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Abstract

We show that the required high quality of the Peccei-Quinn symmetry can be naturally explained in

the aligned QCD axion models where the QCD axion arises from multiple axions with decay constants

much smaller than the axion window, e.g., around the weak scale. Even in the presence of general Planck-

suppressed Peccei-Quinn symmetry breaking operators, theeffective strong CP phase remains sufficiently

small in contrast to the standard axion models without the alignment. The QCD axion potential has small

or large modulations due to the symmetry breaking operators, which can significantly affect the axion cos-

mology. When the axions are trapped in different minima, domain walls appear and their scaling behavior

suppresses the axion isocurvature perturbations at super-horizon scales. Our scenario predicts many axions

and saxions coupled to gluons, and they may be searched for atcollider experiments. In particular, the

recently found diphoton excess at750 GeV could be due to one of such (s)axions.
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I. INTRODUCTION

The strong CP phasēθ is tightly constrained by the search for neutron electric dipole moment

(EDM) [1],

|θ̄| . 10−10. (1)

Why θ̄ is so small is known as the strong CP problem. The strong CP problem is one of the re-

maining mysteries of the Standard Model (SM), and one plausible solution is the Peccei-Quinn

(PQ) mechanism [2, 3]. In association with spontaneous breakdown of a global PQ symmetry, a

pseudo Nambu-Goldstone (NG) boson, the QCD axion, appears.If the PQ symmetry is explic-

itly broken only by the QCD instanton effects, the QCD axion is stabilized at a CP conserving

minimum, solving the strong CP problem. The QCD axion in the form of coherent oscillations is

necessarily produced by the dynamical cancellation of the strong CP phase, and it can account for

the observed dark matter (DM) abundance.

While elegantly solving the strong CP problem, the PQ mechanism poses two potential prob-

lems. One is the origin of the (classical) axion window at an intermediate scale,

109GeV . Fa . 1012GeV, (2)

where the lower bound is due to the observation of the SN 1987Aneutrino burst duration [4–6],

and the upper bound is due to the axion contribution to the DM abundance barring fine-tuning

of the initial misalignment [7–9]. The origin of the PQ scale at an intermediate scale remains

unknown. It may arise from some combinations of the supersymmetry (SUSY) breaking scale and

the Planck scale [10–13]. On the other hand, there appear many moduli and axion fieldsin string

theory at the compactification of extra dimensions, and one of them may be identified with the

QCD axion. In this case the natural scale for the axion decay constant is of order the string scale,

Fa ∼ 1015−16 GeV, if the compactification scale is comparable to the Planck scale. Such a large

axion decay constant generically leads to overproduction of the axion DM.1

The other problem is the required high quality of the PQ symmetry [20]. In general, a global

symmetry is considered to be explicitly broken in the quantum gravity theory [21], and so, we

naively expect that there are various PQ breaking operatorssuppressed by powers of the Planck

mass. However, such extra PQ breaking terms tend to give too large contributions to the strong CP

1 The axion abundance can be suppressed by the anthropic selection of the initial misalignment [14], late-time entropy

dilution [15–17], or early oscillations and adiabatic suppression due to extra PQ breaking terms [18, 19].
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phase, spoiling the PQ mechanism. One can suppress dangerous operators by imposing discrete

symmetryZN with largeN , but the existence of such large discrete symmetry may be implausible.

Thus, the required high quality of PQ symmetry is a puzzle in the low-energy four dimensional

theory.2 One interesting possibility is that such high quality of thePQ symmetry is due to the

requirement that the axion should explain the present DM abundance [20], and we will return to

this issue later in this paper.

The axion decay constant is not necessarily in one-to-one correspondence with the associated

PQ breaking scale. The effective axion decay constant for multiple PQ scalars with arbitrary PQ

charges was studied in Ref. [25], where it was shown that the effective axion decay constantsen-

sitively depends on the PQ charge assignment. It was pointedout in Ref. [26] that the axion decay

constant can be enhanced by a factor of the largest hierarchyamong the PQ charges in a model

with two axions and it was used to implement natural inflationwith a super-Planckian decay con-

stant. The enhancement is due to the alignment of the axion potentials. The alignment mechanism

with multiple axions was first studied in Ref. [27], where they showed that an exponentially large

enhancement is possible without introducing extremely large coefficients of the axions. This is

because multiple axions with a certain combination split the required large PQ charges into many

U(1) charges with a moderate size. The alignment mechanism with multiple axions and vari-

ous number of symmetry breaking terms was studied subsequently in Refs. [28, 29], where many

axions form the axion landscape (see also Refs. [30, 31]). The linear realization of the alignment

mechanism with two axions was first studied in Ref. [32] and later extended to multiple fields [33],

where a peculiar structure of the U(1) charge assignment wasnoted. A more concrete realization

along this line was given in Refs. [34–36], and it was coined a clockwork axion model.

We have recently proposed a QCD axion model based on the alignment mechanism with clock-

work structure [37], where one of the axions or saxions can account for the recently found750GeV

diphoton excess [38, 39]. In Ref. [37] we briefly discussed the quality of the PQ symmetry. One

of the striking features of the aligned QCD axion model is that the actual symmetry breaking scale

can be much smaller than the conventional axion window (2). As a result, any Planck-suppressed

PQ breaking operators are highly suppressed compared to theusual scenario.3 The high quality of

PQ symmetry is a natural outcome of the aligned QCD axion model.

In this paper we study in detail both phenomenological and cosmological implications of the

2 String theory may provide a theoretical framework to address this question [22–24].
3 In the models considered in Refs. [40–45], where the PQ breaking scale is low and corresponds to the axion decay

constant, the QCD axion is visible but has a heavy mass to avoid the astrophysical constraints.
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aligned QCD axion model, which is based on an effective field theory approach. The purpose

of this paper is twofold. First we study the effect of Planck-suppressed PQ breaking operators

in detail in the aligned QCD axion model. In particular, we find a new regime where the axion

mass mainly arises from PQ breaking terms, while the strong CP phase remains sufficiently small.

Interestingly, the QCD axion can have a mass much heavier than in the conventional scenario. Sec-

ondly, the axion cosmology can be significantly modified by such PQ breaking operators, which

induce small or large modulations on the axion potential. Weinvestigate the axion cosmology

such as the axion DM and its isocurvature perturbations in the presence of PQ breaking operators.

In extreme cases, the QCD axion can be cosmologically unstable, decaying into hidden photons.

The rest of this paper is organized as follows. We review the QCD axion model based on the

alignment mechanism in SectionII , and then discuss in SectionIII how it helps to explain the high

quality of PQ symmetry at low energy scales. We explore the QCD axion dynamics in the early

Universe in SectionIV. The contents of SectionsIII andIV are our main new results. SectionV

is devoted to discussion and conclusions.

II. ALIGNED QCD AXION

In this section we first review the aligned axion model [26–28, 33–35], and apply the idea to

the QCD axion to see how the QCD axion could arise from multiple axions with low axion decay

constants through the alignment mechanism.

The alignment mechanism [27] is implemented by multiple periodic axions,

φi ≡ φi + 2πfi (i = 1, 2, ..., N) (3)

with the potential of the form

Valign = −
N−1
∑

i=1

Λ4
i cos

(

φi

fi
+ ni

φi+1

fi+1

)

, (4)

for Λi ≫ ΛQCD, whereni (i ≤ N − 1) are integers, and we definenN = 1 for notational

convenience. The above potential provides masses toN − 1 axions, and there remains one flat

direction,

a =
1

fa

N
∑

i=1

(−1)i−1

(

N
∏

j=i

nj

)

fiφi, (5)
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which we identify with the QCD axion. The effective axion decay constant,fa, is given by

fa =

√

√

√

√

N
∑

i=1

(

N
∏

j=i

n2
j

)

f 2
i , (6)

and thus it can be enhanced depending on the values ofni andN . For later use, let us show how

the QCD axion appears in each axionφi:

φi

fi
= (−1)i−1

(

N
∏

j=i

nj

)

a

fa
+ · · · , (7)

where the dots represent massive modes. Assuming for simplicity that the axions have

fi = fN = f and |ni| = n > 0 (i = 1, 2, ..., N − 1) (8)

one finds that the QCD axiona comes mostly fromφ1 andfa is exponentially enhanced,

fa =

√

n2N − 1

n2 − 1
f ∼ eN lnnf. (9)

For instance,fa is enhanced by a factor of106−9 for n = 3 andN = 14− 20.

To see how to obtain the alignment potential, we considerN complex scalars developing a

vacuum expectation value (VEV)

Φi =

(

ρi +
fi√
2

)

eiφi/fi , (10)

with fi =
√
2〈|Φi|〉, andρi denoting the saxion. Here theΦi’s are stabilized by the potential pre-

serving the global U(1) symmetry associated with each complex scalar, for instance, dominantly

by

V =

N
∑

i=1

(

−m2
i |Φi|2 +

λi

4
|Φi|4

)

, (11)

with mi ∼ f andλi ∼ 1.4 Then there appearN massless axions.

One way to provide masses to theseN −1 axions while enhancing the effective decay constant

of the remaining massless combination is to add renormalizable interactions breakingN−1 global

U(1) symmetries [35],

∆V =

N−1
∑

i=1

ǫiΦiΦ
3
i+1 + h.c., (12)

4 One may introduce terms like
∑

ij λij |Φi|2|Φj |2, which mix the saxions but without affecting the alignment

mechanism. The following arguments are valid in the presence of such terms as long as they do not destabilize the

potential. Also, the scalars may have quartic couplings with the Higgs field. If the couplings are bounded below,

their VEVs may be close to the weak scale.
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for smallǫi not to modify the saxion potential significantly. Integrating out the saxions, one is led

to the axion potential of the form (4) with

ni = 3 and Λi =
(ǫi
2
fif

3
i+1

)1/4

. (13)

Alternatively, one may introduce hidden quarks charged under hidden gauge symmetries, whose

non-perturbative effects generate the axion potential [27]. Both models possess one unbroken

global U(1) symmetry, which corresponds to the U(1)PQ symmetry and is to be explicitly broken

by the QCD instanton effects.

The axion coupling to gluons can be induced radiatively fromthe loops of heavy PQ quarks

which are color-charged and obtain masses from the VEV of oneof Φi. Note that the QCD axion

fraction inφi quickly decreases withi as in (5). Considering that the QCD axion should couple

weakly to gluons in order to satisfy the astrophysical constraints, we add PQ quarksQ+Q̄ coupled

toΦN :

∆L = yqΦN Q̄Q. (14)

Then, after integrating out the heavy saxion, axions and thePQ quarks, one gets the effective

action of the QCD axion

Leff =
αs

8π

a

Fa
GµνG̃µν + · · · , (15)

whereGµν is the SU(3)c field strength, andFa is defined by

Fa =
fa

NDW
, (16)

with NDW being the domain-wall number determined by the number of PQ quarks. The ellipsis

includes the couplings of the QCD axion to the other SM gauge bosons, which are suppressed also

by Fa.

III. QUALITY OF THE PECCEI-QUINN SYMMETRY

The QCD axion provides a natural solution to the strong CP problem by dynamically canceling

theθ parameter in QCD. This mechanism works when the global PQ symmetry is explicitly bro-

ken by QCD instanton effects and other explicit breaking effects are highly suppressed. However

quantum gravity is widely believed not to respect global symmetries. This implies that there gener-

ically exist Planck-suppressed higher dimensional operators explicitly breaking the PQ symmetry.
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Thus it is important to understand why the quality of the PQ symmetry remains good enough

to solve the strong CP problem at low energy scales despite such quantum gravity effects. The

aligned QCD axion models can naturally explain the high quality of the PQ symmetry because

the original axion decay constants are much smaller than theeffective decay constant of the QCD

axion.

Including the QCD instanton and possible quantum gravity effects, the scalar potential of the

QCD axion at temperatureT = 0 can be written

VQCD = −m2
QCDF

2
a cos

(

a

Fa

)

−m2
✟✟PQ

µ2 cos

(

a

µ
− α

)

, (17)

where the first term is generated by QCD instanton effects

mQCD ≃ 6× 10−4eV

(

ΛQCD

400MeV

)2(
Fa

1010GeV

)−1

, (18)

while the second term represents explicit PQ breaking originating from quantum gravity effects.

Here we take0 ≤ α ≤ π without loss of generality. The minimum of the QCD axion potential is

deviated from the origin due to the second term, and the strong CP phase is estimated to be

θ̄ ≡ 〈a〉
Fa

≃
m2
✟✟PQ

sinα

m2
QCD +m2

✟✟PQ
cosα

µ

Fa
, (19)

for m2
✟✟PQ

sinα ≪ m2
QCD +m2

✟✟PQ
cosα, and then the total axion mass is determined by

m2
a ≃ m2

QCD +m2
✟✟PQ

cosα. (20)

This is the case where the QCD axion is stabilized mainly by the first term in (17), and small shift

of the minimum is induced by the second term. The CP phaseθ̄ should be smaller than about10−10

in order not to generate too large neutron electric dipole moment. In the conventional QCD axion

scenarios,µ is similar toFa in size as they are both determined by the VEV of PQ scalars, implying

thatm
✟✟PQ should be highly suppressed compared tomQCD to satisfy the experimental constraint

on the strong CP violation angle. However, for instance, a dimension-five Planck-suppressed PQ

breaking operator gives

m
✟✟PQ ∼ 106GeV

(

µ

Fa

)3/2(
Fa

1010GeV

)3/2

, (21)

thereby badly spoiling the PQ mechanism forµ ∼ Fa unlessα is extremely small. It is obvious

that the situation significantly changes ifµ ≪ Fa, which is indeed the case in the alignment axion

models.
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On the other hand, ifmQCD is not much larger thanm
✟✟PQ, the relationm2

✟✟PQ
sinα ≪ m2

QCD +

m2
✟✟PQ

cosα may not hold forα ∼ 1. In such a case it is the second term in the axion potential (17)

that plays an important role in stabilizing the QCD axion. Then, fixed at the global minimum, the

QCD axion has

θ̄ ≈ α
µ

Fa
, (22)

for µ ≪ Fa, and its mass is roughly given bym
✟✟PQ. Note that in this case the axion potential

develops many local minima, making it difficult to implementthe PQ mechanism unless the QCD

axion is set to be close to the origin in the early Universe. Wewill return to this issue in SectionIV .

A. Planck-suppressed dimension-five operator

Let us examine if the PQ symmetry can be robust against quantum gravity effects in the aligned

QCD axion model. Among Planck-suppressed higher dimensional operators, those ofΦ1 give the

dominant contributions to the QCD axion mass. The dimension-five operator ofΦ1,

∆V5 =
κ5

5

Φ5
1

Mp
+ h.c., (23)

generates additional axion potential, which takes the formof the second term in (17) with

m2
✟✟PQ

=
5|κ5|
2
√
2

f 3
1

Mp
, µ =

f1
5
, and α = arg[κ5]. (24)

HereMp ≃ 2.4× 1018 GeV is the reduced Planck mass. It is easy to see

m
✟✟PQ ≃ 0.03MeV

√

|κ5|
(

f1
103GeV

)3/2

, (25)

and so the induced mass is much larger thanmQCD unless one takes very tinyκ5 or smallf1. For

m
✟✟PQ ≫ mQCD, the strong CP violation angle is simply determined by

θ̄ ≈ 2× 10−10
( α

0.1

)

(

Fa/f1
108

)−1

, (26)

showing that the experimental bound onθ̄ can be avoided if the term (23) is the only PQ violating

term. Note that there are many (local) minima for the QCD axion, and the initial position must

be close tōθ = 0 to satisfy the neutron EDM bound. This requires a fine-tuningof order10−10.

We shall discuss in the next section how the domain wall dynamics can alleviate the tuning of the

initial condition.
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In general there may be many other dimension-five operators.For instance, the following

operator ofΦN is also dangerous:

∆V ′
5 =

κ′
5

5

Φ5
N

Mp

+ h.c., (27)

which takes the form of the second term in (17) with

m2
✟✟PQ

=
5|κ′

5|
2
√
2

f 5
N

Mpf 2
a

, µ =
fa
5
, and α = arg[κ′

5]. (28)

Then, its contribution to the QCD axion mass reads

m
✟✟PQ = 3× 10−3 eV

√

|κ′
5|
(

fN
103GeV

)5/2(
fa

1010GeV

)−1

, (29)

which is comparable tomQCD for |κ′
5| ∼ 1 andfN around TeV, and its contribution tōθ is not

suppressed byfN/fa differently from the case of∆V5.

To summarize, among various dimension-five PQ breaking terms,∆V5 generates many local

minima which requires a significant fine-tuning of the initial position (unless the domain-wall dy-

namics is considered; see next section), and∆V ′
5 gives a too large contribution to theθ parameter.

Therefore, the Planck-suppressed dimension-five operators are dangerous and generically spoil the

PQ mechanism in the aligned scenario.

B. Planck-suppressed dimension-six operator

It is possible to forbid Planck-suppressed operators of odddimensions by imposing an extra

discrete symmetry, which is presumed to be a remnant of some gauge symmetry in high energy

theory. Here we considerZ2 parity under which all the PQ scalars developing nonzero VEVare

odd

Z2 : Φi → −Φi, (30)

which is aZ2 subgroup of the U(1)PQ symmetry. Then one of the most dangerous Planck-

suppressed operators is the dimension-six operator ofΦ1:

∆V6 =
κ6

6

Φ6
1

M2
p

+ h.c., (31)

which generates axion potential of the form of the second term in (17) with

m2
✟✟PQ

=
3|κ6|
2

f 4
1

M2
p

, µ =
f1
6
, and α = tan−1

(

Imκ6

Reκ6

)

. (32)
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One thus finds the strong CP phase to be

θ̄ ≃ 1.7× 10−10
m2
✟✟PQ

cosα

m2
QCD +m2

✟✟PQ
cosα

(

tanα

0.1

)(

Fa/f1
108

)−1

, (33)

where the contribution from∆V6 to the axion mass is given by

m
✟✟PQ ≃ 0.5× 10−3eV

√

|κ6|
(

f1
103GeV

)2

, (34)

which is comparable to or smaller thanmQCD for f1 less than TeV. As can be seen from the relation

(19), the strong CP violation angle is suppressed forFa ≫ f1, and further ifm
✟✟PQ is smaller than

mQCD. Also, the contributions of terms likeΦ6
N/M

2
p to the QCD axion mass are negligibly small.

Note that the model with exactZ2 parity would suffer from the domain-wall problem if the PQ

symmetry breaking occurs after inflation. If theZ2 parity is broken by a small amount, the domain

walls will annihilate.

C. Supersymmetric models

Let us briefly discuss explicit PQ breaking effects in the aligned QCD axion within the su-

persymmetric framework. To implement the alignment mechanism, we introduceN pairs of the

SM-singlet chiral superfieldsΦi + Φ̂i. One way to stabilize them is through the superpotential

model A: ∆W =

N
∑

i

Xi

(

ΦiΦ̂i − f 2
i

)

, (35)

for fi & mSUSY, wheremSUSY is the soft SUSY breaking scale, and we have omitted coupling

constants of order unity for simplicity. Having soft SUSY breaking scalar masses of similar size,

Φi andΦ̂i are stabilized as

〈|Φi|〉 ∼ 〈|Φ̂i|〉 ∼ fi, (36)

as required by theF -flat condition|ΦiΦ̂i − f 2
i | ∼ m2

SUSY. Another way is to consider

model B: ∆W =

N
∑

i

ΦiΦ̂
2
i , (37)

with non-tachyonic and tachyonic soft SUSY breaking scalarmasses forΦi andΦ̂i respectively,

and scalar trilinear terms. Here we have omitted Yukawa couplings. Then the competition between

supersymmetric and SUSY breaking effects leads to

〈|Φi|〉 ∼ 〈|Φ̂i|〉 ∼ mSUSY. (38)
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Note that both models possessN global U(1) symmetries, and thus there appearN massless

axions.

Now we add aligning potential terms that give masses toN−1 axions and enhance the effective

axion decay constant of the remaining massless axion. As in the non-supersymmetric case, one

can consider two cases. One is to add

∆Walign = ǫ

N−1
∑

i=1

(

ΦiΦ̂
2
i+1 + Φ̂iΦ

2
i+1

)

, (39)

for small ǫ. Then the alignment is achieved withni = 2 [35]. Instead one can consider non-

perturbative dynamics to get alignment [27]:

∆Walign =

N−1
∑

i=1

(

ΦiΨiΨ
c
i +

ni
∑

α=1

Φi+1Ψ̂iαΨ̂
c
iα

)

, (40)

omitting Yukawa couplings for simplicity. Here the hidden quarksΨi and Ψ̂iα belong to the

fundamental representation of hidden SU(ki) gauge group which confines atΛi, whileΨc
i andΨ̂c

iα

belong to the anti-fundamental representation.

How large are the explicit PQ breaking effects in the supersymmetric models? As discussed

already, the most dangerous Planck-suppressed operators are those ofΦ1 andΦ̂1 unless one as-

sumes large hierarchy among the original axion decay constants. Let us first see the effect of

Planck-suppressed dimension-four superpotential term:

∆W
✟✟PQ =

ξ

4

Φ4
1

Mp

. (41)

The additional potential of the QCD axion from the above superpotential takes the form (17) with

m2
✟✟PQ

= 2|ξAξ|
f 2
1

Mp

, µ =
f1
4
, and α = tan−1

(

Im(ξAξ)

Re(ξAξ)

)

. (42)

whereAξ ∼ mSUSY is the soft supersymmetry breakingA-parameter associated with theξ-term.

One thus finds that, forf ∼ mSUSY, the situation is similar to the non-supersymmetric case with

dimension-five operators. On the other hand, Planck-suppressed dimension-four superpotential

terms can be suppressed by the gravitino mass,

ξ ∼ m3/2

Mp

, (43)

if gauged U(1)R symmetry is assumed, i.e., we haveK ∋ X†Φ4
1/M

3
p while assigning appropriate

U(1)R charges toΦi andΦ̂i. HereX is the SUSY-breaking field. Alternatively one may impose

some discrete symmetry to forbid dimension-four superpotential terms. Then the situation be-

comes similar to the non-supersymmetric case where Planck-suppressed dimension-five operators

are absent due to theZ2 parity.
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IV. COSMOLOGY

Now we study the QCD axion dynamics in the early Universe in the presence of PQ break-

ing terms which induce extra modulations in the axion potential. Before going into details, let

us briefly summarize the axion dynamics in the presence of such extra PQ breaking terms. Most

importantly, the QCD axion has a non-zero mass even before the QCD phase transition, and there-

fore, it may start to oscillate earlier than usual. If the PQ breaking terms are sufficiently large, the

QCD axion is trapped in one of the local minima for a long time,and the cosmological axion abun-

dance is modified. In extreme cases, the QCD axion remains trapped in a local minimum which

is stable during a cosmological time scale, and the PQ mechanism no longer solves the strong CP

problem. In some case, however, if the QCD axion has sufficiently large quantum fluctuations, or

if PQ symmetry is spontaneously broken after inflation, the minimum closest tōθ = 0 satisfying

the experimental bound (1) is realized somewhere in the Hubble horizon. Then, domain walls

separating the local minima annihilate with each other, andthe almost CP conserving minimum is

realized in the entire space. This solution to the strong CP problem is different from the ordinary

PQ mechanism in that quantum fluctuations and domain-wall dynamics play an essential role.

For simplicity, let us consider the axion potential (17) taking account of the temperature depen-

dence of the QCD instanton effects [46]

m2
QCD(T ) ≃















cT
Λ4

QCD

F 2
a

(

T

ΛQCD

)−ℓ

for T > 0.26ΛQCD

c0
Λ4

QCD

F 2
a

for T < 0.26ΛQCD

, (44)

with cT ≃ 1.68× 10−7, c0 ≃ 1.46× 10−3, ΛQCD = 400MeV andℓ = 6.68. The QCD axion mass

mQCD in Eq. (18) is equal tomQCD(T = 0). So, the potential is given by

VQCD = −m2
QCD(T )F

2
a cos

(

a

Fa

)

−m2
✟✟PQ

µ2 cos

(

a

µ
− α

)

. (45)

In general, the axion potential receives corrections from various Planck-suppressed PQ breaking

terms, in which case the axion potential will be more complicated. Our analysis however captures

the essential features of the axion dynamics, and it can be straightforwardly applied to a more

general case if one of the PQ breaking operators dominates over the others.

First let us briefly review the case without the extra PQ breaking term, i.e.,m2
✟✟PQ

= 0. In

this case the QCD axion starts to oscillate when the mass becomes comparable to the Hubble

parameter,mQCD(T
(0)
osc ) ≃ 3H(T

(0)
osc ), where the temperature at the commencement of oscillations

12



is given by

T (0)
osc =

(

cT
10

π2g∗

M2
p

F 2
a

)

1

ℓ+4

ΛQCD

≃ 2.3GeV

(

g∗(T
(0)
osc )

80

)−0.094
(

Fa

1010GeV

)−0.19

. (46)

Hereg∗(T ) counts the relativistic degrees of freedom in plasma with temperatureT . The axion

mass atT = T
(0)
osc is given by

mQCD(T
(0)
osc ) ≃ 2× 10−8 eV

(

g∗(T
(0)
osc )

80

)0.31
(

Fa

1010GeV

)−0.37

. (47)

The coherent oscillations of the axion contribute to DM, andits abundance is given by

Ωah
2 ≃ 0.2 θ2i

(

Fa

1012GeV

)1.18

, (48)

whereθi is the initial misalignment angle.

Now let us study how the axion abundance is modified in the presence of the PQ breaking term.

The axion cosmology in the presence of the extra PQ breaking term can be broadly classified

as follows. Ifm2
✟✟PQ

. m2
QCD(T

(0)
osc ), the QCD axion dynamics is not significantly modified. In

particular, the axion abundance is still approximately given by Eq. (48). On the other hand, if

m2
✟✟PQ

& m2
QCD(T

(0)
osc ), the QCD axion starts to oscillate earlier. The fate of the QCD axion depends

on whether the extra PQ breaking term generates multiple local minima atT = 0. Roughly

speaking, ifm2
✟✟PQ

. m2
QCD, there is a unique potential minimum (up to the domain wall number

NDW). If m2
✟✟PQ

& m2
QCD, on the other hand, there are many local minima atT = 0. In the

following we consider these cases in turn.

A. Case ofm2
✟✟PQ

. m2
QCD(T

(0)
osc )

If the size of the Planck-suppressed operators is suppressed somehow by e.g. additional discrete

symmetries, the axion potential is dominated by the one fromthe QCD instanton effects when the

axion starts to oscillate. The PQ breaking terms may induce anon-zero strong CP phase, but the

axion dynamics is essentially same as in the conventional case. In particular, the axion abundance

as well as its isocurvature perturbations (if any) are not modified significantly by the PQ breaking

terms.

13



B. Case ofm2
QCD(T

(0)
osc ) . m2

✟✟PQ
. m2

QCD

If m2
✟✟PQ

& m2
QCD(T

(0)
osc ), the axion feels its non-zero mass and starts to oscillate even before

the QCD phase transition. This takes place when the mass becomes comparable to the Hubble

parameter,m
✟✟PQ ≃ 3H(Ttrap), with

Ttrap ≃ 170GeV

(

g∗(Ttrap)

80

)− 1

4 ( m
✟✟PQ

10−4 eV

)
1

2

, (49)

and then the axion is trapped in one of the minima,a = ai, satisfying

sin

(

ai
µ

− α

)

= 0. (50)

The abundance of the axion coherent oscillations abouta = ai is given by

Ωa,traph
2 ≃ 8.6× 10−21 θ2trap

(

g∗(Ttrap)

80

)− 1

4 ( µ

103GeV

)2 ( m
✟✟PQ

10−4 eV

)
1

2

, (51)

whereθtrap = ai/µ is the initial misalignment measured froma = ai and we have assumed

mQCD ∼ m
✟✟PQ at low temperature, but the result will not drastically change even formQCD >

m
✟✟PQ. The abundance is much smaller than the contribution (48) because it starts to oscillate

earlier and its initial oscillation amplitude is of orderf(≪ Fa), and so, we neglect the initial

abundance in the following.

During the QCD phase transition, the axion gradually acquires a mass from the QCD instanton

effects. AtT = 0, the axion potential has a unique potential minimum (up to the domain wall

numberNDW). This is because the curvature of the potential is dominated by the QCD instanton

effects, and the modulations are subdominant,m2
✟✟PQ

. m2
QCD. The local minimum ata = ai is

destabilized when the plasma temperature drops down to

Tds =

(

cT sin θi
Λ4

QCD

Faµm2
✟✟PQ

)
1

ℓ

ΛQCD

≃ 2 (sin θi)
0.15

(

Fa

1010GeV

)−0.15
( m

✟✟PQ

10−4 eV

)−0.3

GeV, (52)

whereθi ≡ ai/Fa.

If Tds > T
(0)
osc , the axion does not significantly evolve and stays arounda = ai until the temper-

ature decreases down toT (0)
osc . In this case, the axion abundance is given by (48). If Tds < T

(0)
osc ,

on the other hand, the axion remains trapped in the local minimum even after the temperature be-

comes lower thanT (0)
osc at which the axion would start to oscillate in the absence of the PQ breaking

14



FIG. 1. Axion dark matter density in the aligned QCD axion model in the presence of Planck-suppressed

PQ breaking operators. Here we have fixed the strong CP phase to be|θ̄| = 10−10, and takenf = 5µ =

1 TeV andsinα = 0.1 (0.01) in the left (right) panel. The axions produced by the misalignment mechanism

haveΩah
2 ≃ 0.1 along the solid blue line, andT (0)

osc is larger thanTds on the left side of the magenta dotted

curve. For comparison, the contourΩah
2 ≃ 0.1 in the conventional scenario is shown by the dashed

black line. In the shaded region, where the QCD axion mass is dominated by the contribution from the

Planck-suppressed PQ breaking operators, the PQ mechanismdoes not work because there are multiple

local minima.

terms. We can combine the conditionTds < T
(0)
osc andθ̄ . 10−10 to derive

Fa . 1.6× 109(sin θi sinα)
−0.8

(

g∗(Tds)

80

)− 1

2
(

θ̄

10−10

)0.8

GeV, (53)

where we have used Eq. (19) assumingm2
✟✟PQ

. m2
QCD. Therefore, if the product of the two angles

θi andα is small, the temporal axion trapping takes place for the axion decay constant in the

classical axion window without contradicting the neutron EDM bound. The axion abundance in

this case is given by

Ωah
2 ≃ 1× 10−3

(

g∗(Tds)

80

)−1

θ1.05i

( m
✟✟PQ

10−4 eV

)1.9 ( µ

1TeV

)0.95
(

Fa

1010GeV

)0.95

, (54)

≃ 4× 10−5

(

g∗(Tds)

80

)−1

θ1.05i (sinα)−0.95

(

θ̄

10−10

)0.95

, (55)

15



FIG. 2. Axion dark matter density in the aligned QCD axion model in the presence of Planck-suppressed

PQ breaking operators. The QCD axion givesΩah
2 ≃ 0.1 along the solid blue line, where we have taken

f = 5µ = 1 TeV, sinα = 0.1 andm
✟✟PQ = 2 × 10−5 eV (4 × 10−4 eV) in the left (right) panel. The

brown dotted lines are the contours of|θ̄|. In the shaded region the QCD axion mass is dominated by the

contribution from the Planck-suppressed PQ breaking operators, and the PQ mechanism does not work. We

also show the contourΩah
2 ≃ 0.1 in the conventional scenario by the dashed blue line.

where we have approximatedθi < 1 and neglected anharmonic effects. Interestingly, when ex-

pressed in terms of the strong CP phase in the present vacuum,the axion abundance becomes

independent of the axion decay constant. For instance, ifα is sufficiently small, the axion can be

the dominant component of DM even forFa ∼ 109 GeV. The axion trapping can enhance the final

axion abundance.

Fig.1 shows the constant contour ofΩah
2 = 0.1 on the(Fa, θi) plane in the aligned QCD axion

model, where the strong CP phase induced by Planck-suppressed PQ breaking operators is fixed to

be|θ̄| = 10−10. As noticed above, for fixed̄θ, the axion abundance becomes insensitive toFa when

the axion is trapped in a local minimum even after the temperature drops belowT (0)
osc , i.e. when

Tds < T
(0)
osc . On the other hand, Fig.2 shows the strong CP phase and the axion abundance for

fixedm
✟✟PQ. The anharmonic effects have been included in the analysis.

If the PQ symmetry is restored during or after inflation, there is no axion isocurvature perturba-

tion. If not, the axion acquires quantum fluctuations of order Hinf/2π during inflation, whereHinf
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is the Hubble parameter during inflation. In the present case, the evolution of isocurvature pertur-

bation is slightly involved. If the typical size of the quantum fluctuations is smaller than2πµ and

the initial position of the axion is not close to the top of thepotential, the isocurvature perturbations

are suppressed because the axion starts to oscillate earlier and its oscillation amplitude becomes

smaller and smaller as the Universe expands until the local minimum is destabilized by the QCD

instanton effects. The energy density associated with the isocurvature perturbations is smaller than

or comparable to the contribution (51). On the other hand, if the initial position of the axion is

close to the local maxima, or if the typical size of the quantum fluctuations is larger than2πµ,5 the

axion is trapped in different minima at different spatial points. The axion perturbationsδa(x) be-

come highly non-Gaussian because the axion takes only discrete values when it is trapped in local

minima within the original Gaussian fluctuation. The typical magnitude of the axion perturbations

at super-horizon scales is retained for the moment and stillgiven by∼ Hinf/2π. However, domain

walls are formed soon after the axion gets trapped at different minima. The domain walls will

quickly follow the scaling law, which implies that each Hubble horizon contains one or a few do-

main walls of the same type. As a result, the isocurvature perturbations at super-horizon scales are

considered to be suppressed by the domain-wall dynamics, even though the axion perturbations at

subhorizon scales are of order unity.6 (Here the size of the axion perturbations is measured in units

of µ until the QCD instanton effects turn on.) The domain walls annihilate and disappear when

those local minima are destabilized by the QCD instanton effects, and their contribution to the

final axion density is considered to be smaller than the coherent oscillations (55) owing toµ ≪ Fa

unless the initial misalignment angle is very small. Thus, the axion isocurvature perturbations at

CMB scales can be suppressed by the scaling behavior of the domain wall dynamics.

C. Case ofm2
✟✟PQ

& m2
QCD

Now we consider a case in which the PQ symmetry breaking termsgive the dominant contri-

butions to the QCD axion mass even at zero temperature. The strong CP phase at the minimum

closest tōθ = 0 can satisfy the neutron EDM bound if the enhancement of the decay constant due

to the alignment is sufficiently large, and/or ifα is mildly fine-tuned, as we have seen in Sec.III .

5 If Hinf ≫ µ, (some of) the scalarsΦi may be stabilized at the origin. Even ifHinf . µ, the quantum fluctuations

can be enhanced by the resonant behavior between two axions [47].
6 Similar suppression of the isocurvature perturbations waspointed out in Ref. [48] in the context of spontaneous

baryogenesis due to axion domain walls.
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Question is how the axion is stabilized at the minimum with the smallest̄θ. There are many

(∼ fa/µ) local minima in the axion potential, and therefore, the original idea of the PQ mechanism,

namely, the dynamical cancellation of the strong CP phase, does not work. The axion will be

simply trapped in the nearest minimum from the initial position, and it will stay there until the

tunneling into the adjacent minimum takes place. Unless theinitial position of the axion is set

miraculously close tōθ = 0, the Universe will be dominated by the axion potential energy and

continues to expand exponentially. The cosmological catastrophe, however, can be avoided if

the axion quantum fluctuations are sufficiently large so thatthe true minimum close tōθ = 0 is

realized somewhere in the Hubble horizon.7 This is the case if the PQ symmetry is restored during

or after inflation, or if the quantum fluctuation dominates over the classical value. Then, the true

minimum close tōθ = 0 will be realized in the whole Universe when domain walls annihilate after

the QCD instanton effect turns on. In the following we shall study this scenario, focusing on the

domain wall dynamics.

First, let us suppose that the quantum fluctuations dominateover the classical field value so that

ai ± δa contains the minimum closest tōθ = 0. Later we will briefly discuss the case in which the

PQ symmetry is spontaneously broken after inflation. When the axion starts to oscillate, domain

walls are formed, separating various minima inside the axion field fluctuations. The tension of

domain walls,σ, is given by

σ ≃ 8m
✟✟PQµ

2. (56)

Once formed, domain walls will quickly follow the scaling law. In order to avoid the cosmological

domain wall problem, those domain walls must disappear whenthe QCD instanton effect turns on

and the energy bias between different minima is induced. Thedomain walls disappear when its

energy density becomes comparable to the energy bias, and therefore, domain walls separating

the minima with the smallest energy bias will be the most long-lived. Such domain walls connect

the minimum closest to the (almost) CP conserving one,a0 ≃ αµ, and the adjacent one,a1 ≃
a0 − 2πµ. The strong CP phase ata = a0 is given by

θ̄ ≃ α
µ

Fa
. (57)

In order to solve the strong CP problem without severe fine-tuning ofα, one needs large hierarchy

betweenFa andµ, and we takeµ = 1TeV andFa = 1012 GeV andα = 0.1 as reference values.

7 Here we assume that the minimum closest toθ̄ = 0 is the global minimum. This may not be the case in the

presence of other Planck-suppressed operators, as we have seen in Sec.III A .

18



The smallest energy biasǫmin is then given by

ǫmin ≃ 2πm2
QCD(T )µ

2(π − α). (58)

The domain walls annihilate and disappear when their energydensity becomes comparable to the

energy bias, and the Hubble parameter at that time is given by

Hann ≃ ǫmin

σ

≃ 3π

4

m2
QCD(Tann)

m
✟✟PQ

, (59)

where we have used the fact that the energy density of domain walls in the scaling regime is

approximated byρDW ∼ σH and we have fixedα = 0.1. Form
✟✟PQ & 10 eV, the domain walls an-

nihilate after the temperature dependence of the QCD axion mass disappears, i.e.T < 0.26ΛQCD.

The annihilation temperature in that case is

Tann ≃ 100MeV

(

g∗(Tann)

10

)− 1

4 ( m
✟✟PQ

10 eV

)− 1

2

(

Fa

1012GeV

)−1

, (60)

and otherwise

Tann ≃ 600MeV

[

(

g∗(Tann)

80

)− 1

2 ( m
✟✟PQ

10−4 eV

)−1
(

Fa

1012GeV

)−2
]

1

ℓ+2

. (61)

Therefore, the domain walls typically annihilate during orsoon after the QCD phase transition. In

particular, even ifm
✟✟PQ ≫ mQCD, the decay can take place well before the domain walls start to

dominate the Universe.

The axions are copiously produced when the domain walls annihilate, and their abundance is

Ωa,DWh2 ≃ 2× 10−11

(

g∗(Tann)

10

)− 1

4 ( m
✟✟PQ

10 eV

)
3

2
( µ

1TeV

)2
(

Fa

1012GeV

)

, (62)

for Tann < 0.26ΛQCD and otherwise

Ωa,DWh2 ≃ 2× 10−17

(

g∗(Tann)

80

)− ℓ+1

2ℓ+4 ( m
✟✟PQ

10−4 eV

)
ℓ+3

ℓ+2
( µ

1TeV

)2
(

Fa

1012GeV

)
2

ℓ+2

, (63)

which is much smaller than the observed DM abundance unlessm
✟✟PQ is very heavy. Note however

that we have here focused on the most long-lived domain walls, and there may be much larger

contributions from the other domain walls which have annihilated before. More detailed analysis

of the domain-wall dynamics with different energy bias is necessary, and we will leave it for future

work.
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So far we have considered the case in which the PQ symmetry is already broken during infla-

tion. If PQ symmetry is restored, cosmic strings are formed.In fact, the cosmic string formation

is rather complicated in the aligned axion scenario. This can be understood by noting that each

cosmic string ofΦi has a tension of orderf 2
i , but the cosmic string corresponding to the QCD

axion should have a tension of orderF 2
a . Such cosmic strings in the aligned axion models have

interesting cosmological implications, and we will discuss them in a separate work [49].

V. DISCUSSION AND CONCLUSIONS

The high quality of the PQ symmetry is a natural outcome in thealigned QCD axion model.

In this framework, the problem can be rephrased as a question: why such an alignment is realized

in nature. It may be an accidental symmetry due to the locality in extra dimensions [35, 50].

Alternatively, it may be realized by requiring the axion DM [20]. Indeed, the longevity of DM

is a puzzle, and the QCD axion is a plausible candidate if the decay constant is sufficiently large.

If there are many gauge singlet scalars at the weak scale, they may conspire to generate one very

flat direction to generate the right amount of DM. In non-SUSYframework, there are two natural

scales for those scalars. One is the cut-off scale like the Planck or GUT scale because their masses

are unstable against radiative corrections. On the other hand, once allowing the weak scale to be

realized by the fine-tuning (or anthropic argument), these singlet scalars may also have masses

and VEVs of order the weak scale. This is the case if the quartic coupling between the SM Higgs

field and the singlets are constrained to be non-zero. In thiscase, the aligned QCD axion model

emerges from the axion landscape at the weak scale [28, 29].

Lastly we mention cosmological implications of the presentscenario in which the axion mass

is determined by the PQ symmetry breaking terms. The axion mass can be heavier than the con-

ventional one, in which case the QCD axion can be thought of asaxion-like particles whose mass

and decay constant do not satisfy the relation (18). In extreme cases the axion may be unstable in

a cosmological time scale. Suppose that the axion is coupledto a hidden U(1)H gauge symmetry.

A priori there is no reason to expect that the alignment takesplace for the coupling to the hidden

photon, and its interaction may be written as

L =
αH

8π

a

f
F (H)
µν F̃ (H)µν , (64)

whereαH is the fine-structure constant for the hidden U(1)H gauge interaction. The decay rate of
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the axion into two hidden photons is

τa→γ′γ′ ≃ 1019 sec

(

αH

1/137

)−2
( ma

1 eV

)−3
(

f

10TeV

)2

. (65)

This is intriguingly close to the present age of the Universe. Such decaying dark matter may

improve the tension onσ8 [51], if it constitutes a significant fraction of dark matter. Similarly, the

axion is coupled to ordinary photons, but we assume that the coupling to photons is suppressed by

Fa to avoid various experimental and astrophysical constraints on the axion. This can be realized

if the coupling to photons is induced only by the interactionlike Eq. (14). In the absence of the

decay channel into hidden photons, the axion may mainly decay into photons producing a line

signal in the X-ray spectrum. If its mass is about7 keV andFa ∼ 1015 GeV, such axion may

account for the3.5 keV X-ray line signal [52–54].

In this paper we have studied in detail the quality of PQ symmetry in the aligned QCD axion

scenario and its cosmological implications. We have found that the PQ symmetry is much more

robust against Planck-suppressed higher dimensional operators compared to the conventional ax-

ion model. The axion abundance can be significantly modified if the axion is trapped in one of

the local minima generated by the extra PQ symmetry breakingterms. Generally we expect that a

non-zero strong CP phase is induced by the Planck-suppressed PQ symmetry breaking terms, and

its contribution to the neutron EDM can be close to the current upper bound.

One important difference from the conventional axion modelis that the axion decay constant is

not directly related to the dynamical scale of each PQ scalarin our scenario. In fact, the symmetry

breaking scale is much lower than the axion decay constant. This leads to an interesting and

important effects on the symmetry restoration and the subsequent formation of topological defects.

In the conventional axion model, we expect that the PQ symmetry can be restored if the inflation

scale or the reheating temperature is higher than the axion decay constant. In our case, one should

compare the inflation scale or the reheating temperature with the typical size off , which is much

smaller thanFa in the classical axion window. Therefore, it is more likely that the PQ symmetry

is restored during and/or after inflation compared to the conventional scenario. In this case, the

axion is considered to be copiously produced by the annihilation of the string-wall network during

the QCD phase transition, constraining the axion decay constant asFa = O(1010) GeV [55]. We

note however that the axionic string has a complicated structure made of sub-strings and domain

walls, and their formation and the subsequent evolution arequite non-trivial. We will study this

issue in separate publication [49].
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As pointed out in Ref. [37], our scenario predicts many axions and saxions around the weak

scale. They are coupled to gluons in order for the QCD axion tosolve the strong CP problem. So,

one of them can account for the recently found750 GeV diphoton excess. The aligned QCD axion

therefore naturally connects the750 GeV diphoton excess to the QCD axion, and provides various

implications for the axion DM. Further study is clearly warranted.
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