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The relation between the NJL model and QCD with condensed gluons
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We try to find the relation between the three-flavor Nambu–Jona-Lasinio model and QCD based
on the hypothesis that the gluon momenta are sharply condensed around the QCD scale, µg. We find
that the effective four- and six-fermion interactions, G4 and G6, should be scaled by G4 ∝ µ−2

g and
G6 ∝ µ−5

g being consistent with the mass dimension counting in the obtained effective Lagrangian.
We then study the µg dependence on the phase diagram of the chiral phase transition at finite
temperature and chemical potential and the location of the critical point. We find that the location
of the critical point are sensitively affected by the value of the introduced gluon energy scale.

PACS numbers: 11.30.Rd, 12.38.-t, 12.39.-x

I. INTRODUCTION

Hadrons are composite objects constructed from
quarks and gluons via strong interaction. The first prin-
ciple theory for quarks and gluons is quantum chromo-
dynamics (QCD), and one of our goals is to describe ob-
served properties of hadrons based on QCD. Although
the perturbative method is nicely adopted for high en-
ergy phenomena, the investigation on the system at low
energy, such as composite bound state of hadrons, is still
challenging issue. There we often employ chiral effective
models with four- and six-point interactions to study the
hadron properties at low energy.
The Nambu–Jona-Lasinio (NJL) model is one of suc-

cessful effective models of quantum chromodynamics
(QCD) for describing hadron physics [1]. The three-flavor
version of the model contains four- and six-fermion inter-
actions in the Lagrangian density, and the latter is called
the Kobayashi-Maskawa-’tHooft (KMT) term [2, 3]. This
KMT term explicitly breaks the UA(1) symmetry which
is not realized in the real world, and the model incorpo-
rating the KMT term can describe the nonet meson prop-
erties in a satisfactory manner (for reviews, see, e.g., [4–
9].)
Since the NJL model is regarded as an effective model

for QCD, the first principle theory of quarks and gluons,
we believe that the model should somehow be related
to QCD. Recently, the relation between the four-fermion
interaction and the original QCD Lagrangian has been
discussed in [10], where it was found that the two-flavor
NJL Lagrangian can be connected to QCD with hypo-
thetical gluon condensate. It may also be interesting to
test whether the six-fermion interaction with the deter-
minant form suggested in [2] can be derived based on
the same assumption that gluons are highly condensed
in the momentum space. Then, in this paper, we shall
try to find the relation between the effective six-fermion
interaction in the three flavor NJL model and the original
QCD with the gluon condensate.
The paper is organized as follows. We start from the

partition function of QCD then apply the assumption of
the gluon condensate in Sec. II. We then set the three-
flavor NJL model and perform the numerical analyses in

Sec. III. The discussions on the effective six-fermion in-
teraction and the concluding remark are given in Secs. IV
and V.

II. QCD WITH CONDENSED GLUONS

Following the prescription employed in [10], we first
evaluate the partition function of QCD then introduce
the effect of gluon condensate for the sake of making the
trial to find the relation between the three-flavor NJL
model and QCD.

A. QCD partition function

We start from the following Lagrangian density

LQCD = L0 + LI, (1)

L0 = q(i∂/−m)q −
1

4
(∂µA

a
ν − ∂νA

a
µ)

2, (2)

LI = gqγµtaqAa
µ − gfabc(∂µA

a
ν)A

µbAνc

−
1

4
g2(feabAa

µA
b
ν)(f

ecdAµcAνd), (3)

where L0 and LI represent the free and interacting parts.
q and m are the quark field and its current mass, Aa

µ is
the gluon field, g is the coupling constant for the strong
interaction and ta = λa/2 with λa being the Gell-Mann
matrices in the color space.

The partition function can be expanded by using the
Taylor series as

ZQCD =

∫

Dq

∫

DA exp

[

i

∫

d4xLQCD

]

=

∫

Dq

∫

DAei
∫
d4xL0

∞
∑

n=0

1

n!

(

i

∫

d4xLI

)n

. (4)

Here we study the terms up to the order of g4 to consider
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the four- and six-fermion interactions, then we see

ZQCD ≃

∫

Dq

∫

DAei
∫
d4xL0

[

1 +
1

2

(

ig

∫

d4xLI

)2

+
1

3!

(

ig

∫

d4xLI

)3

+
1

4!

(

ig

∫

d4xLI

)4 ]

. (5)

Note the first linear term for LI is not required for our
purpose, since it is expected to vanish. Expanding and
retaining the relevant terms, we have

ZQCD ≃

∫

Dq

∫

DAei
∫
d4xL0

×

[

1 +
1

2

(

ig

∫

d4xqγµtaqAa
µ

)2

+
1

3!
· 3

(

ig

∫

d4xqγµtaqAa
µ

)2

×

(

−i
g2

4

∫

d4y(fhbcAb
νA

c
ρ)(f

hdeAνdAρe)

)

+
1

4!
· 4

(

ig

∫

d4xqγµtaqAa
µ

)3

×

(

ig

∫

d4yf bcd(∂νA
b
ρ)A

νcAρd

)]

. (6)

This is the partition function we will consider in what
follows.

B. Treatment of the gluon condensate

Having aligned the relevant terms for the partition
function, we now perform the functional integral of gluon
under special condition. As discussed in [10], we assume
that the gluon momenta are condensed around the spe-
cific scale, p2 ∼ µ2

g. Then, for the gluon propagator of
the usual form,

〈

Aa
µ(x)A

b
ν (y)

〉

=

∫

d4p

(2π)4
−igµνδ

ab

p2
e−ip·(x−y), (7)

we apply the following replacement

1

p2
→

1

µ2
g

. (8)

In more detail, pµ → µµ
g which becomes important when

we study the amplitudes at g4 order. With the replace-
ment we obtain the Feynman rule shown below

〈

Aa
µ(x)A

b
ν (y)

〉

=
−igµνδ

ab

µ2
g

δ(4)(x− y) (9)

after performing the momentum integration, where the
delta function induce the contact interaction for fermion
fields.

We should note that the propagator becomes infinite
when y = x, because the one-loop amplitude,

φbare
g =

∫

d4p

(2π)4
−i

p2
, (10)

badly diverges. We then apply the renormalization so as
to obtain finite prediction, and we set

〈

Aa
µ(x)A

b
ν(x)

〉

= gµνδ
abφg, (11)

where φg is finite renormalized quantity. Here we call φg

as the gluon condensate being reminiscent of the chiral
condensate, φq ≡ 〈q̄q〉. One more attention should be
paid when we consider the six-fermion interaction, there
we apply the following rule,

∫

d4p

(2π)4
q̄µg/ q

µ2
g

e−i(x−y) →
q̄q

µg
δ(4)(x− y), (12)

with the relation µg/ q = µgq set by using the Dirac equa-

tion p/q =
√

p2q.

Based on the rules shown above, one can easily inte-
grate out the gluon degree of freedom,

ZQCD ≃ NA

∫

Dqei
∫
d4xL0

×

[

1 +
ig2

2µ2
g

∫

d4x (qγµtaq) (qγµt
aq)

+
ig4

µ5
g

∫

d4x fabc(qγµt
aq)(qγµtcq)(qtbq)

]

, (13)

where NA is the over all constant relating to the gluon
functional integral, and we keep only the leading contri-
bution for each term. Moving back the resulting terms
inside the exponential using the relation 1 + ǫ ≃ eǫ, we
arrive at the following effective Lagrangian density,

Leff = q(i∂/−m)q +
g2

2µ2
g

(qγµtaq) (qγµt
aq)

+
g4

µ5
g

fabc(qγµt
aq)(qγµtcq)(qtbq). (14)

Thus we have obtained the four- and six-fermion contact
interaction based on the hypothesis of the condensed glu-
ons. It is interesting to note that the effective couplings
are scaled by

G4 ∝
g2

µ2
g

, G6 ∝
g4

µ5
g

, (15)

as expected by the mass counting. It should also be noted
that if one sets G4, G6 to be constants as usually done
in practical model studies, the model loses the renormal-
izability.
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C. Difficulty of deriving the KMT term

We have discussed how the forms of the four- and six-
fermion contact interactions arise from the QCD with
condensed gluons in the previous subsection. Here it may
be important to note that the last term representing the
six-fermion interaction vanishes due to the antisymmetric
property of fabc. This indicates that the UA(1) breaking
term does not appear through the procedure based on
the assumed gluon condensate. We think this is natural
consequence since the original QCD Lagrangian is sym-
metric under the UA(1) transformation. Moreover, the
fact that the KMT term includes the mixture of three fla-
vors, up, down and strange, can not be related with our
starting partition function since the original Lagrangian
does not include flavor structure. We will present further
discussions on this difficulty in Sec. IV.

III. THE MODEL

We have checked the mass dimensions of the four- and
six-point couplings in the previous section through see-
ing the relation between the effective couplings and the
original QCD. We are now going to study the effect of
the condensed energy scale µg here.

A. Three flavor NJL model

For the sake of testing the µg dependence on the
model predictions, we consider the following effective La-
grangian

LNJL = q(i∂/−m)q +
G0

µ2
g

[

(qq)2 + (qiγ5q)
2
]

+
K0

µ5
g

[det q̄(1− γ5)q + det q̄(1 + γ5)q], (16)

with the dimensionless couplings, G0 and K0. Where the
effective six-fermion term is introduced following [2], and
the determinant runs over the flavor space. If we write
two couplings as G0/µ

2
g = G and K0/µ

5
g = K, the model

reduces to the usual NJL model. After the mean-field
approximation, we have the linearized form,

L = q(i∂/−M)q −
2G0

µ2
g

(

φ2
u + φ2

d + φ2
s

)

+
4K0

µ5
g

φuφdφs,

(17)

where M represents the diagonal mass matrix for con-
stituent quarks, Mi = mi − 4Gφi + 2Kφjφk(i 6= j 6= k),
and φi indicate the chiral condensates, φi ≡ 〈̄ii〉. The ex-
pectation values of the chiral condensates are determined
by the gap equations,

φi = −tr

∫

d4q

(2π)4
i

q/−Mi

, (18)

which is derived under the stational condition of the effec-
tive potential V = − lnZ/(V β) with the inverse temper-
ature β = 1/T . The above expression quadratically di-
verges, then we will introduce the three-momentum cut-
off Λ to obtain finite quantity.
The model has seven parameters, the three-momentum

cutoff Λ, the four- and six point couplings G0, K0, the
current quark masses mu, md, ms, and the gluon con-
densate scale µg. Following [6], we first set mu = md =
5.5MeV, then determine the four parameters Λ, G0,
K0, ms by using the four physical observables, mπ =
138MeV, fπ = 92MeV, mK = 495MeV, mη′ = 958MeV,
at the scale µg = 250MeV. The above condition leads
the values, Λ = 631MeV, G0 = 0.288, K0 = 0.09, ms =
136MeV, with mu = md = 5.5MeV and µg = 250MeV.

B. Phase diagram

To see the effect of the gluon condensate on the chiral
phase transition, we draw the phase diagram on chem-
ical potential (µ)-temperature plane through changing
the value of µg with the other parameters fixed. The
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FIG. 1. µg dependence on the phase diagram in the three-
and two-flavor models. The solid (dashed) curves represent
the first order (crossover) transition, and the circles do the
critical points.

upper panel of Fig. 1 displays the numerical results on
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the phase diagram in the three flavor case for µg = 200,
225, 250 and 300MeV. To study the effect of the six-
fermion interaction, we also show the phase diagram in
the two-flavor model with basically the same parameters
Λ = 631MeV, G0 = 0.288 and mu = md = 5.5MeV,
but without the strange quark mass and six-point inter-
action. One sees that the region of the broken phase
shrinks with increasing with µg; the tendency is com-
mon between three- and two-flavor cases. This is easy to
understand, since the coupling strength for four-point in-
teraction G0/µ

2
g becomes smaller when one choose larger

value of µg, then the symmetry tends to be restored at
lower T and µ. Quantitatively, the change of the area of
the broken phase on µ−T plane in the three-flavor model
is more drastic than the two-flavor case. This comes from
the six-fermion interaction, K = K0/µ

5
g which is more

sensitively affected by the energy scale µg; then the total
change enhances in the three-flavor case. We also note
that the three-flavor case shows the stronger tendency of
the first order phase transition, which is also understood
by the above mentioned reasoning due to the six-fermion
term. Thus the investigation by the three-flavor case is
important when one studies the critical point, there the
UA(1) anomaly plays the crucial role on the phase tran-
sition. We will perform more detailed analysis on the
location of the critical point in the following.

C. Critical point

We see that the critical point drastically moves with
changing the gluon energy scale in the previous subsec-
tion. It may also be interesting to discuss how the critical
point moves with varying the gluon condensate scale µg

in more detail. Figure 2 shows how the location of the
critical point (Tcp, µcp) changes with respect to µg. One
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FIG. 2. µg dependence on the critical point.

observes that the critical point moves towards the lower
temperature direction when the gluon energy scale be-
comes larger. This is the straightforward consequence of
the smaller K, because the KMT term is intimately re-

lated to the strength of the UA(1) breaking and the term
heightens the tendency of the first order phase transi-
tion [11]. Thus the location or the existence of the crit-
ical pointe is indeed sensitively affected by the value of
the gluon condensate scale.

IV. REMARK ON THE KMT TERM

We have seen that the KMT term can not be obtained
by staring from the assumption of QCD with gluon con-
densate in Sec. II. We have also tried to obtain the term
by following the discussion in the paper [3] where the
determinant term with flavor structure is derived based
on the SU(2) gauge theory in the standard model (SM).
However, we also faced the difficulty on the derivation,
since the extension from the SU(2) in the SM to the SU(3)
in QCD contains a certain subtlety. In the SM case, the
Pauli matrices with respect to the gauge connection are
set in the flavor space, while in the QCD case the Gell-
Mann matrices with respect to the gauge connection are
defined in the color space. The difference is crucial when
one tries to obtain the determinant term in the flavor
space; in the QCD case the determinant structure can
appear in the color space. Thus, the extension from the
SU(2) in the SM to the SU(3) in QCD is not straightfor-
ward with respect to the flavor indices, so the derivation
of the KMT term from the original QCD Lagrangian is
highly non-trivial.

V. SUMMARY AND CONCLUSION

We studied how the three-flavor NJL model can be re-
lated to the QCD based on the hypothesis of condensed
gluons in this paper. There the correct mass dimen-
sions on the effective four- and six-fermion interactions,
G4 ∝ µ−2

g and G6 ∝ µ−5
g , are found. We also found that

it is not possible to find the direct connection between
the KMT term and the QCD based on the assumption
of the gluon condensate. We think this is unavoidable
consequence since the original QCD Lagrangian does not
include any flavor structure in its form.

We then studied the gluon energy scale dependence on
the phase structure of the chiral phase transition. We see
that the tendency of the chiral symmetry breaking and
the first order phase transition become stronger when
µg decreases. The tendency is easily understood because
the phenomenon of the symmetry breaking is expected to
be enhanced at low energy as the renormalization group
analyses insists.

Finally, we believe that the current analysis has a lot
of applicability on physics relating to gluons since the
gluon degree of freedom is somehow incorporated to the
effective model. Then we think it is interesting to per-
form further investigations based on the QCD with the
gluon condensate.
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