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Improved separation of soft and hard components in multiple Coulomb scattering
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Evaluation of the angular distribution function of particles scattered in an amorphous medium is
improved by deforming the integration path in the Fourier integral representation into the complex
plane. That allows us to present the distribution function as a sum of two positive components, soft
and hard, the soft component being close to a Gaussian, and the hard component vanishing in the
forward direction, while including the Rutherford asymptotics and all the power corrections to it at
large scattering angles. Detailed properties of those components, and their interplay at intermediate
deflection angles are discussed. Comparison with the Molière theory is given.

PACS numbers: 11.80.La

I. INTRODUCTION

At passage of ultrarelativistic charged particles
through amorphous matter, they undergo multiple, es-
sentially uncorrelated scattering on atoms, typically
through small angles. If the target is not too thick, the
longitudinal momentum of a high-energy particle may
be regarded as conserved. Then, the transport equa-
tion depends only on the particle deflection angles, and
is exactly solvable by means of Fourier transformation
[1]. However, conditions of multiple Coulomb scattering
on screened atomic nuclei may require one to separately
treat hard and soft contributions to the distribution func-
tion, as was first pointed out by Williams [2]. That sepa-
ration was cast in the form of a large-thickness expansion
by Molière [3, 4], subsequently reviewed by Bethe [5],
and nowadays is recognized as a standard procedure (see
[6–8]). In modern practice, yet a simplified approach is
applied at times, retaining only the Gaussian component
with the root mean square angle inferred from Gaussian
fits [10], or derived analytically from the Molère theory
[11]. But in high-statistics experiments, non-Gaussian
“wings” are noticeable even for rather thick targets.

Although Molière’s expansion provides a formal back-
ground for the theory, from the physical point of view
it is not completely satisfactory. It is known that, in
principle, it does not converge (see, e.g., [12]), and yet,
is comprised of oscillatory functions of deflection angles,
which do not admit independent probabilistic interpreta-
tion. At the same time, there were recent phenomenolog-
ical indications that beyond the central Gaussian region,
the distribution function does not immediately switch to
the asymptotic power law corresponding to single scatter-
ing, but exhibits some transient behavior over a sizable
range of angles [13, 14].

In case such a transition region does exist, the best
option to compute within it the distribution function
would be to resum all the non-Gaussian (at least, power-
law) contributions through all orders, as is done in other
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physical problems (see, e.g., [9]). That typically leads to
integral representations for resummed quantities. But in
the present case, one can employ to this end a method
[5, 6], in which the original Fourier integral representation
for the distribution function is extended into the complex
plane, and two principally different (vertical and horizon-
tal) parts of the integration path are distinguished. That
method so far has never developed to a procedure supe-
rior to Molière’s expansion; nonetheless, with some im-
provements, it can be raised to that status, and provide
a different view on behavior of the angular distribution
beyond the central region. The key notion here is that
integrals over the mentioned parts of the path appear
to be positive, and therefore may be interpreted as hard
and soft scattering components, coexisting at any scat-
tering angle. Comparison of those components will allow
us to determine the width of the transition region be-
tween Gaussian and Rutherford regions in the aggregate
distribution, and assess the significance of resummation
of all the plural hard-scattering contributions.

II. PRELIMINARY CONSIDERATIONS

A. Fourier-Bessel solution of the transport

equation

The probability distribution of fast particles scat-
tered through small angles θ in an amorphous medium,
f(θ, l) = dw

d2θ , is governed by the transport equation

∂f

∂l
= n

∫

dσ(χ) [f(θ − χ, l)− f(θ, l)] , (1)

where dσ(χ) = d2χ dσ
d2χ is the differential cross-section of

particle scattering on one atom through angle χ, n is the
density of atoms in the medium, and l the traversed tar-
get thickness. Equation (1) conserves the normalization:

∫

d2θf(θ, l) = 1, (2)

Solution of Eq. (1) satisfying the initial condition
f(θ, 0) = δ(θ) is obtained by means of Fourier-Bessel
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transformation:

f(θ, l) =

∫

d2ρ

(2π)2
eiρ·θ−nl

∫

dσ(χ)(1−e−iρ·χ) (3a)

≡ 1

2π

∫

∞

0

dρρJ0(ρθ)e
−nl

∫

dσ(χ)[1−J0(ρχ)].(3b)

In some applications, one may be concerned rather
with the projected angle distribution, which is given by
a 1-dimensional Fourier transformation:

f(θx, l) =

∫ ∞

−∞

dθyf(θ, l)

=

∫

∞

−∞

dξ

2π
eiξθx−nl

∫

dσ(χ)[1−J0(ξχ)]. (4)

We shall denote distribution functions (3) and (4) by the
same letter f , distinguishing them just by notation of
their angle arguments.

B. Thick targets: Molière’s theory

At significant target thickness, the random walk in
the plane of deflection angles (which may be viewed as
transverse vectors) must reduce to diffusion. In generic
integral representations (3) and (4), that comes about
as follows: at large nl, the exponential in their inte-
grands is rapidly decreasing, therefore the contributing
ρ or ξ are small, permitting one to expand the exponent
to leading order in their values. However, naive expan-
sion 1 − J0(ρχ) ≃ ρ2χ2/4 in the integrand gives a loga-
rithmically diverging variance

∫

dσ(χ)χ2, given that the
physical differential cross-section of fast charged particle
scattering on one atom through large angles obeys the
Rutherford asymptotics

dσ

dχ
≃

χ/χ′

a→∞

8πZ2α2

p2χ3
, (5)

with p being the particle momentum, Z the nucleus
charge, and α the fine structure constant. A more ac-
curate calculation [5] shows that the small-ρ asymptotics
of the exponent in (3), (4) involves a factor logarithmi-
cally depending on ρ:

nl

∫

dσ(χ) [1− J0(ρχ)] ≃
ρχ′

a→0

χ2
cρ

2

2
ln

2

χ′
aρ
, (6)

and thereby spoiling the Gaussianity of the Fourier-
Bessel integral. Here χ2

c(l) = 4πnlZ2α2/p2, and the
screening angle χ′

a ∼ 1/Rap, with Ra being the atomic
radius, characterizes the scale of angles at which the sin-
gularity in (5) is tamed.1 Thus, the diffusion here is

1 In terms of the exact scattering differential cross-section dσ
dχ

=

8πZ2α2

p2χ3
q(χ), with χ−4q(χ) →

χ/χ′

a→0
const > 0 and q(χ) →

χ/χ′

a→∞

anomalous, but only marginally, in the sense that the
anomaly is logarithmic instead of a power law. That im-
plies that the distribution function does not approach a
Lévy distribution [8], albeit is not strictly Gaussian ei-
ther.
Ratio χ2

c/χ
′2
a essentially measures the target thickness

in units of the radiation length X0:

χ2
c

χ′2
a

=
π

αγ2χ′2
a ln const

2γχ′

a

l

X0
,

with const ∼ 1, and γχ′
a expressible in terms of X0, as

well [see, e.g., [11], Eq. (42)]. For instance, ratio χc/χ
′
a =

102 corresponds to targets of solid materials of a few
millimeter thickness. In what follows, we will measure
the target thickness in Z-independent fashion, merely in
units of χ2

c/χ
′2
a .

Approximation (6) appreciably simplifies the structure
of integrals (3), (4), but their evaluation still involves
non-trivial aspects. Intuitively, it is clear that the diffu-
sion, at least at typical angles, must be close to Gaussian,
although with possible logarithmic deviations. To tackle
those, Molière [4] assumed that the typical deflection an-

gle is χc
√
B, with B such that the difference of logarith-

mically large parameters B− lnB− ln
χ2

c

χ′2
a

is a constant of

the order of unity (conventionally set to be zero). There-
with, B(χ2

c/χ
′2
a ) is a Lambert (or product logarithm)

function, asymptotically equal B ≃
χc≫χ′

a

ln
(

χ2

c

χ′2
a
ln

χ2

c

χ′2
a

)

,

and the rhs of (6) rewrites as

χ2
cρ

2

2
ln

2

χ′
aρ

=
u2

4
− u2

4B
ln
u2

4
,

where u = χc
√
Bρ. As long as the logarithmic depen-

dence on the rescaled integration variable u in the ex-
ponent appears to be inversely proportional to the large
parameter B, that suggests expanding this part of the
exponential into power series and formally integrating
termwise:

f(θ, l) =
1

2πχ2
cB

∞
∑

k=0

1

Bk
f (k)

(

θ

χc
√
B

)

, (8)

with

f (k)(Θ) =
1

k!

∫ ∞

0

duuJ0(Θu)e
−u2/4

(

u2

4
ln
u2

4

)k

. (9)

1, the screening angle expresses as

lnχ′

a =

∫

dq(χ) lnχ+ γE − 1, (7)

where γE is the Euler’s constant. This definition [5] differs from
the more conventional χa [4] by terms γE − 1/2 = 0.077, but nu-
merically, the difference is small. With definition (7), the right-
hand side (rhs) of Eq. (6) is the shortest, facilitating the following
calculations. Note, too, that while Eq. (6) was written for pure
elastic scattering, inelastic contributions can also be incorporated
there [17], just by redefining χ′

a and χc.
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Note that the expansion parameter B−1 here is only log-
arithmically small, but for B ≥ 4.5, i.e., χc ≫ 10χ′

a,
expansion (8) is reported to work reasonably well [4, 5].
An important consequence of (9) is that for all k ≥ 1,

∫

d2θf (k)(θ) ≡ 0. (10)

Hence, functions f (k) at k ≥ 1 are not everywhere posi-
tive, and do not admit probabilistic interpretation.

Analyzing integrals (9), one finds that at large Θ, com-

ponents of (8) behave as f (0)(Θ) = 2e−Θ2

, which cor-
responds to a perfect Gaussian, and f (1)(Θ) ∼ Θ−4,
which reflects the Rutherford asymptotics f(θ) ≃ nl

2πθ
dσ
dθ .

For k ≥ 2, f (k)(Θ) ∼ Θ−2−2k times logarithmic fac-
tors (which will be determined below). Further analy-
sis reveals that, in fact, functions f (k) for k ≥ 1 make
several oscillations,2 which are much stronger than the
asymptotic power-law “tails”. At moderate χc/χ

′
a, they

may cause a spurious warp in between the Gaussian and
Rutherford regions. Yet, despite the factor k! in the de-
nominator in the rhs of (9), functions f (k) grow with k
faster than exponentially [see Eq. (11)]. Therefore, in
principle, series (8) diverges, though it may still serve as
an asymptotic expansion in the limit nl → ∞.

C. Thin targets: Power and logarithmic

corrections to the Rutherford asymptotics

Even though at typical angles the number of scatter-
ings in any macroscopic target is very large, at significant
deflection angles the distribution function may be deter-
mined by just a few hard scatterings. It can thus be use-
ful to expand the distribution function into perturbation
series

f(θx, l) =

∞
∑

k=1

(nl)kfk(θx), (12)

and study the behavior of its components fk(θx) at large
θx.

2 That owes to the fact that as k increases, factor

e−u2/4
(

u2

4
ln u2

4

)k
in the integrand of (9) becomes sharply

peaking at u ∼ 2
√
k. Therewith, at fixed Θ and increasing k,

integral (9) tends to

f(k)(Θ) ∼ 2 lnk kJ0(2
√
kΘ). (11)

For Θ = 0, the latter scaling law was quoted in [12].

The lowest-order terms of (12) are

f1(θx) =
1

2π

∫

∞

−∞

dξ cos(ξθx)

∫

dσ(χ) [J0(xχ)− 1]

≡ 1

2π

∫ ∞

−∞

dξeiξθx
∫ ∞

−∞

dχx
dσ

dχx

(

e−ixχx − 1
)

=
dσ

dθx
− σδ(θx) ∼

θx/χ′

a→∞

χ2
c

2nlθ3x
, (13)

and

f2(θx) =
1

4π

∫ ∞

−∞

dξeiξθx
[
∫ ∞

−∞

dχx
dσ

dχx

(

e−iξχx − 1
)

]2

=
1

2

∫

∞

−∞

dχx
dσ

dχx

dσ

d(θx − χx)
− σ

dσ

dθx
+
σ2

2
δ(θx).

(14)

The dominant contribution to the integral term in (14)
comes from neighborhoods of two points: χx = 0, where

dσ
d(θx−χx)

may be approximated by a constant, and χx =

θx, where
dσ
dχx

≃ dσ
dθx

. The corresponding asymptotics of

the integral thus equals 1
2

∫∞

−∞
dχx

dσ
dχx

dσ
d(θx−χx)

≃ σ dσ
dθx

,

but it is exactly canceled by the second term of (14).
Therefore, to determine the asymptotics of f2, one has
to expand the slowly varying factors in the integrand to
higher orders:

f2(θx) ≃
θx/χ′

a→∞

∫

dχx
dσ

dχx

(

−χx
d

dθx

dσ

dθx
+
χ2
x

2

d2

dθ2x

dσ

dθx

)

=
1

2

d2

dθ2x

dσ

dθx

∫

dχxχ
2
x

dσ

dχx
. (15)

Here d2

dθ2x

dσ
dθx

≃ 6χ2

c

nlθ5x
, and

∫

∼θx
∼−θx

dχxχ
2
x
dσ
dχx

≃ χ2

c

nl ln
θx
χ′

a
,

wherewith

(nl)2f2(θx) ≃
θx/χ′

a→∞

3χ4
c

θ5x
ln
θx
χ′
a

. (16)

Hence, if one considers a “form factor” θ3xf(θx), which
vanishes at θx = 0, and tends to a constant as θx/χ

′
a →

∞, it appears to be a nonmonotonous function of θx, and
overshoots the latter constant at some intermediate θx.
That salient feature of the multiple Coulomb scattering
angular distribution was confirmed experimentally (see
[5, 15]).
Similarly, it can be proven that higher-order terms in

(12) are all positive and asymptotically scale as

(nl)kfk(θx) ≃
θx/χ′

a→∞

k(2k − 1)!!χ2k
c

2θ1+2k
x

lnk−1 θx
χ′
a

. (17)

For polar angle distribution

f(θ, l) =

∞
∑

k=1

(nl)kfk(θ), (18)
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the asymptotics of the leading terms of the expansion is

f1(θ) =
dσ

d2θ
+ σδ(θ) ≃

θ/χ′

a→∞

χ2
c

πnlθ4
, (19)

f2(θ) ≃
θ/χ′

a→∞

1

4
△θ

dσ

d2θ

∫ ∼θ/2

0

dχχ2 dσ

dχ
≃ 8χ4

c

π(nl)2θ6
ln

θ

χ′
a

,

(20)
and generally

(nl)kfk(θ) ≃
θ/χ′

a→∞

kk!2k−1χ2k
c

πθ2+2k
lnk−1 θ

χ′
a

. (21)

Note that the coefficients at logarithms in Eqs. (17),
(21) turn out to be sizable already at k = 1, and grow
with k factorially. Thus, at moderately large θ, it would
be advantageous to sum such contributions through all
orders. Resummations of that kind are usually carried
out via Borel transformation [16]. But in our case, con-
struction of a new integral representation is unnecessary,
as long as the original integral representation (3) or (4)
is already well suited for that purpose. Below we will de-
rive corresponding resumming expressions directly from
integrals (3) and (4).

III. ANALYSIS IN THE COMPLEX PLANE

Since we are interested in the case when the number of
collisions is high, the exponent in integrals (3), (4) will
generally assume large values. The modern approach to
deriving asymptotics of such integrals consists in extend-
ing the integral into a complex plane. With an appro-
priate choice of the integration path, the integrand can
be made non-oscillatory, which substantially alleviates
derivation of the asymptotics of the integral. In applica-
tion to multiple Coulomb scattering distributions, such a
deformation procedure was first suggested by Bethe (see
Appendix A in [5], and also [6]), but served mainly for the
purpose of deriving the coefficients of large-angle power
asymptotic terms [6], or combining just a few such terms
to an expression, which still worked only in a limited do-
main of θ (at large θ) [5]. Here we are going to handle the
entire sequence of asymptotic terms simultaneously, but
in order to make it applicable everywhere, the definition
of the integration path must be improved. The path ex-
tension problem appears to be technically simpler for the
projected angle distribution, which was not considered in
[5] at all, and which we consider here first.

A. Projected angle distribution

The diffusion approximation to Eq. (4) reads (see foot-
note 1)

f(θx, l) ≃
χc/χ′

a→∞

1

πχc
Re

∫

∼χc/χ
′

a

0

dκei
θx
χc
κ+κ2

2
ln

χ′

aκ

2χc ,

(22)

0 2 4 6 8 10
Θx�Χc

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Ν0

FIG. 1: Solid curves, behavior of solution of the corner point
equation for the polar angle distribution [Eq. (25)]. Dashed
curves, approximation (24). Red, for χc/χ

′

a = 10; green, for
χc/χ

′

a = 102; blue, for χc/χ
′

a = 103.

where we set κ = ξχc. When extending this integral to
the plane of complex κ, it is found that its integrand has
a single saddle point obeying the equation

∂

∂κ

(

i
θx
χc
κ+

κ2

2
ln
χ′
aκ

2χc

)

∣

∣

∣

∣

∣

κ=κ0

= i
θx
χc

+κ0

(

ln
κ0χ

′
a

2χc
+

1

2

)

= 0.

(23)
As long as Eq. (23) is transcendental, only its approxi-
mate solution can be expressed explicitly, which, though,
will suit us at the present stage. We can choose an
approximation to the solution of (23), which is strictly
imaginary:

κ0 = iν0, ν0 ≈ θx

χc ln
(

2χ2
c

χ′

aθx
ln

2χ2
c

χ′

aθx

) , (24)

with a proviso that this formula is good only for χc/χ
′
a ≫

10 (and θx < 2χ2
c/χ

′
a, which is usually fulfilled in prac-

tice). To illustrate the accuracy of approximation (24),
in Fig. 1 it is plotted along with the exact solution of
equation

θx
χc

+ ν0

(

ln
χ′
aν0
2χc

+
1

2

)

= 0, (25)

obtained from (23) by neglecting ln i. It clearly indicates
that approximation (24) begins to fail for χc/χ

′
a ∼ 10.

The logarithmic factor in the exponent in (22) induces
a singularity of the integrand at the origin, coinciding
with the lower endpoint of the integration interval. The
steepest descent path must then start at the origin, and
go toward the saddle point. For simplicity of the resulting
integral, though, we direct it strictly along the imaginary
axis, rewriting the integration variable as κ = iν. After
reaching a point κ0 defined by Eq. (25), the path must
turn to the right and proceed along the steepest descent
path, but again, for simplicity, we just direct it parallel
to the real axis (see Fig. 2). Ultimately, the distribution
function splits to a sum of two real-variable integrals:

f(θx, l) = fh(θx, l) + fs(θx, l), (26)
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FIG. 2: Gradient plot of function Re

(

i θx
χc

κ+ κ2

2
ln

χ′

aκ

2χc

)

[the

real part of the exponent in Eq. (22)] in the upper half-plane
of complex integration variable κ, for exemplary values of χc

and θx. The deformed integration path is drawn by the black
line, with ν0 evaluated by Eq. (24).

where

fh(θx, l) =
1

πχc

∫ ν0(θx)

0

dνe
−

θx
χc
ν+ ν2

2
ln 2χc

χ′
aν sin

πν2

4
,

(27)

fs(θx, l) =
1

πχc
Re

∫

∼χc/χ
′

a

iν0(θx)

dκei
θx
χc
κ+κ2

2
ln

χ′

aκ

2χc . (28)

Below we will show that in spite of the admitted sim-
plification of the integration path, integrals (27), (28) can
be robustly interpreted as hard and soft scattering com-
ponents. Our task now is to investigate their properties.
a. Hard component Component fh proves to be pos-

itive everywhere, even for an approximate solution of the
saddle-point equation, insofar as typical contributing ν

in Eq. (27) are always . 1, entailing sin πν2

4 > 0. Fur-
thermore, almost everywhere it is tolerable to replace in

(27) sin πν2

4 ≈ πν2

4 . That is strictly justified in limits
of either large or small θx/χc: If θx/χc ≪ 1, that be-
comes possible because the upper integration limit tends
to zero, leaving

fh(θx, l) ≃
θx/χc≪1

1

4χc

∫

θx

χc ln

(

2χ2
c

χ′
aθx

ln
2χ2

c
χ′
aθx

)

0

dνν2

=
θ3x

12χ4
c ln

3
(

2χ2
c

χ′

aθx
ln

2χ2
c

χ′

aθx

) . (29)

If θx/χc → ∞, the sine in (27) can be linearized by virtue

of the rapid decrease of factor e−
θx
χc
ν in the integrand.

Therewith, expansion of the rest of the exponential into

0 2 4 6 8 10 12 14
Θx�Χc

0.002

0.004

0.006

0.008

0.010

0.012
Χc fhHΘxL

B B1

FIG. 3: Hard component of the projected angle distribution
function at χc/χ

′

a = 102, built by Eqs. (27), (25) (solid black
curve), and by Eqs. (27), (24) (solid red curve). Dashed
curve, Rutherford asymptotics (13). Dot-dashed, Rutherford
asymptotics with the first power correction, Eq. (30). Dotted,
low-θx asymptotics (29).

Maclaurin series yields the Rutherford law (13), along
with power corrections to it (beyond the leading loga-
rithmic accuracy):

fh(θx, l) ≃
θx/χc→∞

1

4χc

∫

∞

0

dνν2e−
θx
χc
ν

(

1 +
ν2

2
ln

2χc
χ′
aν

)

=
χ2
c

2θ3x
+ 3

χ4
c

θ5x

[

ln
2θx
χ′
a

− ψ(5)

]

, (30)

with ψ(z) = Γ′(z)/Γ(z) being the digamma function.
Clearly, integral (27) resums also all the higher power
corrections to the Rutherford asymptotics.
The fact that the component fh(θx) vanishes in both

extremes θx/χc → 0 and θx/χc → ∞ implies that it
must peak somewhere in between [see Fig. 3]. From the
analysis of integral (27), one generally concludes that the
summit of fh(θx) must be reached when ν0 ∼ χc/θx,

i.e., θx ∼ χc
√

B(χ2
c/χ

′2
a ), which is nothing but Molière’s

typical angle. More precisely, that corresponds to the
rising slope of the peak, while the maximum is located at
a somewhat greater θx (see Fig. 3). The end of the region
where resummation effects are strong may be assessed
from equating the Rutherford asymptotic term to the
doubled next-to-leading-order power correction in (30):
χ2

c

2θ3x
= 2 × 3

χ4

c

θ5x

[

ln 2θx
χ′

a
− ψ(5)

]

, i.e., θx = χc
√
B1, where

B1 = 6B(24e−2ψ(5)χ2
c/χ

′2
a ). Due to the sizable numerical

coefficients involved therein, interval

χc
√
B < θx < χc

√

B1 (semihard region)

appears to be even wider than the soft central region
0 < θx < χc

√
B.

Besides that, it is noteworthy that fh(θx) does not lie
between its asymptotes (in particular, it goes well above
the Rutherford asymptote). This (or rather the corre-
sponding feature for fh(θ) proven in the next subsection)
may be responsible for the empirical controversies men-
tioned in the Introduction.
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FIG. 4: Soft component of the projected angle distribution
function at χc/χ

′

a = 102, built by Eqs. (28) and (24) (solid
curve). Dashed curve, the same evaluated for the corner point
defined by (24). Dot-dashed, the quasi-Gaussian approxima-

tion, Eqs. (34), (32), with C = 2.2. Dotted, Molière’s f (0) for
the projected angle distribution.

b. Soft component Next, we inspect the soft compo-
nent, which is defined by integral (28). This integral is
close to Gaussian form, so its fastest dependence on θx
stems from the value of the exponential at the endpoint:

e
−

θx
χc
ν0+

ν2
0

2
ln 2χc

iχ′
aν0 ≃ e−

θx
2χc

ν0 ,

where we used the saddle point equation (23) within the
accuracy to which we neglected ln i in Eq. (25). To ac-
count for the rest of the θx-dependence, the simplest way
might be to replace in the relation

fs(θx, l) = e−
θx
2χc

ν0(θx,l)g(θx, l) (31)

the relatively slowly varying factor g(θx, l) by its value in
the origin,

g(0, l) = f(0, l) =
1

πχc

∫ ∼χc/χ
′

a

0

dκe
−

κ2

2
ln 2χc

χ′
aκ . (32)

More precisely, the width of g is θx ∼ χc ln
2χ2

c

χ′

aθx
, whereas

that of fs is θx ∼ χc

√

ln
2χ2

c

χ′

aθx
, which is narrower, but not

by a very large factor. So, in practice it would be cer-
tainly worth taking into account also the slope of g(θx, l)
in the origin. That can be implemented to the structure
of the leading exponential in Eq. (31) by approximating

g(θx, l) → g(0, l)e

−
θ2x lnC

2χ2
c ln2

2χ2
c

χ′
aθx , (33)

with C ≈ 2.2. Combining (31), (24) and (33), we obtain
a quasi-Gaussian structure

fs(θx, l) ≈ f(0, l)e

−
θ2x

2χ2
c ln

[

2χ2
c

Cχ′
aθx

ln
2χ2

c
χ′
aθx

]

. (34)
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FIG. 5: Relative contributions of the hard [dashed curve,
Eqs. (27), (24)] and soft [dot-dashed curve, Eq. (34)] com-
ponents to the aggregate projected angle distribution [solid
curve, Eq. (22)], for χc/χ

′

a = 102. The sum of thus com-
puted hard and soft component is virtually indistinguishable
from the solid curve. The dotted curve shows the Rutherford
asymptotics (13).

It resembles the zeroth-order approximation
f (0)(θ/χc

√
B) of Molière’s expansion (applied to

the projected angle distribution), but has a more precise
normalization (32), and yet involves θx under the
logarithm in the denominator of the exponent. Due to
the latter dependence, (34) is narrower than Molière’s
f (0) at θx > χc, i.e., in fact, at typical angles (see Fig. 4).
A narrowing of that kind was empirically found in [15].
Besides that, the integral of (34) over θx, in contrast
to the integral of the zeroth component of Molière’s
expansion, is somewhat less than unity, leaving a part of
the probability for fh.

c. Aggregate distribution The circumstance that
components (27), (28) in decomposition (26) peak at
different θx might potentially lead to appearance of a
secondary bump in the aggregate distribution. To check
whether this happens in reality, let us first assess the scale
at which fs(θx) and fh(θx) become commensurable. For
large χc/χ

′
a, that occurs at relatively large θx, allowing

one, oversimplistically, to employ the Rutherford asymp-
totics for fh, and equate it to the Gaussian approxima-
tion for fs. Solving the equation in the leading logarith-

mic approximation yields θx ∼ χc
√

2 ln 2χc

χ′

a
, which is of

the order of the scale χc
√
B at which fh(θx) reaches its

maximum. Therefore, around its maximum, fh(θx) is
commensurable with fs(θx), and consequently, the sum
(26) needs not develop a secondary peak or bump. That
is what actually happens in practice, and is physically
natural, because a diffusion process tends to smear out
all the features of the probability distribution. (But for
the rescaled distribution θ3xf(θx), as was mentioned in
Sec. II C, such a bump does exist [5, 15].)

Figure 5 shows the shape of the aggregate distribution,
along with contributions to it from different mechanisms,
for χc/χ

′
a = 102. The figure demonstrates that the aggre-

gate distribution (solid curve) considerably exceeds the
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FIG. 6: Total percentage of hard-scattered particles in the
projected angle distribution, calculated by Eqs. (35), (27),
(25) (black solid curve), and by Eqs. (35), (27), (24) (red
solid curve). Dashed curve, approximation (36b).

sum of soft and pure Rutherford components (dot-dashed
and dotted curves, correspondingly). To account for this
excess, one has to employ the resummed hard component
(dashed curve) instead of a single-scattering contribution.
So, the issue of resummation of plural hard scattering
contributions is quite essential in practice. Effectively, it
slows down the transition from a Gaussian to Rutherford
regime, so that over a substantial angular interval it may
mimic a law intermediate between Gaussian and Ruther-
ford decrease, such as a simple exponential law (cf. [13]),
or a power law with an index greater than that for the
lowest Born approximation, as is the case, e.g., for hard
scattering of hadrons (which are themselves composite
objects) [14].

d. Probabilistic interpretation Granted the positiv-
ity of both functions fs(θx) and fh(θx), in conjunc-
tion with the normalization condition

∫∞

−∞
dθxfs +

∫

∞

−∞
dθxfh = 1, it is tempting further to interpret

them independently as partial probability distributions.
Specifically, since fh(θx) incorporates all the power-law
contributions, it might be regarded as the probability dis-
tribution of hard-scattered particles, and fs(θx), since it
is nearly Gaussian, should be interpreted as the proba-
bility distribution of soft-scattered particles. That, in-
evitably, involves an element of arbitrariness, as long as
there is no sharp physical boundary between soft- and
hard-scattered particles. Besides that, there are regions
at sufficiently large θx, where fs(θx) as evaluated by
Eq. (28) becomes slightly negative [though that is imma-
terial for practice, because there it is already overtaken
by fh(θx)]. For those reasons, it is more appropriate to
term the encountered functions pseudo-probability dis-
tributions. The mentioned arbitrariness then manifests
itself as the residual slight freedom in the choice of the
location of the integration path corner.

Accepting the partial (pseudo-)probability interpreta-
tion, let us assess the corresponding total probability for

a particle to belong to the projected hard component:

wh-x(l) = 2

∫ ∞

0

dθxfh(θx, l). (35)

At large χc/χ
′
a, inserting (27) to (35) and interchanging

the order of integrations leads to

wh-x =
2

πχc

∫ ∞

0

dν sin
πν2

4
e

ν2

2
ln 2χc

χ′
aν

×
∫

∞

νχc ln 2χc
νχ′

a

dθxe
−

θx
χc
ν

≃
χc≫χ′

a

1

2

∫

∼χc/χ
′

a

0

dννe
−

ν2

2
ln 2χc

χ′
aν . (36a)

The latter single integral can be evaluated by expanding

e
ν2

2
ln ν

2 ≃ 1 + ν2

2 ln ν
2 , and integrating termwise, where-

upon reassembling it to a single fraction within the given
accuracy:

wh-x ≃
χc≫χ′

a

1

ln
(

χ2
c

χ′2
a
ln

χ2
c

χ′2
a

)

− ψ(2)
. (36b)

That means that essentially, wh-x ≃ 1/B. Formula (36b)
shows that the fraction of hard-scattered particles de-

creases with the increase of the target thickness, as an
inverse of its logarithm. The physical reason for this
is that the boundary beginning from which the particles
must be regarded as hard-scattered moves outwards with
the increase of the target thickness, due to the expand-
ing Gaussian component. In contrast, identity (10) in
the Molière expansion does not grant direct access to the
number of particles in the non-Gaussian component.
The exact behavior of wh as a function of χc/χ

′
a is plot-

ted in Fig. 6 by the solid curve, along with approximation
(36b) plotted by the dashed curve. It appears that (36b)
gives a fair approximation for wh at χc/χ

′
a & 102. It

may also be mentioned that the excess of total probabil-
ity ws-x+wh-x− 1, for ws-x = 2

∫∞

0 dθxfs(θx) and fs(θx)
evaluated by approximation (34), (32), with C = 2.2, is
positive but small compared with whard:

ws-x + wh-x − 1 ∼ 2× 10−3.

That corroborates self-consistency of our approxima-
tions.

B. Polar angle distribution

Let us next turn to the somewhat subtler case of the
polar angle distribution, which is given by Bessel integral
(3b). To appropriately extend the corresponding diffu-
sion approximation

f(θ, l) ≃
χc/χ′

a→∞

1

2πχ2
c

∫

∼χc/χ
′

a

0

dκκJ0

(

θ

χc
κ

)

e
κ2

2
ln

χ′

aκ

2χc

(37)
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FIG. 7: Behavior of the solution of the corner point equation
for the polar angle distribution [Eq. (39)], for χc/χ

′

a = 102

(solid curve). Dashed curve, approximation (40). Dotted
curve, approximation (42). Dot-dashed curve, Bethe’s choice
for the corner point, Eq. (41).

to the complex plane of3 κ = χcρ, one needs to substitute

J0

(

θ
χc
κ
)

= ReH
(1)
0

(

θ
χc
κ
)

in the integrand, and exploit

the exponential decrease of Hankel function H
(1)
0 (z) in

the upper half-plane of complex z. It is also preferable in
the integrand of (37) not to include factor κ (physically
arising as a part of the integration element κdκ = dκ2/2)
to the expression for which the saddle point is sought.
Therewith, the saddle point equation reads

∂

∂κ

[

lnH
(0)
0

(

θ

χc
κ

)

+
κ2

2
ln
χ′
aκ

2χc

]

∣

∣

∣

∣

∣

κ=κ0

= 0, (38)

and like in the previous subsection, its solution at large
χc/χ

′
a must be predominantly imaginary4. Searching a

purely imaginary approximation, i.e., letting κ0 = iν0,

utilizing the relation H
(1)
0 (iz) = 2

iπK0(z), and neglect-
ing imaginary terms ln i compared to the large real loga-
rithm, leads to a real equation

θ

χc

K1

(

θ
χc
ν0

)

K0

(

θ
χc
ν0

) + ν0

(

ln
χ′
aν0
2χc

+
1

2

)

= 0. (39)

Unfortunately, now Eq. (39) is difficult to solve by an-
alytic means even approximately, as long as it requires
an approximation for K0(z) applicable at any positive
z. Simple approximations exist only for large z, where

3 In [5], κ was denoted as y, but we keep the same notation as for
the projected angle distribution.

4 That owes to the fact that H
(0)
0 (z), like eiz , is an even function

of Rez. This would not be the case if the saddle point was sought
for the integrand including the factor κ. The emerging integral
representations for fh and fs would then be too cumbersome.
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Θ�Χc
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0.0020

0.0025
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2 fhHΘL

B B2

FIG. 8: The shape of the hard scattering component (44),
(39), at χc/χ

′

a = 102 (black solid curve). Red curve, the
same for approximate solution (40) of the path corner point
equation. Dashed curve, Rutherford asymptotics (19); dot-
dashed curve, Rutherford asymptotics with the first power
correction, Eq. (46). Dotted curve, small-angle asymptotics
(47).

K1(z)
K0(z)

→
z→∞

1, implying

ν0 ∼
θ/χc→∞

θ/χc

ln
(

2χ2
c

χ′

aθ
ln

2χ2
c

χ′

aθ

)

− 1/2
(40)

[similar to Eq. (24), and different from Bethe’s choice5

ν0 =
θ

χc ln
2θ
χ′

ak

, (41)

with k ∼ 5], and at small z, where K1(z)
K0(z)

∼ 1
z ln 1

z

, giving

in the leading logarithmic approximation

ν0 ∼
θ/χc→0

1
√

ln χc

θ ln 2χc

χ′

a

. (42)

The behavior of the solution of Eq. (39) along with its
asymptotes (40), (42) is illustrated in Fig. 7.
Once the solution to Eq. (39) is found, choosing the

integration path similarly to that of Fig. 2 leads to a

5 In paper [5], the saddle point was actually sought only for part of

the integrand, K0

(

θ
χc

ν
)

e
ν2

2
ln 2θ

χ′
ak ≈ e

−
θ
χc

ν+ ν2

2
ln 2θ

χ′
ak (at real

ν, corresponding to purely imaginary κ). Eq. (41) corresponds to
effectively replacing ν under the logarithm by χc/θ rather than
θ/χc, as is suggested by Eq. (40). That still works when dealing
with large-angle asymptotics of the angular distribution, but not
when one aims to find a uniform approximation for all deflection
angles. In the latter case, the saddle point must be sought for
the entire integrand, and the path corner point be chosen as near
as possible to it, as is done in the present paper. Moreover, even
Eq. (40) may be not the perfect approximation for the entire
range of θ (as we will see below), so, generally, it seems best to
solve the corner point equation numerically.
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FIG. 9: Total percentage of hard scattered particles, calcu-
lated by Eqs. (44), (39) (solid curve). Dashed curve, inter-
polation (49). The red curve shows the probability deficit
1−wh −ws, for fh(θ) evaluated by Eqs. (44), (39), and fs(θ)
by Eqs. (45), (51) with C = 5.

decomposition

f(θ, l) = fh(θ, l) + fs(θ, l), (43)

with

fh(θ, l) =
1

π2χ2
c

∫ ν0(θ)

0

dννK0

(

θ

χc
ν

)

e
ν2

2
ln 2χc

χ′
aν sin

πν2

4
,

(44)
and

fs(θ, l) =
1

2πχ2
c

Re

∫

∼χc/χ
′

a

iν0(θ)

dκκH
(1)
0

(

θ

χc
κ

)

e
κ2

2
ln

χ′

aκ

2χc .

(45)
Again, we interpret them as partial pseudoprobability
distributions for a particle to belong to hard or to soft
scattering probability. Let us now analyze the behavior
of those components, and compare them with the corre-
sponding projected angle distributions.
First of all, similarly to the previous subsection, func-

tion fh(θ, l) proves to be everywhere positive, because
typical ν for any θ are less than unity, and then the sine
in the integrand is positive, so we effectively have an in-
tegral of a positive definite function. Using the unlimited
growth of ν0 with θ, it is straightforward to derive the
Rutherford asymptotics for integral (44), along with its
next-to-leading order power correction:

fh(θ, l) ≃
θ/χc→∞

1

4πχ2
c

∫ ∞

0

dνν3K0

(

θ

χc
ν

)

×
(

1 +
ν2

2
ln

2χc
χ′
aν

)

=
χ2
c

πθ4
+

8χ4
c

πθ6

(

ln
θ

χ′
a

+ γE − 3

2

)

. (46)

The coefficient of the correction term here is in agreement
with the leading log calculation (20). In the opposite
limit θ/χc → 0, using (42), function fh(θ) can be shown
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FIG. 10: The shape of the soft component (45) at χc/χ
′

a =
102, built by Eqs. (45) and (39) (solid curve). Dashed curve,
the same evaluated for the corner point defined by Eq. (40).
Dot-dashed, the quasi-Gaussian approximation, Eqs. (50),

(51), with C = 5. Dotted, Molière’s f (0).

to decrease much slower than in the case of the projected
angle distribution (29):

fh(θ, l) ∼
θ/χc→0

ν40
16πχ2

c

ln
χc
θν0

∼ 1

16πχ2
c ln

χc

θ ln2 2χc

χ′

a

, (47)

but tends to zero, anyway. Hence, it must reach a max-
imum at some finite, nonzero θ. Figure 8 plots function
(44) with ν0 evaluated numerically from Eq. (39).
In contrast to the case of projected angle distribution,

it appears now that the use of Eq. (40) does not give a
good approximation for fh(θ) simultaneously for all typ-
ical θ – because (40) is a much poorer approximation
for solution of Eq. (39) itself. That is demonstrated by
Fig. 8, where the red curve corresponding to approxima-
tion (40) falls much below the calculation with the exact
solution of Eq. (39). It signals that for the polar angle
distribution, it is much more reliable to solve the corner
point equation numerically.
Similarly to the previous subsection, we can find that

the support region for function fh(θ) is concentrated at

χc
√
B < θ < χc

√

B2, (semihard region) (48)

where B2 = 8B(8e2γE−3χ2
c/χ

′2
a ).

Equation (39) also does not permit expressing θ
through ν, which hampers analytic computation of
the total pseudoprobability of hard scattering wh =
2π

∫

∞

0
dθθfh(θ, l) by interchanging the order of integra-

tions. Numerically, of course, that presents no diffi-
culty, and is illustrated in Fig. 9. Qualitatively, func-
tion wh(χc/χ

′
a) exhibits a behavior similar to that of

wh-x(χc/χ
′
a) in Sec. III A, but is some 3 times greater,

so that it cannot be even regarded as small. A satis-
factory heuristic approximation of the same structure as
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FIG. 11: Relative contributions of the hard [dashed curve,
Eqs. (44), (39)] and soft [dot-dashed curve, Eqs. (50), (51)
with C = 5] components to the full-angle distribution [Eq. (3),
solid curve], for χc/χ

′

a = 102. The sum of thus computed
hard and soft components is virtually indistinguishable from
the solid curve. The dotted curve represents the Rutherford
asymptotics (20).

Eq. (36b) may be written as

wh ≈ 3

ln
(

χ2
c

χ′2
a
ln

χ2
c

χ′2
a

)

− 1.5
. (49)

In what concerns fs(θ, l), physically it is expected to
exhibit a behavior similar to Eq. (34). Indeed, approxi-
mation

fs(θ, l) = f(0, l)e

−
θ2

2χ2
c ln

(

2χ2
c

Cχ′
aθ

ln
2χ2

c
χ′
aθ

)

(50)

with

f(0, l) ≃ 1

2πχ2
c

∫ ∼χc/χ
′

a

0

dκκe
−

κ2

2
ln 2χc

χ′
aκ (51)

[an integral similar to (36a)] and C ≈ 5 works reason-
ably well (see Figs. 10, 11). The total pseudoproba-
bility corresponding to this approximation equals ws =
2π

∫

∞

0
dθθfs(θ) = 1−wh−∆w, with ∆w ∼ 2×10−2 (see

Fig. 9, red curve), but still tolerably small. Herein, we
will restrict our analysis to this notion.
When comparing the results of this subsection with

those of Sec. III A, it should be borne in mind that6

fh(θx, l) <

∫

∞

−∞

dθyfh(θ, l)
∣

∣

θ=
√
θ2x+θ

2
y

, (52)

and correspondingly,

fs(θx, l) >

∫

∞

−∞

dθyfs(θ, l)
∣

∣

θ=
√
θ2x+θ

2
y

, (53)

6 Note that in the lhs and in the rhs of Eqs. (52), (53), letter f
represents different functions.

That is clear as long as the integral from a positive func-
tion in the rhs of (52) can not vanish at θx → 0, whereas
the left-hand side (lhs) does vanish. It is also natural
physically, because hard collisions which are nearly in the
y-direction are not treated as hard when computing the
projected distribution in θx. But in the large-θ asymp-
totics, (52) holds as an equality for all the terms of the
descending power series, by virtue of the identity

2kk!

π

∫

∞

−∞

dθy
(

θ2x + θ2y
)1+k

=
(2k − 1)!!

θ1+2k
x

(54)

and its derivatives by index k, which generate the log-
arithmic factors. In turn, inequality (53) explains why
constant C for approximation (50) is greater than that
for approximation (34).

IV. SUMMARY

The main conclusions of our paper can be summarized
as follows. A continuation into the complex plane al-
lows presenting the angular distribution of probability
of particles scattered in amorphous matter as a sum of
hard- and soft-scattering components, with no restriction
on the number of scatterings. At that, the hard com-
ponent incorporates all the plural-scattering power-law
corrections to the Rutherford single-scattering contribu-
tion, while the soft component is nearly Gaussian, but is
narrower than Molière’s f (0). Due to their positivity al-
most everywhere, those components admit independent
(pseudo)probabilistic interpretation. The corresponding
total percentage of hard-scattered particles (not appear-
ing naturally in the Molière theory) amounts typically
wh-x ∼ 10% for the projected angle distribution, and
wh ∼ 25% in case of the polar angle distribution), and
sets the accuracy limit for Gauss-like approximations for
the soft component.
The second conclusion is that in the aggregate distribu-

tion of scattered particles, there is a significant transition
region between multiple soft and single hard scattering,
in which scattering is multiple but hard. Physically, it
is chained to the fact that at significant target thickness,
there always exists a range of angles, where the probabil-
ity of several hard rescatterings is non-negligible. The re-
summed hard-scattering component peaks at a non-zero
deflection angle, and around its maximum (in the so-
called semihard region), it exceeds the single hard scat-
tering (Rutherford) contribution by a significant factor.
Nonetheless, no bump emerges in the aggregate distri-
bution around this angle, inasmuch as in the semihard
region, the hard component is comparable with the soft
one.
From the practical point of view, it must be noted that

if it is desired to use a single approximation within the
central region of scattering angles only, it may be rea-
sonable to employ Molière’s f (0); but if the hard “tail”
needs description, as well, it is advantageous to use the
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separation fh+ fs introduced herein. Even after approx-
imating fs by a quasi-Gaussian, the sum fh + fs is still
numerically more accurate than a few first terms of the
Molière expansion.
Besides that, it should be remembered that the sepa-

ration of fh and fs somewhat depends on the choice of
the corner point for the integration path (which does not
coincide with the saddle point of the integrand exactly),
and thus may involve slight ambiguity. Analytic solutions

of the corner point equation provide insight into qualita-
tive dependencies of the particle distribution function on
the total deflection angle and the target thickness, but
may sometimes be insufficiently accurate, so, if better
precision is required, the saddle point equation is to be
solved numerically. Thus, depending on the needs of the
study, the proposed construction may be used either for
analytic, or for numerical purposes.
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