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It has been shown that gravitational waves propagate through ideal fluids without experiencing
any dispersion or dissipation. However, if the medium has a non-zero shear viscosity η , gravitational
waves will be dissipated at a rate proportional to Gη. We constrain dark matter and dark energy
models with non-zero shear viscosity by calculating the dissipation of gravitational waves from
GW150914 which propagate over a distance of 410 Mpc through the dissipative fluid and comparing
the data with the theoretical prediction. This provides a proof-of-principle demonstration of the
fact that future observations gravitational waves at LIGO have the potential of better constraining
the viscosity of dark matter and dark energy.

The discovery of Gravitational Waves (GW) by the
LIGO collaboration [1] opens a new window for astron-
omy and cosmology. The source of GW150914 could
also be the source of the 1 sec x-ray burst observed by
Fermi GBM [2] with a 0.4 sec delay w.r.t the GW event
and with sky localization consistent with the LIGO ob-
servation. These measurements of gravitational waves
and their possible electromagnetic counterparts can tell
us about the nature of the astrophysical sources [3–13],
test general relativity [14–19] and local Lorentz invari-
ance [20]. Future observations of stochastic gravitational
waves can tell us about the energy scales of the first order
phase transitions in the early universe [21, 22]. In this
paper we study the effect of the medium on the propaga-
tion of gravitational waves with the aim of deducing the
properties of dark matter and dark energy by studying
the observed waveforms. It was shown by Ehlers et. al
[23, 24] in full generality that gravitational waves propa-
gating through ideal fluids do not suffer any dispersion or
dissipation. Prasanna [25] generalized this treatment to
the case of non-ideal fluids and showed that only the co-
efficient of shear viscosity affects the gravitational waves
as they can be attenuated by the medium. This general
conclusion agrees with the earlier derivations of atten-
uation of gravitational waves due to non-ideal fluid in
a Friedman-Robertson-Walker (FRW) background [26–
31] where it was shown that the attenuation length is
(16πGη)−1 (in this context, see also [32]). Shear and bulk
viscosity have been invoked to avoid initial singularity at
the Big Bang [33–35], and as dark energy [36–38]. Dark
matter with self interaction i.e non-zero shear and bulk
viscosity has been used [39–43] for explaining the lack of
density spikes in the cores [44] or substructures [45], or
the paucity of dwarf satellite galaxies [46] which are seen
in simulations with collision-less ideal fluid dark matter.

In this paper we study this effect in the context of the
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recent observations of Gravitational Waves. We consider
the possibility that the analysis of the GW150914 could
allow us to put observational constraint on the shear vis-
cosity. We find that it is in-principle possible to constrain
the shear viscosity of the cosmic fluid using GW obser-
vations and that the corresponding viscosity values lie in
an interesting range which may be relevant to the dissi-
pative dark matter and dark energy models. It turns out
that the dissipative dark matter in galaxy clusters such
as Abell 3827 [47] has the shear viscosity in the range
constrained from the GW150914 analysis. Thus, in fu-
ture, gravitational waves could possibly provide a good
observable handle for the measurement of the viscosity
of cosmological fluids. We begin by deriving the wave
equation for gravitational waves in a FRW universe filled
with a viscous fluid.

Gravitational wave propagation through a viscous fluid:
The energy momentum tensor of a non-ideal fluid can be
written in the general form

Tµν ≡ (ρ+ p)uµuν + pgµν − 2ησµν − ξθ∆µν (1)

where η is the coefficient of shear-viscosity , ξ is the coef-
ficient of bulk viscosity , σµν is the shear, θ is the volume
expansion of the fluid and ∆µν = gµν + uµuν is the pro-
jection operator to project to subspace orthogonal to the
fluid four velocity uµ.

Observations of the cosmic microwave background
anisotropy [48] shows that the universe can be described
by a perturbed Friedmann-Robertson-Walker (FRW)
metric. In a FRW universe with a non-ideal fluid, the
isotropy of the background ensures that the scalar and
tensor perturbations evolve independently at linear order
in perturbation theory [49]. The tensor perturbations at
linear order can however probe the shear viscosity as we
now show. We thus consider the background FRW metric
with only tensor perturbations

ds2 = −dt2 + a2(t) [δij + hij ] dx
idxj , (2)

where the tensor perturbations are transverse and trace-
less i.e. ∂ihij = hii = 0. We work with the units
~ = c = 1.
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The total four velocity is uµ = u
(0)
µ + δuµ, normalizing

the four velocity i.e., gµνuµuν = −1, and retaining the
first order terms in the metric and velocity perturbations
gives us the relation

δuµ = −1

2
gµνδgλν u

λ (3)

In the local rest frame of the fluid where uµ ≡ δµ0 =

(1,~0), for the perturbed FRW metric Eq (2), the velocity
perturbations δuµ vanish. Also, for the perturbed FRW
metric (2) and in the local rest frame of the fluid, the
bulk expansion rate θ = ∇µuµ and ij−component of the
shear viscosity σµν ≡ 1

2

[
u(µ;ν) + u̇(µuν)

]
− 1

3θ∆µν , to the
leading order in the perturbation hij , turns out to be

θ = 3H , (4)

σij =
1

2
a2ḣij , (5)

respectively, where H = ȧ/a and dot denotes derivative
w.r.t cosmic time t (see, [29] for a detailed derivation).

Now by solving the Einstein’s equations Gµν =
8πGTµν to the linear order in hij we obtain the wave
equation for the gravitational waves in a shear-viscous
fluid. Notice that the bulk viscosity only couples to
scalar perturbations. The zeroth order equation for the
ij−component of Einstein’s equation Gij = 8πGTij gives
us

− 2ä

a
−H2 = 8πG(p− 3ξH) . (6)

where we have used eq. (4). The first order equation
δGij = 8πGδTij gives us

ḧij + (3H + 16πGη)ḣij −
[

4ä

a
+ 2H2

+16πG(p− 3ξH) +
∇2

a2

]
hij = 0 , (7)

where eq. (5) has been used. Multiplying (6) by 2hij on
both sides and then subtracting it from (7), we obtain
the wave equation for gravitational waves in a viscous
fluid

ḧij + (3H + 16πGη)ḣij −
∇2

a2
hij = 0 . (8)

Going to the Fourier space and redefining the variable
hij as µij/a, the wave equation (8) takes the form

µ̈ij + (H + 16πGη)µ̇ij +

(
k2

a2
− ä

a
−H2

−16πGηH
)
µij = 0. (9)

In the conformal time τ defined through dt = a dτ , the
wave equation for µij takes the form

µ′′ij + 16πGη aµ′ij +

(
k2 − a′′

a

−16πGη aH
)
µij = 0. (10)

which on the subhorizon scales k2 � a′′

a reduces to

µ′′ij + 16πGη aµ′ij + k2µij = 0. (11)

The amplitude of the radial component of the wave
A×,+ = rµij of the two polarization modes × and +
satisfies the following one dimensional wave equation at
large distances from the source

Ä+ β a Ȧ+ k2A = 0 , (12)

where β ≡ 16πGη. Let the solution of (12) be

A(τ, ω) = Ã(ω) eikr−
∫
iωdτ , (13)

and substituting it in the equation (12) gives us the dis-
persion relation

− ω2 − iβ aω + k2 = 0 . (14)

Writing k in terms of real and imaginary parts k =
kR + ikI , the above dispersion relation gives us (using
the weak damping approximation β � ω, and retaining
only leading order terms)

kR = ω , kI =
β a

2
. (15)

The real part of k is ω so that there is no dispersion at
this order but the presence of imaginary part of k causes
attenuation of the wave. Substituting for k = kR + ikI
into eq. (12), the solution becomes

A(τ, ω) = Ã(ω) eikRr−
∫
iωdτ × e−kIr , (16)

therefore the strain hij measured at the detector L = a r,
in the cosmic time t, will be

hij =
Ã(ω(t))

L0
eikRr−

∫
iωpdt × L0 e

− β2L

L
. (17)

where ωp = ω
a is the physical angular frequency and L0

represents the source distance for zero shear viscosity.
The attenuation of the GW due to shear viscosity af-
ter traveling over a distance of L = a r is by the factor

L0 e
− β2L/L. The attenuation length is k−1

I = η−1M2
Pl.

Since the strain measured depends upon the masses of
the binary black holes through the combination called

chirp mass Mc = (m1m2)3/5

(m1+m2)1/5
which is determined from

the observed GW frequency as a function of time [50]

ḟgw =
96π8/3

5

(
GMc

c3

)5/3

f11/3
gw . (18)

We note that it is expected that the effect of viscosity
will be degenerate with the effect of a number of other
parameters such as source distance, orientation of the
plane of the binary BH system etc. In this work, we
aim to illustrate how constraints on viscosity could be
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obtained, thus, we have fixed the values of these param-
eters and studied only the constraints on viscosity and
source distance. It is expected that in future, with the
help of the upcoming virgo detector (and other GW ob-
servatories), improved triangulation methods could help
constrain the source distance a lot better and this could
be used to improve the limits on shear viscosity. We fit
the two remaining variables L and η in our model to the
strain data as measured in [1].

For dark matter and dark energy, the magnitude of the
shear viscosity stress can be given by

T ijviscous '
ηcrit

H−1
0

' ρcrit , (19)

which defines ηcrit = ρcritH
−1
0 = 3.21 × 10−5(GeV)3 =

4.38 × 108Pa sec. Writing the actual η = Qηcrit, we can
put constraints on the dimensionless numberQ using GW
observations. Using ρcrit = 3H2

0M
2
Pl, the attenuation of

GW after traveling over a distance L is given by the factor

L0 e
− β2L

L
=
L0 e

−3QLH0

L
(20)

Since L ∼ O(0.1)H−1
0 which implies 3QLH0 ∼ O(0.1)×

3Q. Thus, assuming L = L0 and the viscosity of the

cosmic fluid Q ∼ O(1) amounts to, L0e
−3QLH0

L ∼ 0.75,
25% attenuation of GW amplitude, see fig.(1). We will
now explain how one could use the data publicly released
by the LIGO collaboration and use the attenuation factor
obtained in the above equation to constrain the cosmic
viscosity.

Data analysis: Eq (17) implies that if the intervening
fluid has a non-zero viscosity, the amplitude of observed
GWs should be lower (see fig (1) ) so that we can use
the strain observations to put limits on Q. In order to
proceed, we need to find the change in a convenient mea-
sure of goodness of fit as we change the viscosity of the
cosmic fluid. The observed strain will be different from
the theoretically predicted strain due to the presence of
noise

Aobs(t) = Ath(t) + n(t) . (21)

We use the data obtained by the LIGO Hanford de-
tector for the gravitational-wave event GW150914 on
September 14, 2015 at 09:50:45 UTC provided by The
LIGO Open Science Center [52]. The released data pro-
vides the strain observations for a time interval T = 0.21
secs and within this time, it has been sampled 3340 times
which implies a sampling rate of 16384 per sec and the
corresponding Nyquist critical frequency of 8192 Hz. The
sub-interval size in the frequency domain is 4.7628 Hz,
which is also the minimum frequency, the maximum fre-
quency being the Nyquist frequency. All the released
time series data has been filtered with a 35 − 350 Hz
bandpass filter to suppress large fluctuations outside the
detector’s most sensitive frequency band, we thus restrict
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FIG. 1: The effect of viscosity on the GW strain time series:
The red curve is the time series of strain of the observed
GW data and the blue (dashed) curve is the theoretical strain
when Q = 0. When Q = 1, green curve, the theoretical strain
gets attenuated. All the time series are band-limited to the
frequency range 30 − 350Hz and the data is from the LIGO
Hanford detector.

ourselves to this range of frequencies for the rest of the
analysis.

If the joint distribution of the noise values at different
values of time is a Gaussian, then, given a set of theoreti-
cal strains A(tj) the Likelihood function (the probability
of data, given the theory) will be given by

L =
1

((2π)N detCjj′)1/2
exp

{
− 1

2

∑
jj′

ξj C
−1
jj′ ξj′

}
,

(22)
where ξj = Ath(tj) − Aobs(tj) is the difference between
theoretical signal and the observed signal while Cjj′ is
the noise covariance matrix. The noise could in general
be non-stationary and non-Gaussian due to the presence
of glitches (i.e. noise transients, see e.g. [51]) but here
we proceed assuming Gaussianity. For stationary noise,
the noise covariance matrix will be diagonal when we
transform to the frequency domain:

〈ñ(f)ñ∗(f ′)〉 =
1

2
δ(f − f ′)Sn(f) , (23)

where Sn(f) is the Power Spectral Density (PSD) of the
noise background of the detector. Thus, in frequency
domain, the Likelihood function will be given by an ex-
pression similar to Eq(23) except for the fact that the
matrix C will be diagonal and can be readily inverted.

The LIGO Open Science Center [52] has also released
the average measured strain-equivalent noise, or sensi-
tivity, of the Advanced LIGO detectors during the time
analyzed (i.e. Sept 12 - Oct 20, 2015). The frequency
range 0 to 8192 Hz (the Nyquist frequency) has been di-
vided into 65536 sub-intervals each of size ∆f = 0.125 Hz
and the Amplitude Spectral Density (ASD) i.e.

√
Sn(f)

is provided for each of the intervals. From ASD, we can
readily obtain Sn(f), the PSD. The step size in frequency
domain for observed strain and the theoretical strain is
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4.7628 Hz while the step size in frequency domain for
ASD is 0.125 Hz. We integrated the PSD∫ f1+∆f1

f1

Sn(f) df = σ2
n(f1) , (24)

to obtain the noise variance at each of the frequencies
at which we have the theoretical and observed strains.
These are the non-zero elements of the noise covariance
matrix which is diagonal in frequency domain. The typi-
cal values of the measured strain are of the order of 10−21

while typical values of
√
Sn(f) in the frequency range 20-

450 Hz are of the order of 10−23.
However, it turns out that the most important source

of error is not the detector noise, but the statistical error
due to a finite time of observation. Working in frequency
domain, for the 92 frequency values of interest, the root
mean square fluctuation in the observed signal can be es-
timated by the sample mean of

√
|Aobs(f)|2. Using this

as the expected number of events in the definition of χ2

statistic, one can find the χ2 per degree of freedom due
to the statistical error. Fig.(2) shows the contour plots
of constant value of this χ2 per degree of freedom as the
parameters Q and the distance to the source L are varied.
The black and red contours are the boundaries of regions
within 1-σ and 2-σ, respectively, of the parameter values
which minimize the χ2. Note that for Q = 0 and L = 410
Mpc, the value of χ2 is 22.15 for the data obtained Han-
ford observatory and 28.41 for the data obtained from
Livingston observatory. In fig (2), the contours corre-
sponding to 1σ CL (inner, black contour) are arrived at
by finding the combination of L and Q which increases
the χ2 by 2.3 while those at 2σ CL (outer, red contour)
are arrived at by finding the combination of L and Q
which increases the χ2 by 6.18.

For every choice of source distance, we can find a value
of viscosity. Thus, an independent knowledge of the dis-
tance of the source could help in determining the lim-
its on viscosity better. From fig.(2), it is clear that the
source distance estimated by the LIGO collaboration cor-
responds to a nearly vanishing value of viscosity but one
can find the upper bound on the distance to the source.
It can be inferred from the fig.(2) that shear viscosity of
the cosmological fluid in the path of GW150914 has the
upper bound η . 5.2 ηcrit ≈ 2.3×109 Pa sec at 1 σ CL,
if the luminosity distance of the source is fixed to the
value L = (410−180)Mpc = 230Mpc which is the lower
limit on the distance of the source by the observation
L = 410+160

−180Mpc [1]. If the GW events in future can be
located by independent observations of their electromag-
netic signals and the distance fixed to say 10% accuracy
then, as shown in fig.(2), the value of Q can be much
more restricted compared to the present constraints.

Self interacting dark matter in galaxies and clusters:
Self interaction of dark matter has been introduced in
models of dark matter [39–43] for solving the Core-Cusp
problem of galaxies [44], the problem of galactic sub-
structure [45] and/or the Missing-Satellites problem [46].
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FIG. 2: The constraints on Q and L at 1σ CL (inner, black
contour) and 2σ CL (outer, red contour) for the data ob-
tained from Hanford (upper panel) and Livingston (lower
panel) observatories. The shaded region between the two ver-
tical lines is the source distance with an uncertainty of 10%
around the estimated central value of L = 410 Mpc, the cor-
responding range of values of Q can be easily seen.

The self interaction cross section can be related to the
shear viscosity of DM by the relation η = (1/3)mnv l
where the mean free path of DM particles l can be re-
lated to its number density n and self interaction cross
section σ as l = 1/(nσ) and the shear viscosity of DM
is η = (1/3)(vm/σ). For self-interacting dark mat-
ter in galaxies the mean free path l ∼ 100 kpc, ρ =
mn ∼ 0.4 Gev/cm3 and v = 220 km/sec and the typi-
cal value of the shear viscosity of dissipative dark matter
is η ∼ 107 Pa sec.

In a recent study of the galaxy cluster Abell 3827 [47],
four elliptical galaxies are observed to fall towards the
center of the cluster and there is an offset between the
dark matter (inferred from lensing) and the visible matter
which can be ascribed to a self interaction between dark
matter, the corresponding cross section by mass value is
estimated to be σ/m = (1.7 ± 1) × 10−4cm2/gm. Us-
ing the m/σ value inferred from Abell 3827, the shear
viscosity of DM at cluster scales has the value η =
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5.9 × 109 Pa sec. This value of η is close to the con-
straint η . 2.3× 109 Pa sec inferred from the analysis of
GW150914. A more refined estimate [53] of the DM self
interaction in Abell 3827 (which takes into account that
the DM is gravitationally bound in the cluster) gives the
cross section by mass as σ/m = 1.5 cm2/gm. This results
in a lower value of shear viscosity η = 0.6× 106 Pa sec.

Conclusions: In this work, we explored the possibility
that the upcoming observations of gravitational waves
could observationally constrain the viscosity of cosmic
fluid. We began by deriving the effect of cosmic shear
viscosity on the propagation of Gravitational Waves in
the Universe. Except for the source distance and viscos-
ity, we fixed the values of all the other parameters of the
binary black hole system observed by the LIGO collabo-
ration. We found that if the distance to the source can be
independently determined, one can, at least in-principle,

put interesting upper limits on the shear viscosity of the
medium intervening the source and the point of obser-
vation. Our results are best interpreted as a proof-of-
principle demonstration of how this could be done. Thus,
we put constraints on the shear viscosity of dark matter
and dark energy which makes such models testable. Fu-
ture observations of GW at LIGO, VIRGO, LISA and
other observatories could potentially probe the viscous
properties of cosmological fluids and will be able to ver-
ify or rule out these models of cosmology.
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