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Analysis of the strong decay X(5568) → B0
s
π+ with QCD sum rules
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Abstract

In this article, we take the X(5568) to be the scalar diquark-antidiquark type tetraquark
state, study the hadronic coupling constant gXBsπ with the three-point QCD sum rules by car-
rying out the operator product expansion up to the vacuum condensates of dimension-6 and in-
cluding both the connected and disconnected Feynman diagrams, then calculate the partial de-
cay width of the strong decay X(5568) → B0

sπ
+ and obtain the value ΓX = (20.5 ± 8.1) MeV,

which is consistent with the experimental data ΓX =
(

21.9 ± 6.4+5.0

−2.5

)

MeV from the D0 col-
laboration.

PACS number: 12.39.Mk, 12.38.Lg
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1 Introduction

Recently, the D0 collaboration observed a narrow structure, X(5568), in the decay X(5568) →
B0

sπ
± with significance of 5.1σ [1]. The measured mass and width aremX =

(
5567.8± 2.9+0.9

−1.9

)
MeV

and ΓX =
(
21.9± 6.4+5.0

−2.5

)
MeV, respectively. The D0 collaboration fitted the B0

sπ
± systems with

the Breit-Wigner parameters in relative S-wave, the favored quantum numbers are JP = 0+. How-
ever, the quantum numbers JP = 1+ cannot be excluded according to decays X(5568) → B∗

sπ
+ →

B0
sπ

+γ, where the low-energy photon is not detected. There have been several possible assignments,
such as the scalar-diquark-scalar-antidiquark type tetraquark state [2, 3, 4, 5, 6, 7], axialvector-
diquark-axialvector-antidiquark type tetraquark state [3, 8, 9], B(∗)K̄ hadronic molecule state [10],
threshold effect [11].

The calculations based on the QCD sum rules indicate that both the scalar-diquark-scalar-
antidiquark type and axialvector-diquark-axialvector-antidiquark type interpolating currents can
give satisfactory mass mX to reproduce the experimental data [2, 3, 4, 8]. In Ref.[9], Agaev,
Azizi and Sundu choose the axialvector-diquark-axialvector-antidiquark type interpolating current,
calculate the hadronic coupling constant gXBsπ with the light-cone QCD sum rules in conjunction
with the soft-π approximation and other approximations, and obtain the partial decay width for the
process X(5568) → B0

sπ
+. In Ref.[7], Dias et al choose the scalar-diquark-scalar-antidiquark type

interpolating current, calculate the hadronic coupling constant gXBsπ with the three-point QCD
sum rules in the soft-π limit by taking into account only the connected Feynman diagrams in the
leading order approximation, and obtain the partial decay width for the decay X(5568) → B0

sπ
+.

In previous work [2], we choose the scalar-diquark-scalar-antidiquark type interpolating current to
study the mass of the X(5568) with the QCD sum rules. In this article, we extend our previous
work to study the hadronic coupling constant gXBsπ with the three-point QCD sum rules by
carrying out the operator product expansion up to the vacuum condensates of dimension-6 and
including both the connected and disconnected Feynman diagrams, then calculate the partial decay
width of the strong decay X(5568) → B0

sπ
+.

The article is arranged as follows: we derive the QCD sum rule for the hadronic coupling
constant gXBsπ in Sect.2; in Sect.3, we present the numerical results and discussions; and Sect.4
is reserved for our conclusion.

1E-mail: zgwang@aliyun.com.
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2 QCD sum rule for the hadronic coupling constant gXBsπ

We can study the strong decay X(5568) → B0
sπ

+ with the three-point correlation function Π(p, q),

Π(p, q) = i2
∫

d4xd4yeip·xeiq·y〈0|T {JBs
(x)Jπ(y)JX(0)} |0〉 , (1)

where the currents

JBs
(x) = s̄(x)iγ5b(x) ,

Jπ(y) = ū(y)iγ5d(y) ,

JX(0) = ǫijkǫimnuj(0)Cγ5s
k(0)d̄m(0)γ5Cb̄n(0) , (2)

interpolate the mesons Bs, π and X(5568), respectively, the i, j, k, m, n are color indexes, the C
is the charge conjugation matrix. In Ref.[7], the axialvector current is used to interpolate the π
meson.

At the hadron side, we insert a complete set of intermediate hadronic states with the same
quantum numbers as the current operators JBs

(x), Jπ(y) and JX(0) into the three-point correlation
function Π(p, q) and isolate the ground state contributions to obtain the following result,

Π(p, q) =
fπm

2
πfBs

m2
Bs

λXgXBsπ

(mu +md)(mb +ms)

1

(m2
X − p′2)

(
m2

Bs
− p2

)
(m2

π − q2)

+
1

(m2
X − p′2)

(
m2

Bs
− p2

)
∫ ∞

s0π

dt
ρXπ(p

2, t, p′2)

t− q2

+
1

(m2
X − p′2) (m2

π − q2)

∫ ∞

s0Bs

dt
ρXBs

(t, q2, p′2)

t− p2
+ · · · , (3)

where p′ = p+ q, the fBs
, fπ and λX are the decay constants of the mesons Bs, π and X(5568),

respectively, the gXBsπ is the hadronic coupling constant.
In the following, we write down the definitions,

〈0|JX(0)|X(p′)〉 = λX ,

〈0|JBs
(0)|Bs(p)〉 =

fBs
m2

Bs

mb +ms
,

〈0|Jπ(0)|π(q)〉 =
fπm

2
π

mu +md
, (4)

〈Bs(p)π(q)|X(p′)〉 = igXBsπ . (5)

The two unknown functions ρXπ(p
2, t, p′2) and ρXBs

(t, q2, p′2) have complex dependence on
the transitions between the ground state X(5568) and the excited states of the π and Bs mesons,
respectively. We introduce the parameters CXπ and CXBs

to parameterize the net effects,

CXπ =

∫ ∞

s0π

dt
ρXπ(p

2, t, p′2)

t− q2
,

CXBs
=

∫ ∞

s0
Bs

dt
ρXBs

(t, q2, p′2)

t− p2
, (6)

and rewrite the correlation function Π(p, q) into the following form,

Π(p, q) =
fπm

2
πfBs

m2
Bs

λXgXBsπ

(mu +md)(mb +ms)

1

(m2
X − p′2)

(
m2

Bs
− p2

)
(m2

π − q2)

+
CXπ

(m2
X − p′2)

(
m2

Bs
− p2

) +
CXBs

(m2
X − p′2) (m2

π − q2)
+ · · · . (7)
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Figure 1: The Feynman diagrams calculated in this article, where the solid lines and dashed lines
denote the light quarks and heavy quarks, respectively, the waved lines denote the gluons. Other
diagrams obtained by interchanging of the light quark lines are implied.

We set p′2 = p2 and take the double Borel transform with respect to the variable P 2 = −p2

and Q2 = −q2 respectively to obtain the QCD sum rule at the left side (LS),

LS =
fπm

2
πfBs

m2
Bs

λXgXBsπ

(mu +md)(mb +ms)

1

m2
X −m2

Bs

{
exp

(
−
m2

Bs

M2
1

)
− exp

(
−m2

X

M2
1

)}
exp

(
−m2

π

M2
2

)

+CXBs
exp

(
−m2

X

M2
1

)
exp

(
−m2

π

M2
2

)
. (8)

In calculations, we neglect the dependencies of the CXπ and CXBs
on the variables p2, p′2, q2

therefore the dependencies of the CXπ and CXBs
on the variables M2

1 and M2
2 , take the CXπ and

CXBs
as free parameters, and choose the suitable values to eliminate the contaminations so as to

obtain the stable sum rules with the variations of the Borel parameters [12, 13].
Now we carry out the operator product expansion at the large Euclidean space-time region

−p2 → ∞ and −q2 → ∞, take into account the vacuum condensates up to dimension 6 and
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neglect the contribution of the three-gluon condensate, as the three-gluon condensate is the vacuum

expectation of the operator of the order O(α
3/2
s ). In other words, we calculate the Feynman

diagrams shown in Fig.1. For example, the first diagram is calculated in the following ways,

Π(p, q) = − 6

(2π)8

∫
d4kd4l

Tr {γ5(6k +ms)γ5(6k+ 6p+mb)γ5(6 l+ 6q)γ5 6 l}
k2 [(k + p)2 −m2

b ]
2
(l + q)2l2

= − 6

(2π)8
(−2πi)2

2πi

∫ ∞

m2

b

ds
1

s− p2

∫
d4k δ

[
k2
]
δ
[
(k + p)2 −m2

b

] (−2πi)2

2πi

∫ ∞

0

du
1

u− q2
∫

d4l δ
[
l2
]
δ
[
(l + q)2

]
Tr {γ5(6k +ms)γ5(6k+ 6p+mb)γ5(6 l+ 6q)γ5 6 l}

=
3

128π4

∫ ∞

m2

b

ds
1

s− p2
(s−m2

b)
2

s

∫ ∞

0

du
u

u− q2

+
3msmb

64π4

∫ ∞

m2

b

ds
1

s− p2
s−m2

b

s

∫ ∞

0

du
u

u− q2
. (9)

The operator product expansion converges for large−p2 and −q2, it is odd to take the limit q2 → 0.
Then we set p′2 = p2, take the quark-hadron duality below the continuum thresholds, and

perform the double Borel transform with respect to the variables P 2 = −p2 and Q2 = −q2

respectively to obtain the perturbative term,

BM2

1
,M2

2
Π(p, q) =

3

128π2

∫ s0

m2

b

ds

∫ u0

0

du
(s−m2

b)
2

s
u exp

(
− s

M2
1

− u

M2
2

)

+
3msmb

64π2

∫ s0

m2

b

ds

∫ u0

0

du
s−m2

b

s
u exp

(
− s

M2
1

− u

M2
2

)
, (10)

where the s0 and u0 are the continuum threshold parameters for the X(5568) and π, respectively.
Other Feynman diagrams are calculated in analogous ways, finally we obtain the QCD sum

rules at the right side (RS),

RS =
3

128π2

∫ s0

m2

b

ds

∫ u0

0

du
(s−m2

b)
2

s
u exp

(
− s

M2
1

− u

M2
2

)

+
3msmb

64π2

∫ s0

m2

b

ds

∫ u0

0

du
s−m2

b

s
u exp

(
− s

M2
1

− u

M2
2

)

+
1

192π2
〈αsGG

π
〉
∫ s0

m2

b

ds

∫ u0

0

du

(
2− m2

b

s

)
exp

(
− s

M2
1

− u

M2
2

)

−mb〈s̄s〉
16π2

∫ u0

0

duu exp

(
−m2

b

M2
1

− u

M2
2

)

−ms〈s̄s〉
32π2

(
1 +

m2
b

M2
1

)∫ u0

0

duu exp

(
−m2

b

M2
1

− u

M2
2

)

+
1

192π2
〈αsGG

π
〉
∫ u0

0

duu exp

(
−m2

b

M2
1

− u

M2
2

)

+
1

128π2
〈αsGG

π
〉
∫ s0

m2

b

ds
(s−m2

b)
2

s
exp

(
− s

M2
1

)

−mb〈s̄gsσGs〉
32π2

∫ u0

0

du

(
1 +

u

M2
1

− um2
b

2M4
1

− umsm
3
b

6M6
1

)
exp

(
−m2

b

M2
1

− u

M2
2

)
. (11)

The terms 〈q̄q〉〈s̄s〉 disappear after performing the double Borel transform, the last Feynman
diagram in Fig.1 have no contribution.
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In Refs.[13, 14], the width of the Zc(4200) is studied with the three-point QCD sum rules by
including both the connected and disconnected Feynman diagrams, which is contrary to Ref.[15],
where only the connected Feynman diagrams are taken into account to study the width of the
Zc(3900). In this article, the contributions come from the connected diagrams can be written as
RSc,

RSc =
1

192π2
〈αsGG

π
〉
∫ s0

m2

b

ds

∫ u0

0

du

(
2− m2

b

s

)
exp

(
− s

M2
1

− u

M2
2

)

−mb〈s̄gsσGs〉
32π2

∫ u0

0

du exp

(
−m2

b

M2
1

− u

M2
2

)
, (12)

which is too small to account for the experimental data [1].
Finally, we obtain the QCD sum rule,

LS = RS . (13)

There appear some energy scale dependence at the hadron side (or LS) of the QCD sum rule
according to the factors mu +md and mb +ms, we can eliminate the energy scale dependence by
using the currents ĴBs

(x) and Ĵπ(y),

ĴBs
(x) = (mb +ms) s̄(x)iγ5b(x) ,

Ĵπ(y) = (mu +md) ū(y)iγ5d(y) , (14)

then

〈0|ĴBs
(0)|Bs(p)〉 = fBs

m2
Bs

,

〈0|Ĵπ(0)|π(q)〉 = fπm
2
π , (15)

and

CXπ → CXπ (mb +ms) (mu +md) ,

CXBs
→ CXBs

(mb +ms) (mu +md) , (16)

the resulting QCD sum rule at the right side also acquires a factor (mb +ms) (mu +md), a equiv-
alent QCD sum rule is obtained, the predicted hadronic coupling constant gXBsπ is not changed.

We can also study the strong decay X(5568) → B0
sπ

+ with the three-point correlation function
Πµν(p, q),

Πµν(p, q) = i2
∫

d4xd4yeip·xeiq·y〈0|T
{
ηs̄bµ (x)ηūdν (y)JX(0)

}
|0〉 , (17)

where the currents

ηs̄bµ (x) = s̄(x)γµγ5b(x) ,

ηūdν (y) = ū(y)γνγ5d(y) , (18)

interpolate the mesons Bs and π, respectively. At the hadron side, we insert a complete set of
intermediate hadronic states with the same quantum numbers as the current operators ηs̄bµ (x) and

ηūdν (y) into the three-point correlation function Πµν(p, q) and isolate the ground state contributions

5



to obtain the following result,

Πµν(p, q) =
fBs

fπλXgXBsπ

(m2
X − p′2)

(
m2

Bs
− p2

)
(m2

π − q2)
(−pµqν)

+
fBs1

mBs1
fπλXgXBs1π

(m2
X − p′2)

(
m2

Bs1
− p2

)
(m2

π − q2)

(
−qµqν +

p · q
p2

pµqν

)

+
fBs1

mBs1
fa1

ma1
λXgXBs1a1

(m2
X − p′2)

(
m2

Bs1
− p2

) (
m2

a1
− q2

)
(
gµν − 1

p2
pµpν − 1

q2
qµqν +

p · q
p2q2

pµqν

)
+ · · · ,

(19)

where p′ = p+ q, the fBs1
, fBs

, fa1
and fπ are the decay constants of the mesons Bs1(5830), Bs,

a1(1260) and π, respectively, the gXBs1π and gXBs1a1
are the hadronic coupling constants.

In the following, we write down the definitions,

〈0|ηs̄bµ (0)|Bs(p)〉 = ifBs
pµ ,

〈0|ηūdν (0)|π(q)〉 = ifπqν ,

〈0|ηs̄bµ (0)|Bs1(p)〉 = fBs1
mBs1

εµ ,

〈0|ηūdν (0)|a1(q)〉 = fa1
ma1

ǫν , (20)

〈Bs1(p)π(q)|X(p′)〉 = ε∗ · q gXBs1π ,

〈Bs1(p)a1(q)|X(p′)〉 = iε∗ · ǫ∗ gXBs1a1
, (21)

where the εµ and ǫν are polarization vectors of the axialvector mesons Bs1(5830) and a1(1260), re-
spectively. From the valuesmX =

(
5567.8± 2.9+0.9

−1.9

)
MeV [1],mBs1

= (5828.40± 0.04± 0.41) MeV,
mBs

= (5366.7± 0.4) MeV [16], we can obtainmBs1
−mBs

≈ 462MeV andmBs1
−mX ≈ 261MeV.

If we take the interpolating currents ηs̄bµ (x) and ηūdν (y), there are contaminations from the axialvec-
tor mesons Bs1(5830) and a1(1260). We should multiply both sides of Eq.(19) by pµqν to eliminate
the contaminations of the axialvector mesons Bs1(5830) and a1(1260),

pµqνΠµν(p, q) =
fBs

fπλXgXBsπ

(m2
X − p′2)

(
m2

Bs
− p2

)
(m2

π − q2)

(
−p2q2

)
+ · · · , (22)

which corresponds to taking the pseudoscalar currents ĴBs
(x) and Ĵπ(y) according to the following

identities,

∂µηs̄bµ (x) = (mb +ms) s̄(x)iγ5b(x) = ĴBs
(x) ,

∂νηūdν (y) = (mu +md) ū(y)iγ5d(y) = Ĵπ(y) . (23)

The axialvector currents ηs̄bµ (x) and ηūdν (y) can also be chosen to study the strong decayX(5568) →
B0

sπ
+.
We also expect to study the strong decay X(5568) → B0

sπ
+ with the light-cone QCD sum rules

using the two-point correlation function Π(p, q),

Π(p, q) = i

∫
d4xeip·x〈π(q)|T {JBs

(x)JX(0)} |0〉 , (24)

where the 〈π(q)| is an external π state.
At the QCD side, we obtain the following result after performing the wick’s contraction,

Π(p, q) = i

∫
d4xeip·x〈π(q)|ǫijkǫimnuT

j (0)Cγ5S
kl
s (−x)iγ5S

ln
b (x)γ5Cd̄Tm(0)|0〉 , (25)

where the Skl
s (−x) and Sln

b (x) are the full s and b quark propagators, respectively. The u and d̄
quarks stay at the same point x = 0, the light-cone distribution amplitudes of the π meson are
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almost useless, the integrals over the π meson’s light-cone distribution amplitudes reduce to overall
normalization factors. In the light-cone QCD sum rules, such a situation is possible only in the
soft pion limit q → 0, and the light-cone expansion reduces to the short-distance expansion [17].
In Ref.[9], Agaev, Azizi and Sundu take the soft pion limit q → 0, and choose the Cγµ ⊗ γµC type
current to interpolate the X(5568), and use the light-cone QCD sum rules to study the strong
decay X(5568) → B0

sπ
+. The light-cone QCD sum rules are reasonable only in the soft pion

approximation.

3 Numerical results and discussions

The hadronic parameters are taken as mX = 5.5678GeV [1], λX = 6.7× 10−3GeV5,
√
s0 = (6.1±

0.1)GeV [2], mπ = 0.13957GeV, mBs
= 5.3667GeV [16], fπ = 0.130GeV,

√
u0 = (0.85±0.05)GeV

[18], fBs
= 0.231GeV [19], fπm

2
π/(mu + md) = −2〈q̄q〉/fπ from the Gell-Mann-Oakes-Renner

relation, and M2
2 = (0.8− 1.2)GeV2 from the QCD sum rules [18]. At the QCD side, the vacuum

condensates are taken to be standard values, 〈q̄q〉 = −(0.24± 0.01GeV)3, 〈s̄s〉 = (0.8 ± 0.1)〈q̄q〉,
〈q̄gsσGq〉 = m2

0〈q̄q〉, 〈s̄gsσGs〉 = m2
0〈s̄s〉, m2

0 = (0.8 ± 0.1)GeV2 and 〈αsGG
π 〉 = (0.33GeV)4

at the energy scale µ = 1GeV [20, 21]. The quark condensates and mixed quark condensates

evolve with the renormalization group equation, 〈q̄q〉(µ) = 〈q̄q〉(Q)
[
αs(Q)
αs(µ)

] 4

9

and 〈q̄gsσGq〉(µ) =

〈q̄gsσGq〉(Q)
[
αs(Q)
αs(µ)

] 2

27

, where q = u, d, s.

In the article, we take the MS masses mb(mb) = (4.18 ± 0.03)GeV and ms(µ = 2GeV) =
(0.095 ± 0.005)GeV from the Particle Data Group [16], and take into account the energy-scale
dependence of the MS masses from the renormalization group equation,

mb(µ) = mb(mb)

[
αs(µ)

αs(mb)

] 12

23

,

ms(µ) = ms(2GeV)

[
αs(µ)

αs(2GeV)

] 4

9

,

αs(µ) =
1

b0t

[
1− b1

b20

log t

t
+

b21(log
2 t− log t− 1) + b0b2

b40t
2

]
, (26)

where t = log µ2

Λ2 , b0 =
33−2nf

12π , b1 =
153−19nf

24π2 , b2 =
2857− 5033

9
nf+

325

27
n2

f

128π3 , Λ = 213MeV, 296MeV
and 339MeV for the flavors nf = 5, 4 and 3, respectively [16]. Furthermore, we set the u and d
quark masses to be zero. In the heavy quark limit, the b-quark can be taken as a static potential
well, and unchanged in the decay X(5568) → B0

sπ
+. In this article, we take the typical energy

scale µ = mb.
The unknown parameter is chosen as CXBs

= −0.00059GeV8. There appears a platform in the
region M2

1 = (4.5−5.5)GeV2. Now we take into account the uncertainties of the input parameters
and obtain the value of the hadronic coupling constant gXBsπ, which is shown explicitly in Fig.2,

gXBsπ = (10.6± 2.1) GeV . (27)

Now we obtain the partial decay width,

Γ
(
X(5568) → B0

sπ
+
)

=
g2XBsπ

16πM3
X

√
[m2

X − (mBs
+mπ)2] [m2

X − (mBs
−mπ)2]

= (20.5± 8.1)MeV . (28)

The decays X(5568) → B+K̄0 are kinematically forbidden, so the width ΓX can be saturated
by the partial decay width Γ

(
X(5568) → B0

sπ
+
)
, which is consistent with the experimental value

7
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Figure 2: The hadronic coupling constant gXBsπ with variation of the Borel parameter M2
1 .

ΓX = 21.9 ± 6.4+5.0
−2.5MeV from the D0 collaboration [1]. The present work favors assigning the

X(5568) to be the scalar diquark-antidiquark type tetraquark state.
In the following, we perform Fierz re-arrangement to the current JX both in the color and

Dirac-spinor spaces to obtain the result,

JX =
1

4

{
−b̄s d̄u+ b̄iγ5s d̄iγ5u− b̄γµs d̄γµu− b̄γµγ5s d̄γµγ5u+

1

2
b̄σµνs d̄σ

µνu

+b̄u d̄s− b̄iγ5u d̄iγ5s+ b̄γµu d̄γµc+ b̄γµγ5u d̄γµγ5s−
1

2
b̄σµνu d̄σ

µνs

}
, (29)

the components b̄iγ5s d̄iγ5u and b̄γµγ5s d̄γµγ5u couple potentially to the meson pair Bsπ
+, while

the components b̄iγ5u d̄iγ5s and b̄γµγ5u d̄γµγ5s couple potentially to the meson pair B+K̄0. The
strong decays

X(5568) → Bsπ
+ , (30)

are Okubo-Zweig-Iizuka super-allowed, while the decays

X(5568) → B+K̄0 , (31)

are kinematically forbidden, which is consistent with the observation of the D0 collaboration [1].
In previous works, we observed that the Cγ5 ⊗ γ5C type hidden-charm tetraquark states have
slight smaller masses than that of the Cγµ ⊗ γµC type hidden-charm tetraquark states, the
predicted lowest masses are mCγ5⊗γ5C =

(
3.82+0.08

−0.08

)
GeV and mCγµ⊗γµC =

(
3.85+0.15

−0.09

)
GeV

[22]. We expect that a Cγµ ⊗ γµC type current can also reproduce the experimental value
mX =

(
5567.8± 2.9+0.9

−1.9

)
MeV approximately [3, 8].

Now we construct the current ηX and perform Fierz re-arrangement both in the color and
Dirac-spinor spaces to obtain the following result,

ηX = ǫijkǫimnujCγµs
kd̄mγµCb̄n ,

= b̄s d̄u+ b̄iγ5s d̄iγ5u+
1

2
b̄γµs d̄γ

µu− 1

2
b̄γµγ5s d̄γ

µγ5u

+b̄u d̄s+ b̄iγ5u d̄iγ5s+
1

2
b̄γµu d̄γ

µs− 1

2
b̄γµγ5u d̄γ

µγ5s , (32)

the components b̄iγ5s d̄iγ5u and b̄γµγ5s d̄γµγ5u couple potentially to the meson pair Bsπ
+, while

the components b̄iγ5u d̄iγ5s and b̄γµγ5u d̄γµγ5s couple potentially to the meson pairB+K̄0, which is

8



analogous to the current JX . It is also sensible to assign the X(5568) to be an axialvector-diquark-
axialvector-antidiquark type tetraquark state or theX(5568) has some axialvector-diquark-axialvector-
antidiquark type tetraquark components.

The C ⊗ C type current J̃X and Cγµγ5 ⊗ γ5γ
µC type current η̃X are expected to couple

potentially to the scalar tetraquark with much larger masses,

J̃X = ǫijkǫimnujCskd̄mCb̄n ,

η̃X = ǫijkǫimnujCγµγ5s
kd̄mγ5γ

µCb̄n , (33)

as the favored configurations are the scalar diquarks (Cγ5-type) and axialvector diquarks (Cγµ-
type) from the QCD sum rules [23, 24].

4 Conclusion

In this article, we take the X(5568) to be the scalar diquark-antidiquark type tetraquark state,
study the hadronic coupling constant gXBsπ with the three-point QCD sum rules, then calcu-
late the partial decay width of the strong decay X(5568) → B0

sπ
+ and obtain the value ΓX =

(20.5± 8.1) MeV, which is consistent with the experimental data ΓX =
(
21.9± 6.4+5.0

−2.5

)
MeV from

the D0 collaboration. In calculation, we carry out the operator product expansion up to the vacuum
condensates of dimension-6, and take into account both the connected and disconnected Feynman
diagrams. The present prediction favors assigning the X(5568) to be the diquark-antidiquark type
tetraquark state with JP = 0+. However, the quantum numbers JP = 1+ cannot be excluded
according to decays X(5568) → B∗

sπ
+ → B0

sπ
+γ, where the low-energy photon is not detected.
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