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Abstract

We propose a simple gauged U(1)B−L extension of the minimal supersymmetric Standard
Model (MSSM), where R-parity is conserved as usual in the MSSM. The global B−L (baryon
number minus lepton number) symmetry in the MSSM is gauged and three MSSM gauge-singlet
chiral multiplets with a unit B − L charge are introduced, ensuring the model free from gauge
and gravitational anomalies. We assign an odd R-parity for two of the new chiral multiplets
and hence they are identified with the right-handed neutrino superfields, while an even R-parity
is assigned to the other one (Φ). The scalar component of Φ plays the role of a Higgs field to
break the U(1)B−L symmetry through its negative mass squared, which is radiatively generated
by the renormalization group running of soft supersymmetry (SUSY) breaking parameters from
a high energy. This radiative U(1)B−L symmetry breaking leads to its breaking scale being at
the TeV naturally. Because of our novel R-parity assignment, three light neutrinos are Dirac
particles with one massless state. Since R-parity is conserved, the lightest neutralino is a prime
candidate of the dark matter as usual. In our model, the lightest eigenstate of the mixture of the
B−L gaugino and the fermionic component of Φ appears as a new dark matter candidate. We
investigate phenomenology of this dark matter particle. We also discuss collider phenomenology
of our model. In particular, the B −L gauge boson (Z ′), once discovered at the Large Hadron
Collider, can be a probe to determine the number of (right-handed) Dirac neutrinos with its
invisible decay width, in sharp contrast with the conventional B − L extension of the SM or
MSSM where the right-handed neutrinos are heavy Majorana particles and decay to the SM
leptons.

http://arxiv.org/abs/1603.01769v1


1 Introduction

The B − L (baryon number minus lepton number) is the unique anomaly-free global U(1)B−L

symmetry in the Standard Model (SM). This symmetry is easily gauged, and the so-called

minimal B − L model [1]-[6] is a simple gauged B − L extension of the SM, where three right-

handed neutrinos and an SM gauge singlet Higgs field with two units of the B − L charge are

introduced. The three right-handed neutrinos are necessarily introduced to make the model

free from all gauge and gravitational anomalies. Associated with a B − L symmetry breaking

by a Vacuum Expectation Value (VEV) of the B − L Higgs field, the B − L gauge field (Z ′

boson) and the right-handed neutrinos acquire their masses. After the electroweak symmetry

breaking, tiny SM neutrino masses are generated via the seesaw mechanism [7]-[11].

Although the scale of the B−L gauge symmetry breaking is arbitrary as long as phenomeno-

logical constraints are satisfied, a breaking at the TeV scale is probably the most interesting

possibility in the view point of the Large Hadron Collider (LHC) experiments. However, mass

squared corrections of the B − L Higgs (any Higgs fields in 4-dimensional models, in general)

are quadratically sensitive to the scale of a possible ultraviolet theory, and as a result the

B − L symmetry breaking scale is unstable against quantum corrections. As is well-known,

supersymmetric (SUSY) extension is the most promising way to solve this vacuum instabil-

ity. Very interestingly, SUSY extension of the minimal B − L model offers a way to naturally

realize the B − L symmetry breaking at the TeV scale. With suitable inputs of soft SUSY

breaking parameters at a high energy, their renormalization group (RG) evolutions drive the

B − L Higgs mass squared negative and therefore the B − L gauge symmetry is radiatively

broken [12, 13, 14]. Since the scale of the negative mass squared is controlled by the soft SUSY

breaking parameters, the B − L breaking scale lies at the TeV from naturalness.

SUSY extension opens a further possibility. As has been proposed in Ref. [15], it is not

necessary to introduce the B−L Higgs field, since the scalar partner of a right-handed neutrino

can play the same role as the B−L Higgs field in breaking the B−L gauge symmetry. Hence,

we can define the “minimal SUSY B−L model” by a particle content, where only three right-

handed neutrino chiral superfields are added to the particle content of the minimal SUSY SM

(MSSM). It is interesting that such a particle content can be derived from heterotic strings [16,

17]. In Ref. [15], a negative soft mass squared of a right-handed sneutrino is assumed to break

the B − L gauge symmetry, so that the B − L symmetry breaking occurs at the TeV scale.

Associated with this symmetry breaking, R-parity is also spontaneously broken, and many

interesting phenomenologies with the R-parity violation have been discussed [18, 19, 20, 21].

Through the non-zero VEV of the right-handed sneutrino, mixings between neutrinos, MSSM

Higgsinos, MSSM neutralinos and B − L gaugino are generated. Although the neutrino mass
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matrix becomes very complicated, it has enough number of degrees of freedom to reproduce

the neutrino oscillation data with a characteristic pattern of the mass spectrum [22, 23].

In this paper, we propose the minimal SUSY B − L model with an R-parity conservation.

The particle content is the same as the one of the minimal SUSY B−L model discussed above,

while we assign an even R-parity to one right-handed neutrino chiral superfield (Φ) and an odd

R-parity to the other two right-handed neutrino chiral superfields. The R-parity assignment for

the MSSM fields is as usual. Because of this parity assignment and the gauge symmetry, the

chiral superfield Φ has no Dirac Yukawa coupling with the lepton doublet fields. In fact, it does

not appear in the renormalizable superpotential. We consider the case that the B−L symmetry

breaking is driven by a VEV of the R-parity even right-handed sneutrino. Phenomenological

consequences in this model are very different from those of the conventional minimal SUSY

B − L model. As usual in the MSSM, R-parity is conserved and hence the lightest neutralino

is a candidate of the dark matter. In addition to the lightest neutralino in the MSSM, the

model offers a new candidate for the dark matter, namely, a linear combination of the fermion

component of Φ and the B − L gaugino. Since Φ has no Dirac Yukawa coupling, no Majorana

mass term is generated in the SM neutrino sector, and as a result, the SM neutrinos are Dirac

particles. With only the two right-handed neutrinos involved in the Dirac Yukawa couplings,

the Dirac neutrino mass matrix leads to three mass eigenstates, one massless chiral neutrino and

two Dirac neutrinos. A general 2-by-3 Dirac mass matrix includes a number of free parameters

enough to reproduce the neutrino oscillation data. This Dirac nature of the SM neutrinos are

quite distinctive from those in the usual B − L model, where the right-handed neutrinos are

heavy Majorana particles and the mass eigenstates different from the light SM neutrinos. If the

Z ′ boson is discovered at the LHC, this difference could be tested through its decay products

and the decay width measurements.

This paper is organized as follows. In the next section, we define our minimal SUSY B−L

model with a novel R-parity assignment. Then, we introduce the superpotential and soft SUSY

breaking terms relevant for our discussion. In Sec. 3, we discuss a way to radiatively break the

B − L gauge symmetry, while keeping R-parity manifest. Focusing on the B − L sector, for

simplicity, we perform a numerical analysis for the RG evolutions of the soft SUSY breaking

masses of the right-handed sneutrinos, and show that the B−L gauge symmetry is radiatively

broken at the TeV scale by a VEV of the scalar component of Φ. In Sec. 4, we consider a

new dark matter candidate which is a linear combination of the scalar component of Φ and the

B − L gaugino. We show a parameter set which can reproduce the observed dark matter relic

density. In Sec. 5, we also briefly discuss an implication of the Dirac neutrinos to the LHC

phenomenology through the Z ′ boson production. The last section is devoted for conclusions
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chiral superfield SU(3)c SU(2)L U(1)Y U(1)B−L R-parity

Qi 3 2 +1/6 +1/3 −
U c
i 3∗ 1 −2/3 −1/3 −

Dc
i 3∗ 1 +1/3 −1/3 −

Li 1 2 −1/2 −1 −
Φ 1 1 0 +1 +
N c

1,2 1 1 0 +1 −
Ec

i 1 1 −1 +1 −
Hu 1 2 +1/2 0 +
Hd 1 2 −1/2 0 +

Table 1: Particle content of the minimal SUSY B − L model with a conserved R-parity.
In addition to the MSSM particles, three right-handed neutrino superfields (Φ and N c

1,2) are
introduced. We assign an even R-parity for Φ. i = 1, 2, 3 is the generation index.

and discussions.

2 Minimal SUSY B−L model with a conserved R-parity

The minimal SUSY B−Lmodel is based on the gauge group of SU(3)c×SU(2)L×U(1)Y×U(1)B−L.

In addition to the MSSM particle content, we introduce three chiral superfields which are sin-

glets under the SM gauge groups and have a unit B−L charge. The new fields are identified as

the right-handed neutrino chiral superfields, and their existence is essential to make the model

free from all gauge and gravitational anomalies. Unlikely to direct supersymmetrization of the

minimal B − L model, the B − L Higgs superfields are not included in the particle content.

The key of our proposal is that we assign an even R-parity to one right-handed neutrino chiral

superfield, in contrast with the minimal SUSY B − L model proposed in Ref. [15], where all

the right-handed neutrino superfields are R-parity odd as usual. The particle content is listed

in Table 1.

The gauge and parity invariant superpotential which is added to the MSSM one is only the

neutrino Dirac Yukawa coupling as

WBL =
2
∑

i=1

3
∑

j=1

yijDN
c
i LjHu. (1)

Note that the Yukawa coupling for Φ is forbidden by the parity, and Φ has no direct coupling

with the MSSM fields. After the electroweak symmetry breaking, the neutrino Dirac mass

matrix is generated. Since this is a 2-by-3 matrix, one neutrino remains massless. Therefore,

we have one massless neutrino and two Dirac neutrinos in the model. The 2-by-3 Dirac mass
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matrix has a sufficient number of free parameters to reproduce the neutrino oscillation data.

Although we have introduced the special parity assignment, this may be unnecessary in the

practical point of view. Without the parity assignment, the superpotential in Eq. (1) can

include

WBL ⊃
3
∑

j=1

yjDΦLjHu, (2)

which are unique direct couplings between Φ and the MSSM fields. Let us now take a limit

yjD → 0, which switch off the direct communication of Φ with the lepton and Higgs doublets. In

this sense, our parity assignment can be regarded as a result of symmetry enhancement caused

by this limit. Since the neutrinos are Dirac particles, the Dirac Yukawa coupling constants must

be extremely small in order to reproduce the observed neutrino mass scale. We will discuss a

possibility to naturally realize such small parameters in the last section.

Next, we introduce soft SUSY breaking terms for the fields in the B − L sector:

Lsoft = −
(

1

2
MBLλBLλBL + h.c.

)

−
(

2
∑

i=1

m2

Ñc
i

|Ñ c
i |2 +m2

φ|φ|2
)

, (3)

where λBL is the B−L gaugino and Ñ c
i and φ are scalar components of N c

i and Φ, respectively.

Since the Dirac Yukawa couplings are very small, we omit terms relevant to the couplings. In

the next section, we analyze the RG evolutions of the soft SUSY breaking masses and find that

m2
φ is driven to be negative and the U(1)B−L symmetry is radiatively broken. Although we do

not assume the grand unification of our model, we take MU = 2×1016 GeV as a reference scale

at which the boundary conditions for the soft masses are given.

3 Radiative B − L symmetry breaking

It is well-known that the electroweak symmetry breaking in the MSSM is triggered by radiative

corrections which drive soft mass squared of the up-type Higgs doublet negative. Because of

this radiative symmetry breaking, the electroweak symmetry breaking scale is controlled by the

soft SUSY breaking mass scale and the SUSY breaking scale at the TeV naturally results in the

right electroweak scale of O(100 GeV). Similarly to the MSSM, a radiative B − L symmetry

breaking occurs by the RG evolution of soft SUSY breaking parameters from a high energy to

low energies. However, the mechanism that drives m2
φ negative is different from the one in the

MSSM where the large top Yukawa coupling plays a crucial role.

To make our discussion simple, we consider the RG equations only for the B − L sector.1

1 See Refs. [24, 25] for more elaborate analysis and parameter scans to identify parameter regions which are
consistent with current experimental results.
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Figure 1: The RG evolution of the soft SUSY breaking mass m2
φ from MU to low energies.

RG equations relevant for our discussion are

16π2µ
dMBL

dµ
= 32g2BLMBL, (4)

16π2µ
dm2

Ñc
i

dµ
= −8g2BLM

2
BL + 2g2BL

(

2
∑

j=1

m2

Ñc
j

+m2
φ

)

, (5)

16π2µ
dm2

φ

dµ
= −8g2BLM

2
BL + 2g2BL

(

2
∑

j=1

m2

Ñc
j

+m2
φ

)

, (6)

where the B − L gauge coupling obeys

16π2µ
dgBL

dµ
= 16g3BL. (7)

In Eq. (5) the contributions from very small Dirac Yukawa couplings are omitted. In fact, the

second term in the right-hand side of Eq. (6), which originates from the D-term interaction,

plays an essential role to drive m2
φ negative. Since squarks and sleptons have B − L charges,

their soft squared masses also appear in the RG equations, but we have omitted them, for

simplicity, by assuming they are much smaller than m2

Ñc
i

and m2
φ.

To illustrate the radiative B − L symmetry breaking, we numerically solve the above RG

equations from MU = 2× 1016 GeV to low energy, choosing the following boundary conditions.

gBL = 0.311, MBL = 8.13 TeV, mÑc
1

= mÑc
2

= 20.0 TeV, mφ = 3.25 TeV. (8)

5



Fig. 1 shows the RG evolution of m2
φ. The mass squared of φ becomes negative at low energies

as shown in this figure, while the other squared masses remain positive. The mass squared

hierarchy mÑc
i
≫ m2

φ is crucial to drive m2
φ < 0.

We now analyze the scalar potential with the soft SUSY breaking parameters obtained from

the RG evolutions. We choose the VEV of φ as vBL =
√
2〈φ〉 = 14 TeV as a reference, at which

the solutions of the RG equations are evaluated as follows:

gBL = 0.250, MBL = 5.25 TeV, mÑc
1

= mÑc
2

= 19.6 TeV, |mφ| = 2.47 TeV. (9)

The scalar potential is given by

V = m2

Ñc
1

|Ñ c
1 |2 +m2

Ñc
2

|Ñ c
2 |2 +m2

φ|φ|2 +
g2BL

2

(

|Ñ c
1 |2 + |Ñ c

2 |2 + |φ|2
)2

. (10)

Solving the stationary conditions, we find (in units of TeV)

〈Ñ c
1〉 = 〈Ñ c

2〉 = 0, 〈φ〉 =

√

−2m2
φ

gBL

≃ 14√
2
. (11)

This result is consistent with our choice of vBL = 14 TeV in evaluating the running soft masses.

In our parameter choice, the Z ′ boson mass is given by

mZ′ = gBLvBL = 3.5 TeV. (12)

The ATLAS and CMS collaborations at the LHC Run-2 have been searching for the Z ′ boson

resonance with the dilepton final state and have recently reported their results which are con-

sistent with the SM expectaions [26, 27]. In Ref. [28], the ATLAS and CMS search results are

interpreted to a constraint on the Z ′ boson in the minimal B−L model, where an upper bound

of the the B − L gauge coupling as a function of Z ′ boson mass has been obtained. We refer

the results in Ref. [28] such that gBL ≤ 0.328 and 0.350 for mZ′ = 3.5 TeV from the ATLAS

and CMS results, respectively.2 Our parameter choice of gBL = 0.250 for mZ′ = 3.5 TeV is

consistent with the recent LHC Run-2 results.

4 Right-handed neutrino dark matter

As we showed in the previous section, the B − L gauge symmetry is radiatively broken by the

RG effects on the soft SUSY breaking masses. Since the breaking occurs by the VEV of R-parity

even scalar field φ, R-parity is still manifest, by which the stability of the lightest R-parity odd

2 It is also shown in Ref. [28] that the ATLAS bound at the LHC Run-2 is more severe than the bound
obtained from the LEP2 data [29] for mZ′ ≤ 4.3 TeV.
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particle is ensured. Thus, as usual in the MSSM, the lightest neutralino is a candidate of the

dark matter. In addition to the MSSM neutralinos, a new dark matter candidate arises in our

model, namely, the fermion component of Φ (ψ). We can call ψ the R-parity odd right-handed

neutrino. In this section, we study phenomenology of the right-handed neutrino dark matter.

A scenario of the parity-odd right-handed Majorana neutrino dark matter was first proposed

in [30] in the context of the non-SUSY minimal B − L model, where a Z2 parity is introduced

and an odd parity is assigned to one right-handed neutrino while the other fields are all parity-

even. Because of the Z2-parity conservation, the parity-odd right-handed neutrino becomes

stable and hence the dark matter candidate. Phenomenology of this dark matter has been

investigated in [30, 31, 32]. Recently, in terms of the complementarity to the LHC physics, the

right-handed neutrino dark matter has been investigated in detail [28]. Supersymmetric version

of the minimal B−L model with the right-handed neutrino dark matter has been proposed in

[14].

Our dark matter scenario that we will investigate in this section shares similar properties

with the scenario discussed in [14]. However, there is a crucial difference that ψ has no Majorana

mass by its own, but it acquires a Majorana mass through a mixing with the B − L gaugino

(λBL). After the U(1)B−L symmetry breaking, a mass matrix for ψ and λBL is generated to be

Mχ =

(

0 mZ′

mZ′ MBL

)

. (13)

The mass matrix is diagonalized as
(

ψ
λBL

)

=

(

cos θ sin θ
− sin θ cos θ

)(

χℓ

χh

)

(14)

with tan 2θ = 2mZ′/MBL. Let us assume that the lighter mass eigenstate (χℓ) is the lightest

neutralino. Since ψ and λBL are the SM gauge singlets, possible annihilation processes of

the dark matter are very limited. Furthermore, given a small B − L gauge coupling and the

Majorana nature of the dark matter particle, the annihilation process via sfermion exchanges

is not efficient. We find that a pair of dark matter particles can annihilate efficiently only if

the dark matter mass is close to half of the Z ′ boson mass and the Z ′ boson resonance in the

s-channel annihilation process enhances the cross section. Let us set MBL ≃ (3/2)mZ′, so that

the lightest mass eigenvalue is found to be mDM ≃ mZ′/2 and cos2 θ ≃ 0.8. Our parameter

choice in the previous section is suitable for this setup, MBL = (3/2)mZ′ = 5.25 TeV for

mZ′ = 3.5 TeV.

Let us now calculate the dark matter relic abundance by integrating the Boltzmann equation

given by

dY

dx
= − s〈σv〉

xH(mDM)

(

Y 2 − Y 2
EQ

)

, (15)
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where temperature of the universe is normalized by the mass of the right-handed neutrino

x = mDM/T , H(mDM) is the Hubble parameter at T = mDM , Y is the yield (the ratio of

the dark matter number density to the entropy density s) of the dark matter particle, YEQ is

the yield of the dark matter particle in thermal equilibrium, and 〈σv〉 is the thermal average

of the dark matter annihilation cross section times relative velocity. Explicit formulas of the

quantities involved in the Boltzmann equation are as follows:

s =
2π2

45
g⋆
m3

DM

x3
,

H(mDM) =

√

4π3

45
g⋆
m2

DM

MP l

,

sYEQ =
gDM

2π2

m3
DM

x
K2(x), (16)

where MP l = 1.22×1019 GeV is the Planck mass, gDM = 2 is the number of degrees of freedom

for the Majorana dark matter particle, g⋆ is the effective total number of degrees of freedom

for particles in thermal equilibrium (in the following analysis, we use g⋆ = 106.75 for the SM

particles), and K2 is the modified Bessel function of the second kind. In our scenario, a pair

of dark matter annihilates into the SM particles dominantly through the Z ′ boson exchange in

the s-channel. The thermal average of the annihilation cross section is given by

〈σv〉 = (sYEQ)
−2 mDM

64π4x

∫

∞

4m2

DM

ds σ̂(s)
√
sK1

(

x
√
s

mDM

)

, (17)

where the reduced cross section is defined as σ̂(s) = 2(s−4m2
DM )σ(s) with the total annihilation

cross section σ(s), and K1 is the modified Bessel function of the first kind. The total cross

section of the dark matter annihilation process χℓχℓ → Z ′ → f f̄ (f denotes the SM fermions

plus two right-handed neutrinos) is calculated as

σ(s) =
5

4π
g4BL cos

2 θ

√

s(s− 4m2
DM)

(s−m2
Z′)2 +m2

Z′Γ2
Z′

, (18)

where all final state fermion masses have been neglected. The total decay width of Z ′ boson is

given by

ΓZ′ =
g2BL

24π
mZ′

[

15 + cos2 θ

(

1− 4m2
DM

m2
Z′

)
3

2

θ

(

m2
Z′

m2
DM

− 4

)

]

. (19)

Here, we have assumed that all sparticles have mass larger than mZ′/2.

Now we solve the Boltzmann equation numerically, and find the asymptotic value of the

yield Y (∞). The dark matter relic density is evaluated as

ΩDMh
2 =

mDMs0Y (∞)

ρc/h2
, (20)
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Figure 2: The relic abundance of the dark matter particle as a function of the dark matter
mass (mDM ) for gBL = 0.250, mZ′ = 3.5 TeV and cos2 θ = 0.8. The two horizontal lines denote
the range of the observed dark matter relic density, 0.1183 ≤ ΩDMh

2 ≤ 0.1213 [33].

where s0 = 2890 cm−3 is the entropy density of the present universe, and ρc/h
2 = 1.05× 10−5

GeV/cm3 is the critical density. In our analysis, only three parameters, namely gBL, mZ′

and mDM , are involved.3 As mentioned above, a sufficiently large annihilation cross section is

achieved only if mDM ≃ mZ′/2. Thus, we focus on the dark matter mass in this region and

in this case cos2 θ ≃ 0.8. For gBL = 0.250, mZ′ = 3.5 TeV and cos2 θ = 0.8, Fig. 2 shows the

resultant dark matter relic abundance as a function of the dark matter mass mDM , along with

the bound 0.1183 ≤ ΩDMh
2 ≤ 0.1213 (65% limit) from the Planck satellite experiment [33]

(two horizontal dashed lines). We have confirmed that only if the dark matter mass is close to

half of the Z ′ boson mass, the observed relic abundance can be reproduced.

5 Implication of Dirac neutrino to LHC physics

Because of our R-parity assignment, the SM neutrinos are Dirac particles in our model. This is

quite distinct from usual B − L extension of the SM, where right-handed neutrinos are heavy

Majorana states. Since the right-handed neutrinos are singlet under the SM gauge groups

and the Dirac Yukawa coupling constants are very small in both Dirac and Majorana cases,

the right-handed neutrinos can communicate with the SM particles only through Z ′ boson

3 The mixing angle θ is determined once mZ′ and mDM are fixed.
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exchange. As we mentioned above, the search for Z ′ boson resonance is underway at the LHC

Run-2. Once discovered at the LHC, the Z ′ boson will allows us to investigate physics of the

right-handed neutrinos through precise measurements of Z ′ boson properties. In this section

we consider an implication of the Dirac neutrinos to LHC physics.

When the right-handed neutrinos are heavy Majorana particles as in the minimal B − L

model, a pair of right-handed Majorana neutrinos, if kinematically allowed, can be produced

through Z ′ boson decays at the LHC. The produced right-handed neutrino subsequently decays

to weak gauge bosons/Higgs boson plus leptons. Because of the Majorana nature of the right-

handed neutrino, the final states include same-sign leptons. This is a characteristic signature

from the lepton number violation, and we expect a high possibility to detect such final states

with less SM background. For a detailed studies, see, for example, Ref. [34].

The Majorana neutrinos are heavy and can be produced only if they are kinematically

allowed, while the Dirac neutrinos in our model are always included in the Z ′ boson decay

products. However, they cannot be detected just like the usual SM neutrinos produced at

colliders. This process may remind us of the neutrino production at the LEP through the

resonant production of the Z boson. It was a great success of the LEP experiment that the

precise measurement of the Z boson decay width and the production cross section at energies

around the Z boson peak has determined the number of the SM neutrinos to be three [35]. We

notice that the Z ′ production is quite analogous to the Z production at the LEP. Although

the right-handed neutrinos produced by the Z ′ boson are completely undetectable, the total Z ′

boson decay width carries the information of the invisible decay width. A precise measurement

of the Z ′ boson cross section at the LHC may reveal the existence of the right-handed Dirac

neutrinos. To illustrate this idea, we calculate in the following the differential cross section for

the process with the dilepton final states, pp → ℓ+ℓ− with ℓ = e, µ mediated by photon, Z

boson and Z ′ boson at the LHC with a collider energy
√
s = 14 TeV.

The differential cross section with respect to the final state dilepton invariant mass Mll is

described as

dσ(pp→ ℓ+ℓ−X)

dMll

=
∑

a,b

∫

1

−1

d cos θ

∫

1

M2
ll

E2
CMS

dx1
2Mll

x1E2
CMS

× fa(x1, Q
2)fb

(

M2
ll

x1E
2
CMS

, Q2

)

dσ(q̄q → ℓ+ℓ−)

d cos θ
, (21)

where ECMS = 14 TeV is the center-of-mass energy of the LHC. In our numerical analysis, we

employ CTEQ5M [36] for the parton distribution functions (fa) with the factorization scale

Q = mZ′ . Reader may refer Appendix in Ref. [37] for the helicity amplitudes to calculate

dσ(q̄q → ℓ+ℓ−)/d cos θ. For the Z ′ boson mediated process, we consider two cases, N(νR) = 0
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Figure 3: The differential cross section for pp → e+e−X + µ+µ−X at the 14 TeV LHC for
mZ′ = 3.5 TeV and gBL = 0.250. The solid and dashed curves correspond to the results for
N(νR) = 2 and 0, respectively. The horizontal long-dashed line represents the SM cross section,
which is negligible compared with the Z ′ boson mediated process.

and N(νR) = 2, where N(νR) is the number of right-handed (Dirac) neutrinos. For our case

with N(νR) = 2, the total Z ′ boson decay width is given in Eq. (19), while the number 15 in

the bracket must be replaced to 12 for N(νR) = 0.

Fig. 3 shows the differential cross section for pp→ e+e−X +µ+µ−X for mZ′ = 3.5 TeV and

gBL = 0.250, along with the SM cross section mediated by the Z-boson and photon (horizontal

long-dashed line). The solid and dashed curves correspond to the results for N(νR) = 2 and 0,

respectively. The dependence of the total decay width on the number of right-handed neutrinos

reflects the resultant cross sections. When we choose a kinematical region for the invariant mass

in the range, MZ′ − 100 ≤ Mll(GeV) ≤ MZ′ + 100, for example, the signal events of 892 and

1049 for N(νR) = 2 and 0, respectively, would be observed with the prospective integrated

luminosity of 1000/fb at the High-Luminosity LHC. The difference between N(νR) = 2 and 0

are distinguishable with a 4− 5σ significance.

11



6 Conclusions and discussions

We have proposed a simple gauged U(1)B−L extension of the MSSM, where R-parity is conserved

as usual in the MSSM. The global B − L symmetry in the MSSM is gauged and three right-

handed neutrino chiral multiplets are introduced, which make the model free from all gauge

and gravitational anomalies. No B−L Higgs field is introduced. We assign an even R-parity to

one right-handed neutrino superfield Φ, while the other two right-handed neutrino superfields

are odd as usual. The scalar component of Φ plays a role of the B − L Higgs field to beak

the U(1)B−L gauge symmetry through its negative mass squared which is radiatively generated

by the RG evolution of soft SUSY breaking parameters. Therefore, the scale of the U(1)B−L

symmetry breaking is controlled by the SUSY breaking parameters and naturally be at the TeV

scale. We have shown that this radiative symmetry breaking actually occurs with a suitable

choice of model parameters. Because of our novel R-parity assignment, three light neutrinos

are Dirac particles with one massless state. Since R-parity is conserved, the lightest neutralino

is a prime candidate of the dark matter of the universe. Depending on its mass, the lighter

Majorana mass eigenstate (χℓ) of a mixture of the B−L gaugino and the fermionic component

of Φ (R-parity odd right-handed neutrino) appears as a new dark matter candidate. Assuming

χℓ is the lightest R-parity odd particle, we have calculated the dark matter relic abundance.

When the mass of χℓ is close to half of the Z ′ boson mass, the pair annihilation cross section of

the dark matter particle is enhanced through the Z ′ boson resonance in the s-channel process

and the observed dark matter relic abundance is reproduced. We have also discussed LHC

phenomenology for the Dirac neutrinos. The Z ′ boson, once discovered at the LHC, will be a

novel probe of the Dirac nature of the light neutrinos since its invisible decay processes include

the final states with one massless (left-handed) neutrino and two Dirac neutrinos, in sharp

contrast with the conventional B − L extension of the SM or MSSM, where the right-handed

neutrinos are heavy Majorana particles and decay to the weak gauge bosons/Higgs boson plus

leptons. If the Z ′ boson is discovered, the High-Luminosity LHC may reveal the existence of

the right-handed neutrino with a precise measurement of the total decay width of Z ′ boson.

Since the neutrinos are Dirac particles in our model, their Dirac Yukawa coupling must

be extremely small. It is an important issue how to naturally realize such a small Yukawa

coupling, or a huge hierarchy between the neutrino Yukawa coupling and those of the other

SM fermions, in a reasonable theoretical framework. In addition, the mass squared hierarchy

between φ and the other right-handed sneutrinos is crucial to achieve the radiative B−L gauge

symmetry breaking. Realizing this hierarchy in a natural way is an additional issue. In order

to solve these hierarchy problems, we may extend the model to the brane-world framework

with 5-dimensional warped space-time [38]. Arranging the bulk mass parameters for the bulk
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hypermultiplets corresponding to matter and Higgs fields in the minimal SUSY B − L model,

we can obtain large hierarchy among parameters in 4-dimensional effective theory with mildly

hierarchical model parameters in the original 5-dimensional theory. This direction is worth

investigating [39].
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