ ↔ ǫ−.

As reference vectors, we choose p1,2 for ǫ2,1 and p2 for ǫ3. The latter choice allows us

to ignore all the contributions where the soft gluon g3 is emitted by either gluon g2 or a

fermion that carries momentum p2. The full list of polarization vectors that we use in the

calculation, with all the reference vectors explicitly shown, reads

ǫµ+(1) = − 1√
2

[2γµ1〉
[21]

, ǫµ−(1) =
1√
2

〈2γµ1]
〈21〉 ,

ǫµ+(2) = − 1√
2

[1γµ2〉
[12]

, ǫµ−(2) =
1√
2

〈1γµ2]
〈12〉 ,

ǫµ+(3) =
1√
2

〈2γµ3]
〈23〉 , ǫµ−(3) = − 1√

2

[2γµ3〉
[23]

.

(A.2)
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