
ar
X

iv
:1

60
3.

02
63

7v
2 

 [
he

p-
ph

] 
 1

2 
Ju

l 2
01

6

Prepared for submission to JHEP

LHC Benchmarks from Flavored Gauge Mediation

N. Ierushalmi, S. Iwamoto, G. Lee, V. Nepomnyashy and Y. Shadmi

Physics Department, Technion—Israel Institute of Technology,

Haifa 32000, Israel

E-mail: nivieru@technion.ac.il, sho@physics.technion.ac.il,

leeg@physics.technion.ac.il, vera.nepomnyashy@gmail.com,

yshadmi@physics.technion.ac.il

Abstract: We present benchmark points for LHC searches from flavored gauge mediation

models, in which messenger–matter couplings give flavor-dependent squark masses. Our

examples include spectra in which a single squark—stop, scharm, or sup—is much lighter

than all other colored superpartners, motivating improved quark flavor tagging at the LHC.

Many examples feature flavor mixing; in particular, large stop–scharm mixing is possible.

The correct Higgs mass is obtained in some examples by virtue of the large stop A-term.

We also revisit the general flavor and CP structure of the models. Even though the A-

terms can be substantial, their contributions to EDM’s are very suppressed, because of the

particular dependence of the A-terms on the messenger coupling. This holds regardless

of the messenger-coupling texture. More generally, the special structure of the soft terms

often leads to stronger suppression of flavor- and CP-violating processes, compared to naive

estimates.
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1 Introduction

Flavored gauge mediation (FGM) models [1] extend minimal gauge mediation [2, 3] by

introducing superpotential couplings between the messenger and matter superfields [4–8].

Generically, such couplings lead to flavor-dependent sfermion spectra. They also generate A-

terms at the messenger-scale, allowing for a 125 GeV Higgs with relatively light squarks [9–

21]. The main observation of [1] is that any concrete mechanism for generating the standard

model (SM) Yukawas also governs the textures of the messenger–matter couplings, and can

therefore give spectra consistent with low-energy bounds. The messenger coupling is either

similar in structure to the corresponding SM Yukawa texture, resulting in minimal flavor

violation (MFV)-like models in which only the third-generation sfermion masses are affected

(with the possiblility of large mixings between different generations of sfermions), or it has

an altogether different structure, leading to large effects in the first- and second-generation

sfermions. Flavor constraints on MFV-like models were analyzed in detail in [22, 23]. Non-

MFV models were explored in [24], and shown to give unusual squark spectra, featuring for

example a single up or charm squark much lighter than the remaining squarks, and/or large

stop–scharm mixing, with important implications for LHC supersymmetry searches [25–27].

Flavor effects in different extensions of gauge mediated supersymmetry breaking (GMSB)

models were also considered in [28–31].
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Our main goal in this paper is to extend the qualitative analysis of [24], and to provide

interesting FGM benchmarks for the LHC run II. We derive several representative examples

by starting with specific flavor models at the high scale, and including RGE effects above

and below the messenger scale. We find that even MFV-like models have a rich structure

which allows for large stop hierarchies and a large stop mixing. Examples of this type were

also discussed recently in [32]. Our examples typically feature the gluino and most squarks

at or above 2TeV, with one or two squarks at or below 1TeV. Flavor mixing generically

occurs in parts of the spectra. Many of these examples, including all the MFV-like models

and some of the non-MFV models, also give the correct Higgs mass.

Regardless of the texture of the messenger–matter coupling, the fact that the soft terms

are all determined by a single new coupling matrix (in addition to the gauge and SM Yukawa

couplings) leads to several remarkable features in the flavor and CP structure of the models.

First, the A-terms do not generate electric dipole moments (EDMs) at leading order because

they only depend on the absolute value squared of the messenger coupling [23]. Thus, the

lack of a supersymmetric CP problem, one of the nicest features of GMSB, is not spoiled

in these models. This holds more generally for other extensions of GMSB that introduce

a single dominant messenger–SM–SM coupling. Second, this special structure also results

in extra protection against flavor-non-diagonal CP violation. In particular, if there is a

single non-zero entry in the messenger coupling matrix, it does not introduce any new CP-

violating phase, and the only CP violation originates from the SM Yukawas. In the LL

sector, the only source of CP violation is therefore the CKM matrix, and CP- and flavor-

violating processes in the first and second generations are very small. Finally, in models

with a vanishing (or small) down-type messenger coupling, the new contributions to the

R-down squark masses involve two powers of the SM down Yukawa, so these masses are

barely modified from their GMSB values. The constraints on the combination of LL and

RR flavor parameters in the down sector, which are particularly stringent, are therefore

automatically met.

An important ingredient in FGM models is a mechanism for generating the SM Yukawas.

As we review in Sec. 2, since the SM Yukawas have a hierarchical structure, the messenger–

matter couplings are generically hierarchical too, with at most a single entry being O(1).

The existence and location of this entry in the messenger–matter coupling matrix depends

on the details of the model. As a concrete example, we assume that fermion masses are

governed by a horizontal U(1) symmetry, broken by a spurion λ ∼ 0.2 of charge −1. The

fermion masses are then proportional to different powers of the spurion λ, with the powers

determined by the flavor charges of the matter and Higgs fields. Once the messenger flavor

charge is specified, the messenger–matter coupling is completely determined too. There are

then three possibilities:

1. The messenger charge is the same as the Higgs charge. Then the texture of the

messenger-coupling matrix yU is identical to the Yukawa texture YU , and only its

3–3 entry is order one. This leads to the MFV-like models of [1, 16]. Since the only

large effects are in the third generation, the models are consistent with low-energy

constraints.
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2. The messenger charge is larger than the Higgs charge. Then the messenger couplings

have larger suppressions compared to the Yukawa couplings, yUij < YUij. Since the

messenger couplings enter squared in the soft terms, their effects on the masses are

very small, and again, the models are consistent with flavor bounds. Note that, even

though the mass splittings are small in this case, flavor mixing can be large. The

reason is that the dominant contribution to sfermion masses is the gauge-mediated

contribution, which is proportional to the identity. The mixing is therefore solely

determined by the corrections to the GMSB contribution [1, 33].

3. The messenger charge is smaller than the Higgs charge. Then one of the messenger

couplings involving the first or second generation can be O(1), giving a large mass

splitting to the squarks of the respective generation. This requires precise down

alignment in order to satisfy flavor constraints.

In the examples below, we choose different messenger charges, thus sampling different entries

of the messenger coupling matrix, and covering most of the FGM parameter space. In each

case, one can get a viable spectrum consistent with flavor constraints.

Note that, by construction, all the models exhibit some degree of supersymmetric

alignment [16]: the sfermion mass matrices and the SM Yukawa matrices are simultaneously

diagonal up to corrections of order λ ∼ 0.2. This alignment is sufficient to satisfy flavor

constraints in models of types (1) and (2). The non-MFV models further require zero

1–2 L-down mixing. We refer to this alignment as supersymmetric alignment [16, 24]

because the supersymmetric messenger couplings, rather than the supersymmetry-breaking

parameters [34], are controlled by the flavor symmetry. As a result, the flavor symmetry is

manifest at the (possibly) low messenger scale. A generic feature of these models is O(λ)

mixing in the first and second generation L-squarks, either in the up sector only [35], or, in

models of type (1) and (2), in both the up and down sector.

We present several examples with non-trivial squark spectra for tan β = 10 and one or

two messenger pairs. Our benchmark points (BPs) have negligible messenger–lepton cou-

plings, so the slepton masses remain degenerate as in GMSB. The NLSP in these examples

is either a bino or an R-stau. The latter possibility can be realized even in models with a

single messenger pair, since the splitting in the squark masses due to the new messenger

coupling feeds into the slepton masses through the hypercharge RGE contribution [9, 16].

As usual in GMSB models, the NLSP lifetime depends on the gravitino mass, which in

turn depends on the underlying supersymmetry-breaking scale. In the examples we show,

this uncertainty translates into a wide range of bino or R-slepton lifetimes, underscoring

the importance of searches for intermediate non-prompt decays (see also [36] for a recent

discussion).

Since our main focus is squark flavor, we also show examples in which the Higgs has a

mass below 125 GeV, requiring an additional modification of the model to raise it, such as

the addition of an NMSSM singlet. Such modifications will have little effect on the sfermion

flavor structure. The large Higgs mass in our models is driven by the large stop LR mixing,

and in some examples, by the large stop masses. To get a handle on the uncertainty in

the calculated Higgs mass, we computed it using both SOFTSUSY [37] and FeynHiggs [38–
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42]. We collect the comparisons between the two codes in Appendix C. Furthermore, the

large stop–scharm mixing and the large 3–2 entry of the up A-term featured in some of

the models may modify the Higgs mass by a few GeV [43–46]. Thus, the large Higgs mass

values we obtain in the models should mainly be viewed as an indication that the models

can accommodate a correct Higgs mass.

This paper is organized as follows. In Sec. 2 we discuss the general flavor and CP

structure of the models. In Sec. 3 we present several examples of MFV-like models, and

the resulting low energy spectra. Non-MFV examples are presented in Sec. 4. We conclude

with some remarks in Sec. 5. Appendix A reviews some basics of FGM models, including

possible symmetries yielding the FGM superpotential, and the issue of superpotential and

Kähler mixing. Our conventions for the soft terms, as well as the full expressions for the

soft terms in the presence of up-type messenger couplings, are collected in Appendix B.

In Appendix C we compare the values of the Higgs mass as computed by SOFTSUSY and

FeynHiggs. The values of the flavor-violating δ’s for our different examples are collected in

Appendix D.

2 General structure: flavor and CP

We consider models with the superpotential [1, 5]

W =

N5
∑

I=1

X(TI T̄I +DID̄I) + D̄1 q yU u
c +D2 q yD d

c +D2 l yL e
c

+HU q YU u
c +HD q YD d

c +HD l YL e
c .

(2.1)

Here X parameterizes the supersymmetry breaking with 〈X〉 = M + Fθ2, (TI , T̄I) and

(DI , D̄I) are respectively SU(3) triplet and SU(2) doublet messenger pairs, and N5 is the

number of messenger pairs. YU,D,L are the SM Yukawa coupling matrices, and yU,D,L are

the analogous 3×3 flavor-space matrices of messenger–matter couplings; hereafter we use

instead the complex conjugates of these couplings,

Yu,d,l = (YU,D,L)
∗, yu,d,l = (yU,D,L)

∗, (2.2)

for easier comparison with the SM flavor constraints. Our main focus below is on examples

with yd = yl = 0, but in this section we discuss some general features of the models with

both yu and yd present. The form of the superpotential (2.1) can be enforced by various

choices of global symmetries, as we review in Appendix A. The expressions for the soft

terms, for yd = yl = 0, are collected in Appendix B. For simplicity, we denote D̄ ≡ D̄1.

The new couplings generate one-loop A-terms at the messenger scale as well as new

contributions to the sfermion soft masses. Unlike the GMSB contributions, these are gener-

ically flavor dependent, and contain new sources of CP violation. In Table 1, we summarize

the mass insertion approximation (MIA) estimates for the most stringently constrainted

squark flavor parameters from [24, 47]. Working in terms of the physical masses and mix-

ings, we define [48]
(

δqij
)

MM
=

∆m̃2
ji

m̃2
q

(

Kq
M

)

ij

(

Kq
M

)∗

jj
, (2.3)

– 4 –



q ij |(δqij)MM |
√

Im[(δqij)
2
MM ]

√

Im[(δqij)LL(δ
q
ij)RR]

d 12 0.07 0.01 0.0005

u 12 0.1 0.05 0.003

d 23 0.6 0.2 0.07

Table 1: Bounds on (δqij)MM for 1 TeV common squark and gluino masses. For higher squark
masses the bounds scale approximately as m̃q, with a weaker dependence on the gluino mass.

where ∆m̃2
ji = m2

q̃j
− m2

q̃i
is the squared-mass difference of the relevant squarks, m̃2

q =
1
3

∑3
α=1m

2
q̃α

is the average squark squared-mass, and (Kq
M )ij is the mixing appearing in the

quark–squark–gluino coupling. In the models considered below, there is a single dominant

source of flavor violation, so the MIA gives a reasonable estimate. As is well known, this

approximation breaks down with O(1) mass differences (see for example [35, 49] for recent

analyses). In some of the examples below, the relative mass splitting is very small, so the

MIA is reliable. In the others, with O(1) mass differences, the mixings are very small, so

that even though the MIA does not give a good estimate, flavor constraints are satisfied

thanks to the small mixings.

The flavor textures of the soft terms are not arbitrary in these models. Rather, they are

given by specific combinations of the messenger couplings and the SM Yukawas, which can

be determined by a spurion analysis, treating the matrices Yu, yu, etc. as spurions of the

SU(3)5 flavor symmetry [1]. Furthermore, any power of the messenger coupling appearing

in the soft terms, say yu, must be accompanied by the same power of y†u [23]. To see this,

one can invoke a global U(1) under which only the messenger field D̄1 is charged. yu is the

only spurion breaking this U(1). Since the soft terms are singlets of this symmetry, yu must

appear with y†u. This special structure ameliorates some of the constraints on the models,

especially in the presence of a single new coupling, as we now discuss.

First, the models do not suffer from the flavor-diagonal supersymmetric CP problem.

Indeed, one of the virtues of GMSB models is that they do not introduce large quark and

lepton EDMs. In minimal GMSB, the A-terms are only generated from the gaugino mass

through the RGE, so there is no relative phase between them. Naively, this seems to be

spoiled in FGM models (and more generally in models with messenger–matter or messenger–

Higgs couplings), since the messenger–matter couplings generate A-terms at the messenger

scale. However, to leading order, these A-terms are real [23]. For example, consider the yu
contribution to Ad at one-loop order. It is determined by the spurion analysis described

above as

A∗
d ∝ yuy

†
uYd. (2.4)

To discuss the resulting EDMs, we rotate the squark superfields into the quark mass basis,

in which the SM Yukawa matrices are diagonal. In this basis, the A-term is given by

VdLA
∗
dVdR

† ∝ VdL yuy
†
uVdL

† Y diag
d , (2.5)

where VdL, VdR (VuL, VuR) are the matrices that bidiagonalize the down and up SM Yukawa
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matrices,

Y diag
u = VuL Yu VuR

† , Y diag
d = VdL Yd VdR

†, (2.6)

such that the CKM matrix is given by VCKM = VuLVdL
†. Since VdL yuy

†
uVdL

† is hermitian,

(VdLA
∗
dVuR

†)11 ∝ (VdLyuy
†
uVdL

†)11(Y
diag
d )

11
(2.7)

has no complex phase and does not generate an EDM. Similarly, the yu contribution to Au

is restricted to be of the form

(yuy
†
u)Yu , Yu(y

†
uyu) , (2.8)

and thus (Au)11 evaluated in the fermion mass basis is real. We can repeat this discussion for

the contributions from yd. The same reasoning also applies to any model with a messenger–

SM–SM coupling. A non-zero EDM can, in principle, be generated at higher orders in

the messenger loops, coming either from higher-loop corrections to the A-terms, or from

multiple insertions of δLR, δLL, δRR, but these are very small.1

We now turn to flavor violation. As noted above, the combination of flavor violation

in the L- and R-down squarks is tightly constrained by experiment. These constraints are

alleviated in our models for yd = 0, which can be achieved by a choice of global symmetries

(see Appendix A). With no down-type messenger couplings, the new contribution to the

RR down squark mass matrix Eq. (B.16), is suppressed by two powers of the down Yukawa.

In the fermion mass basis, this mass matrix is given by

VdR(δm̃
2
dR

)VdR
† . (2.9)

Thus for example, its 1–2 entry is

(

VdR(δm̃
2
dR

)VdR
†
)

12
∼ mdms

〈HD〉2
(VdL yuy

†
u VdL

†)12 ∼ 10−8 tan2 β(VdL yuy
†
u VdL

†)12 , (2.10)

where md (ms) is the down (strange) quark mass and 〈HD〉 is the vacuum expectation value

of HD. This is negligible even for an arbitrary O(1) matrix yu, so that the R down squarks

are nearly degenerate.

The remaining LL and RR mass matrices involve various combinations of yu and the

SM Yukawas. First, consider terms that only involve yu. In the fermion mass basis, these

have the form

m̃2
dL

⊃ (VdLWuL
†)

[

(ydiagu ydiagu
†
) + #(ydiagu ydiagu

†
)
2
]

(VdLWuL
†)

†
, (2.11)

m̃2
UL

⊃ (VuLWuL
†)

[

(ydiagu ydiagu
†
) + #(ydiagu ydiagu

†
)2
]

(VuLWuL
†)

†
(2.12)

m̃2
UR

⊃ (VuRWuR
†)
[

(ydiagu
†
ydiagu ) + #(ydiagu

†
ydiagu )2

]

(VuRWuR
†)

†
, (2.13)

1Many of the possible structures are actually real. In fact, with yd = 0, no imaginary part can be

generated if yu is rank 1.
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where the # are real numbers, and we define

ydiagu ≡WuL yuWuR
† (2.14)

with ydiagu diagonal. Clearly, flavor mixings are determined by the misalignment between

yu and the relevant Yukawa matrix. The most stringent constraint is on (δd12)LL. In the

following, we will consider two types of models.

• In MFV-like models, (yu)ij and (Yu)ij are the same up to order-one numbers, for any

i, j. Then the only large entry of yu is the 33 entry, with

ydiagu ydiagu
† ∼ diag(0, λ4, 1), (2.15)

where λ ∼ 0.2. Also, without accidental cancellations or enhancements, (WuLVdL
†)ij

is expected to be the same order as (VCKM)ij . Then (δd12)LL ∼ λ5, which is at the

level of experimental constraints, and (δd23)LL ∼ λ2, which is below current sensitivity.

The MFV-like models are thus consistent with flavor bounds on the down sector.

As for the up sector, in MFV-like models the 1–2 up block is approximately degener-

ate, and this degeneracy is sufficient for satisfying all flavor constraints. Furthermore,

generically in these models VuL ∼WuL and WuR ∼ VuR, so that

(VuLWuL
†) ∼ VuL , (VuRWuR

†) ∼ VuR . (2.16)

• In other models, yu has O(1) entries in the first or second row or column. Then

ydiagu ydiagu
†

has O(1) entries in its 1–2 block, and precise alignment of the down squark

and quark matrices is required for (VdLWuL
†)12 to be small. We therefore construct

models in which the down Yukawa is approximately diagonal, and yuy
†
u is approxi-

mately diagonal as well. Then, VdL, WuL, and WuR are close to the identity matrix,

and flavor mixing arises predominantly from the SM mixing matrices VuL ∼ VCKM

and VuR. New sources of CP-violating phases are therefore suppressed.

Both types of models will be realized below using a horizontal symmetry that also generates

the SM fermion masses. As a result, in each case, only a single entry of yu is O(1). This

leads to a further suppression of the imaginary parts of (δij)MM , since the O(1) entry only

enters in its absolute value squared.

As mentioned above, the soft mass matrices also contain certain combinations of yu
and the SM Yukawas. It is easy to verify that these do not introduce any new qualitative

features in the models considered below. In the MFV-like models of Sec. 3, yu ∼ Yu, so

the discussion above still holds. In particular, the texture of yu is unaltered when rotating

to the up mass basis. In the non-MFV models of Secs. 4.1 and 4.2, these mixed terms are

subdominant because there is no large overlap between yu and Yu. Such overlap is present

in the models of Sec. 4.3, but as we will see, flavor constraints are met in these models

roughly as discussed above. We stress that, for the numerical examples we present in Sec. 3

and Sec. 4, the full expressions of the soft terms are taken into account.
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3 MFV-like Models: split top squark with and without charm mixing

As discussed above, models in which (yu)ij and (Yu)ij are the same up to O(1) numbers

are consistent with flavor experiments. This possibility is realized in models in which the

fermion masses are explained by a horizontal symmetry, if the messenger D̄ has the same

flavor charge as HU . We thus consider a U(1) horizontal symmetry with a spurion λ of

charge −1, and matter field charges

Q1(5), Q2(4), Q3(2), u1(1), u2(−1), u3(−2), d1(1), d2(0), d3(0) , (3.1)

with the Higgses and D̄ messenger neutral. The Yukawa matrices are then

yu ∼ Yu ∼







λ6 λ4 λ3

λ5 λ3 λ2

λ3 λ 1






, Yd ∼







λ6 λ5 λ5

λ5 λ4 λ4

λ3 λ2 λ2






, (3.2)

where, as explained above, ∼ means that the matrices are given up to O(1) coefficients.

These lead to the fermion mixing matrices,

VuL ∼







1 λ λ3

λ 1 λ2

λ3 λ2 1






, VuR ∼







1 λ2 λ3

λ2 1 λ

λ3 λ 1






,

VdL ∼







1 λ λ3

λ 1 λ2

λ3 λ2 1






, VdR ∼







1 λ λ

λ 1 1

λ 1 1






, (3.3)

with VdL ∼ VuL ∼ VCKM,

VCKM = VuLVdL
† ∼







1 λ λ3

λ 1 λ2

λ3 λ2 1






. (3.4)

The corrections to the squark soft mass terms have the structure

δm̃2
q ∼







λ6 λ5 λ3

λ5 λ4 λ2

λ3 λ2 1






, δm̃2

uR ∼







λ6 λ4 λ3

λ4 λ2 λ

λ3 λ 1






, (3.5)

while

A∗
u ∼







λ6 λ4 λ3

λ5 λ3 λ2

λ3 λ 1






, (3.6)

so a large stop A-term is possible.

Although the above expressions are modified by RGE effects, they provide first esti-

mates of the flavor-violating terms in the models. As discussed in the previous section, the

down-RR entries are negligible in these models. The remaining entries are shown in Table 2.
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q ij |(δqij)LL| |(δqij)RR|
√

|(δqij)LL||(δ
q
ij)RR|

d 12 λ5 − −
u 12 λ5 λ4 λ9/2

d 23 λ2 − −

Table 2: Parametric estimates of (δqij)MM in MFV-like models. Omitted entries are negligible.
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Figure 1: (yu)33 at the messenger scale M as a function of its value at the flavor scale Λ, for
(yu)32(Λ) = 0.2.

With no CP violating phases, all of these are significantly below the experimental bounds.

In the presence of CP violation, the product (δqij)LL(δ
q
ij)RR is of order the bound quoted

in Table 1. However, in the following examples, this product is also below the bound even

for O(1) phases, mainly because the typical gluino and average squark masses are higher

than 1 TeV.

In both δm̃2
q and δm̃2

uR, the dominant contribution is the 3–3 entry. The second im-

portant contribution is (δm̃2
uR)32. These contributions come from (yu)33 and (yu)32, so the

squark spectra are particularly sensitive to the O(1) coefficients of these two entries. If

the flavor scale, Λ, is much higher than the the messenger scale M , these couplings may

be significantly modified by the running. In Fig. 1, we show (yu)33(M) as a function of

(yu)33(Λ) for a given value of (yu)32(Λ) = 0.2 and Λ = 1016 GeV. The value of (yu)33 is

clearly decreased by the running. In particular, large boundary values of (yu)33(Λ), say

above 2, flow to (yu)33 ∼ 1 at the messenger scale. A milder decrease, with no IR fixed

point behavior, is seen in the running of (yu)32, which we display in Fig. 2.

In the following, we discuss two concrete examples of MFV-like models; one with a

low messenger scale, M = 9.0 × 105 GeV, and the other with a high messenger scale,

M = 1012 GeV. The models are obtained by choosing specific O(1) coefficients of the

entries of yu at the flavor scale Λ = 1015 GeV. The various couplings are then evolved to the

– 9 –



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y32(Λ = 1016 GeV)

y 3
2
(M

m
e
s
s
)

 

 

M
mess

 = 9 × 105

M
mess

 = 1012

Figure 2: (yu)32 at the messenger scale as a function of (yu)32 at the Λ scale, for (yu)33(Λ) = 1.
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Figure 3: Spectrum for BP MFV-t with large (yu)33(Λ = 1015 GeV) = 2.9 and scales M = 9×105

GeV, F/M = 2.7× 105 GeV. Mixings are shown for sfermion and gaugino mass eigenstates. In this
model, we find µ = 2870 GeV and (Au)33 = −1920 GeV.

messenger scale M , where the soft masses are calculated and fed as input to SOFTSUSY [37],

which is used to obtain the low-energy spectra.

The first BP “MFV-t”, where “t” represents the stop-like lightest squark, is obtained

with the scales M = 9.0 × 105 GeV and F/M = 2.7 × 105 GeV, and is shown in Fig. 3.

At the messenger scale, (yu)33(M) = 0.8. The Higgs mass is 125GeV, the R-stop is at

∼ 840 GeV, and the L-stop and L-sbottom are near 2.1TeV. The remaining squarks have

masses between 2.5 to 2.8 TeV, and the gluino is at 2 TeV. The NLSP is the bino, which

decays promptly with cτB̃ > 0.09 mm if the F term of X is the dominant F -term in the
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Figure 4: Spectrum for BP MFV32 with large (yu)32(Λ = 1015 GeV) = 0.63 and scales M = 1012

GeV, F/M = 2.71 × 105 GeV. Mixings are shown for sfermion and gaugino mass eigenstates. In
this model, we find µ = 4150 GeV and (Au)33 = −2390 GeV.

theory. Thus, the correct Higgs mass is obtained with squarks that are still within the reach

of the LHC.

From the point of view of mass hierarchies, this spectrum is not unusual, with the

first- and second-generation squarks approximately degenerate; however, the L-squark mass

eigenstates are mixtures of up-charm or down-strange states, with the size of the mixing of

order of the Cabbibo mixing. Such mixings are completely generic whenever the squarks

are not exactly degenerate because of the fermion Cabbibo mixing. Note that substantial

1–2 mixing can arise even when the mass splittings are small, since the leading contribution

to the first- and second-generation squark masses is the flavor-diagonal GMSB contribu-

tion [33]. It would be interesting to explore whether this mixing leads to observable effects

at the LHC as charm tagging is improved.

As noted above, the only potentially dangerous source of flavor violation in our examples

involves the product of the imaginary parts of the LL and RR 1–2 entries in the up sector.

We list these (for this example and the following examples) in Appendix D. For the spectrum

of Fig. 3, the bounds of Table 1 should be rescaled by ∼ 2. The model is thus viable even

with O(1) phases.

In this example, the stop–scharm mixing is quite small. As discussed above, this

mixing is sensitive to the O(1) coefficients of the 3–2 entries of Yu and yu. The next

benchmark point, “MFV-ct”, features a large stop–scharm mixing at a higher messenger

scale M = 1012 GeV, while keeping F/M = 2.7 × 105 GeV fixed. At the messenger scale,

(yu)32 = 0.56, and (yu)33 = 1. The resulting spectrum is shown in Fig. 4. Here, the Higgs

mass is 125 GeV. Again, the stop LR mixing, |Xt| ∼ 2.8 TeV gives a large contribution to

this mass. The lightest squark, at 1340 GeV, is an admixture of the R-stop and R-scharm.
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The L-stop and L-sbottom are heavy at ∼ 3.1 TeV, while other squarks are between 2.2–

2.5 TeV. Due to the high messenger scale, the bino NLSP is long-lived with a lifetime of

τB̃ ∼ 0.3 s, and does not decay inside the detector. Note that because of the large stop–

scharm mixing, the lightest squark can decay through either a third- or a second-generation

quark, thus reducing the sensitivity of stop searches [26].

These examples will be probed by the standard LHC supersymmetry searches, including

pair-production of gluinos, squarks, electroweakinos, and stops. Generally, searches for

gluinos using simplified decay chains g̃ → qqχ̃1
0 have bounds of about 2.3 TeV at the high-

luminosity LHC [50, 51]; in the FGM scenarios, these bounds are weakened by the more

complicated cascade decays. Searches for stop pair-production are particularly relevant for

Fig. 3 because of the small stop mass [52, 53]. If the bino decays to a Z and a gravitino, and

both the W from the top decay and the Z decay hadronically, the multi-jet plus missing

energy searches are also useful [54, 55]. In the spectrum of Fig. 4, the lightest squark

decays into either a second- or third-generation quark and the signal strengths of stop

searches and jet plus missing energy squark searches are both reduced. Finally, searches

for direct production of electroweakinos are also relevant for bino and wino masses in this

range [56, 57].

4 Non-MFV Models

We now turn to examples with large mass splittings between the first- and second-generation

squarks. As explained in Sec. 1, this requires an alignment of the down quark and squark

mass matrices. To achieve this, we use a U(1) × U(1) horizontal symmetry. We consider

three types of examples that realize unusual squark mass hierarchies [24]. These examples

differ only in the horizontal charges of the messenger fields. The Higgs Yukawa coupling

textures are thus the same in the three models, but the matter–messenger coupling matrices

are different. Our main focus here is the masses and mixings of the first- and second-

generation squarks. Thus, we do not insist on a 125GeV Higgs. In models with a lower

Higgs mass, as is the case in our first example, some additional mechanism is required to

raise the Higgs mass, such as the addition of the NMSSM singlet [5].

We choose the quark U(1) ×U(1) charges to be,

Q1 (3, 0) , Q2 (0, 2) , Q3 (0, 0) ,

u1 (−3, 6) , u2 (1, 0) , u3 (0, 0) ,

d1 (−1, 4) , d2 (4,−2) , d3 (0, 2) .

(4.1)

We assume that each U(1) is broken by a spurion of charge −1 and size λ ∼ 0.2. These

charges give rise to the following structures for the SM Yukawas, up to O (1) coefficients

Yu ∼







λ6 λ4 λ3

0 λ3 λ2

0 λ 1






, Yd ∼







λ6 0 λ5

0 λ4 λ4

0 0 λ2






. (4.2)
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This particular structure for Yd was shown in [58] to be the only pattern that can provide

alignment in models with horizontal abelian symmetries.2 The diagonalizing matrices are

then

VuL ∼







1 λ λ3

λ 1 λ2

λ3 λ2 1






, VuR ∼







1 λ4 λ5

λ4 1 λ

λ9 λ 1






,

VdL ∼







1 λ5 λ3

λ5 1 λ2

λ3 λ2 1






, VdR ∼







1 λ7 λ7

λ7 1 λ4

λ7 λ4 1






, (4.3)

which give the correct CKM texture. In the following subsections, the single O(1) entry in

yu will be denoted by y.

4.1 Large (yu)11: light up squark

For our first example, we take the messenger field to carry a horizontal charge of

D̄ (0,−6) . (4.4)

The messenger-Yukawa matrix is therefore

yu ∼







y 0 0

0 0 0

0 0 0






. (4.5)

The squark mass matrices are schematically given by Eq. (2.11), with WuL ∼ WuR ∼
13×3; the only source of mixing is the fermion masses. In particular, to a good approxima-

tion, the only 1–2 mixing is in the L-up sector, as is generically the case with alignment

in the down sector, and the only 2–3 mixing is in the R-up sector; both are O(λ). The

new coupling mainly affects the up and down squark masses, and can increase or decrease

them depending on the value of F/M2. The one-loop contributions are negative, while the

two-loop contributions can have either sign. Since there is no large A-term, the Higgs mass

requires extra ingredients, unless the stops are heavy.

Since y is O(1), the dominant source of flavor violation is (δu12)LL ∼ O(λ), which can

be consistent with flavor bounds for certain choices of the model parameters. However, this

estimate applies only to the absolute value of (δu12)LL. The contribution to CP-violating

processes is further suppressed, since y only enters the soft masses as |y|2. CP violation

therefore originates solely from the SM Yukawas,

Im (δu12)LL ∼ Im(VuL y
diag
u ydiagu

†
VuL

†)12 = |y|2(VuL)11Im(VuL
∗)21 ∼ λ5 , (4.6)

since VuR ∼ VCKM in the 1–2 block. The imaginary part of (δu12)RR also originates from the

SM Yukawas, but in this case, its source is VuR,

Im (δu12)RR ∼ Im(VuR y
diag
u

†
ydiagu VuR

†)12 = |y|2(VuR)11Im(VuR
∗)21 . (4.7)

2 This choice of charges is different from the choice of [24], which gave a zero Vtd. While the main results

of [24] still hold, some details of the models are modified with this choice.
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Figure 5: Spectrum for BP U11 with N = 2, large (yu)11(Λ = 1016 GeV) = 0.4, and scales
M = 6.0 × 105 GeV, F/M = 1.49 × 105 GeV. Mixings are shown for sfermion and gaugino mass
eigenstates. In this model, we find µ = 885 GeV and (Au)33 = −532 GeV.

Thus, | (δu12)RR | ∼ λ4, and is very small. Still,
√

Im((δu12)LL(δ
u
12)RR) may be above the

bound of Table 1 by a factor of a few, and viable models may require some suppression

of the phases in the 1–2 block of VuR. In the examples below, the required suppression is

∼ 0.4.

Figure 5 shows the spectrum of a BP, “U11”, with N5 = 2. Here the gluino is at 2.1 TeV.

The R-up squark is at 810 GeV, while all other squarks have masses between 1.8–2.3 TeV.

Thus, there is a single light squark in the spectrum. The large squark mass splitting gives a

negative (positive) contribution to the R(L)-slepton masses through the running [5, 11, 16]

resulting in an R-stau NLSP with a decay length of cττ̃ ≥ 5.0 mm, where the lower value

is attained if the dominant source of supersymmetry breaking is the F -term of X. For a

larger value of this parameter, the stau can become long-lived and detectable in searches

for long-lived charged particles [59, 60].

4.2 Large (yu)22: light charm squark

This example is qualitatively similar, with the large effects occurring in the second-generation

squarks. We take the D̄ messenger charges to be,

D̄ (−1,−2) , (4.8)

so that

yu ∼







0 0 0

0 y 0

0 0 0






. (4.9)

The main effects are therefore on the charm and strange squark masses, and these can have

either sign.

– 14 –



0

500

1000

1500

2000

2500

M
as

s 
[G

eV
]

 

 

B̃

W̃ W̃
+

h̃
+
2

h̃1

h̃2

h̃1

h̃2

W̃
+

h̃
+
2

τ̃R µ̃R ẽR
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Figure 6: Spectrum for BP U22L with N5 = 2, M = 5.7× 105 GeV, F/M = 1.46× 105 GeV, and
(yu)22(Λ = 1016 GeV) = 0.7. Mixings are shown for sfermion and gaugino mass eigenstates In this
model, we find µ = 869 GeV and A33

u = −521 GeV.

We note that the horizontal charges also allow a small O(λ3) mixing between HU and

D̄ from the Kähler and superpotential, changing the Yukawa structure to (see Appendix A)

yu →







∼ 0 λ7 λ6

0 y λ5

0 λ4 λ3






. (4.10)

These corrections are small, and proportional to the SM Yukawas. Therefore the squark–

quark mixings are again given by the SM flavor mixing matrices, with WuL =WuR ∼ 13×3,

as in the previous example.

We show two examples in which the new contributions to the charm squark are negative,

resulting in a single charm squark that is much lighter than the remaining squarks. The

flavor-violating δ’s in these examples are similar to those of the previous example. In Fig. 6

we display the spectrum for BP “U22L” obtained for a messenger scale M = 5.7× 105 GeV

and N5 = 2. The R-scharm is at 870 GeV, the remaining squarks have masses above

1.8 TeV, and the gluino mass is around 2 TeV. Here and in the next BP U22, the large

squark mass splitting feeds into the RGE’s of the sleptons and creates a large splitting

between the R- and L-sleptons, so that the R-stau is the NLSP, while the L-sleptons are all

heavier than the winos. The stau NLSP decays to a tau and gravitino, with a lower bound

on the decay length of cττ̃ ≥ 0.05 mm; for much longer lifetimes, both examples would

be excluded by long-lived stau searches. The R-sleptons have approximately degenerate

masses of ∼ 270 GeV, which currently lie above searches using direct production [61, 62].

SUSY searches with multilepton final states can also be useful to look for cascade decays
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Figure 7: Spectrum for BP U22 with large (yu)22(Λ = 1016 GeV) = 0.73 and scales M = 107

GeV, F/M = 8.6× 105 GeV. Mixings are shown for sfermion and gaugino mass eigenstates. In this
model, we find µ = 3280 GeV and (Au)33 = −1540 GeV.

of the R-up squark [63]. In contrast to minimal GMSB spectra, the quarks are almost

exclusively of charm flavor, so charm tagging will play an important role in these cases [64].

The second BP “U22” demonstrates that a large Higgs mass can be obtained in these

models from very heavy stops, while a single squark may still be within LHC reach. The

stops in this example are at 7 TeV. Since only a single squark flavor is significantly affected

by the messenger coupling, most of the remaining squarks are around 7 TeV too, with the

exception of the R-scharm at 1.4 TeV. The spectrum is shown in Fig. 7, for M = 107 GeV,

y(Λ = 1016 GeV) = 0.73, and F/M = 8.6× 105 GeV.

This spectrum has a long-lived NLSP stau with cττ̃ ≥ 0.4 mm, which is mainly produced

at the LHC in the cascade decay of ũ1. Therefore, we expect two long-lived charged particles

accompanying two quarks.

4.3 Large (yu)32: light top and/or charm squark

As a final example, we consider models with a large 3–2 entry in the messenger coupling

matrix. This leads to a large stop A-term, which allows for a 125 GeV Higgs with superpart-

ners accessible at the LHC. At the same time, there are large modification of the L-stop,

L-sbottom and R-scharm masses, and in some examples, a large stop–scharm mixing.

To obtain a large (yu)32 we take the messenger horizontal charges to be

D̄ (−1, 0) , (4.11)

which yields the messenger Yukawa matrix

yu ∼







0 λ3 λ2

0 λ2 0

0 y 0






. (4.12)
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As above, y is an O(1) coefficient which we display explicitly since it is the dominant entry

in the yu matrix.

As discussed in Appendix A, these charges also allow a λXDHU term in the superpo-

tential, and a λD̄†HU term in the Kähler potential. Therefore, the Yukawa matrices may

in principle be modified as Yu → Yu+λyu and yu → yu+λYu. This only affects the texture

of yu, with

yu →







λ7 λ3 λ2

0 λ2 λ3

0 y λ






. (4.13)

Since the messenger coupling has an O(1) 3–2 entry, mixed terms involving both yu
and the SM Yukawas are important in these models. Examining the structure of the soft

terms in Eq. (B.16), one gets,

δm̃2
q ∼− 1

(4π)2
1

6







λ4 λ5 yλ3

λ5 λ4 yλ2

yλ3 yλ2 |y|2







F 4

M6

+
1

(4π)4
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(6y3 + 5y −Gy)λ3 (6y3 −Gy)λ2 (6|y|4 −G|y|2)
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δm̃2
uR
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(4π)2
1

3
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0 4|y|2λ −2|y|2







∣

∣

∣

∣

F

M

∣

∣

∣

∣

2

,

(4.15)

δm̃2
dR

∼− 1

(4π)2
2







0 0 0

0 0 0

0 0 |y|2λ4







∣

∣

∣

∣

F

M

∣

∣

∣

∣

2

, (4.16)

Au ∼− 1

(4π)2







0 (y + 2|y|2)λ4 yλ3
0 (y + 2|y|2)λ3 yλ2
0 3|y|2λ |y|2







F

M
, (4.17)

Ad ∼− 1

(4π)2







0 0 yλ5

0 0 yλ4

0 0 |y|2λ2







F

M
, (4.18)

where we neglected O(λ6) terms. Here G = 16
3
g23+3g22+

13
15
g21 is between 5 and 10, depending

on the messenger scale. Recall that, in addition to G and the explicit numerical factors

that appear above, there are other unknown numerical factors coming from the Yukawa
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q ij |(δqij)LL| |(δqij)RR|
√

|(δqij)LL||(δ
q
ij)RR|

d 12 λ5 − −
u 12 λ5 λ4 λ4.5

d 23 λ2 λ8 λ5

Table 3: Parametric estimates of (δqij)MM in non-MFV models with large (yu)32. Omitted entries
are negligible.

couplings themselves. The quark-squark gluino mixings are then given by,

KL
u ∼







1 λ λ3

λ 1 λ2

λ3 λ2 1






, KR

u ∼







1 λ4 λ5

λ4 1 λ

0 λ 1






,

KL
d ∼







1 λ λ3

λ 1 λ2

λ3 λ2 1






, KR

d ∼







1 λ3 λ7

λ3 1 λ4

λ7 λ4 1






. (4.19)

These models then have the following general features:

1. A large negative contribution to the R-stop mass
(

m̃2
uR

)

33
.

2. Large contributions to the R-scharm mass,
(

m̃2
uR

)

22
. Here the one-loop contribution

is negative, and the two-loop contribution can have either sign.

3. Large contributions to the L-stop and L-sbottom masses,
(

m̃2
q

)

33
. Here the one-loop

contribution is negative, while the two-loop contribution can have either sign.

4. An O(λ) R stop–scharm mixing,
(

m̃2
uR

)

32
.

5. A large stop A-term (Au)33.

The parametric estimates for the relevant flavor-violating quantities in these models are

collected in Table 3. These are clearly compatible with current experimental bounds. In

particular, (δq12)LL is small mainly because of the O(λ4) mass splitting in the L-squarks

(accompanied by an O(λ) mixing). In contrast, there is an O(1) mass splitting between

the R-charm and R-up squarks, but the mixing between them is O(λ4).

As in the MFV-like models, since the messenger couplings to the third generation are

large here, the running between the flavor scale Λ and the messenger scale M can modify

both the messenger couplings and the SM Yukawa couplings. In Fig. 8 we show (Yu)33(M)

and (yu)32(M) as a function of (yu)32(Λ) = y, for various values of (Yu)33(Λ). As it decreases

in the running, (Yu)33 requires a large boundary value at Λ. Furthermore, for a wide range

of boundary values at Λ, (yu)32 flows to values near 1 at the messenger scale. Thus the size

of the new messenger coupling is limited by the running.
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Figure 8: (yu)32 and (Yu)33 at the messenger scale M = 106 GeV as functions of (yu)32(Λ) = y

for various O(1) values of (Yu)33(Λ).

Three spectra of benchmark points using this model are shown in Figs. 9–11. All of

these have a Higgs mass of 125–126 GeV, partly driven by the large stop mixing, which in

turn comes from the large stop A-term coupled with, in some cases, a negative contribution

to the stop soft masses from (yu)32. We have taken the flavor scale Λ = 1016 GeV in these

examples.

The first BP “U32-c” features a very heavy spectrum, with a single squark below the

TeV scale. Specifically, the R-scharm is at 815 GeV, the stops and L-sbottom are between

2.7–3 TeV, and all other colored superpartners are above 4 TeV. This spectrum, shown

in Fig. 9 is obtained for M = 3.0 × 106 GeV, (yu)32(Λ) = 0.89, F/M = 5.25 × 105 GeV,

where the one- and two-loop contributions are comparable. The NLSP is the stau; it

promptly decays to a tau and gravitino with the lower bound cττ̃ > 5 mm.

In the next spectrum for BP “U32-t”, shown in Fig. 10, the two-loop contribution is

dominant for the parameter choices M = 107 GeV, F/M = 3.52×105 GeV, and (yu)32(Λ) =

1.57. The gluino is at 2.5 TeV and all squarks, with the exception of the R-stop, are between

3–4 TeV. Due to the negative contribution from (yu)32, the mass of the R-stop is much lower
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b̃L, t̃L , τ̃L, ν̃τ , h̃1

s̃L, c̃L, µ̃L, ν̃µ, W̃ , h̃+2
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1016 GeV) = 1.57. Mixings are shown for sfermion and gaugino mass eigenstates. In this model,
we find µ = 3580 GeV and A33

u = −2360 GeV.

at 1.1 TeV. The NLSP in this model is the bino, with a lower bound on the decay length

of cτB̃ > 4 mm.

Finally, the last BP “U32-ct”, shown in Fig. 11, has a lighter spectrum, but features a

mixed scharm–stop as the lightest squark around 1.3 TeV, making stop searches relying on
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ũL

c̃L

t̃L

ũL
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Figure 11: Spectrum for BP U32-ct with large (yu)32(Λ = 1016 GeV) = 1.21, (yu)33(Λ =

1016 GeV) = 0.6 and scales M = 3.0 × 106 GeV, F/M = 2.66 × 105 GeV. Mixings are shown for
sfermion and gaugino mass eigenstates. In this model, we find µ = 2450 GeV and (Au)33 = −1460

GeV.

decays to third-generation quarks even more challenging. The lower bound on the decay

length of the bino NLSP is cτB̃ > 0.04 mm.

The lightest squark and NLSP of these models will largely determine their collider

signatures. In terms of relevant searches, each of these examples has overlap with previous

examples: Fig. 9 with Fig. 7 (light R-scharm and R-stau NLSP), Fig. 10 with Fig. 3 (light R-

stop and bino NLSP), and Fig. 11 with Fig. 4 (light mixed R stop–scharm and bino NLSP).

The NLSP lifetimes for Figs. 9–10 are longer due to the larger values of F . Comparing

the flavour bounds in the 1–2 up sector listed in Table 5, we see that the constraints from

observables in D mesons can be used to distinguish these pairs of spectra.

Note that the models discussed in this subsection have a non-trivial A-term structure,

with a potentially large (Au)32. Furthermore, some of the examples have a large stop–

scharm mixing. Both of these features may affect the calculation of the Higgs mass by a

few GeV [43–46]. These effects are not taken into account in SOFTSUSY.

5 Conclusions

We presented examples of flavored gauge mediation with interesting and unusual squark

spectra that are nonetheless consistent with low-energy constraints.

These examples are derived from fully calculable models. Specifically, the soft terms are

generated by messenger-field loops, and the size of the different superpotential couplings—

both the SM Yukawas and the messenger Yukawas—are determined by a flavor symmetry.

In many cases, the structure of the soft terms leads to stronger suppression of low-energy
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flavor-violating processes, compared to naive estimates which are based on the flavor sym-

metry alone.

The smallness of observed flavor-violating processes has long been viewed as a major

constraint on superpartner flavor. The above discussion suggests that this viewpoint is

perhaps too restrictive, and is the consequence of considering general ansatze for supersym-

metry and for flavor, rather than concrete models.
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A FGM superpotential and symmetries

We summarize some details of the construction of the models from [1, 24]. The form of the

superpotential in Eq. (2.1) can be enforced by various choices of symmetries. Clearly, the

messengers are taken to have the same R-parity as the Higgs fields. One possibility (which

is not necessarily the most economical one) is to introduce a U(1)X under which X has

charge 1, and TI , DI 6=2, D̄2 have charge −1, as well as a messenger parity for the messenger

fields with I > 2.3 This still allows for the superpotential terms XD1HU and XD̄2HD. We

return to these below.

To allow only up-type messenger couplings, we take instead TI and DI to have U(1)X
charge −1. The only term we can add to the superpotential in Eq. (2.1) is γXD1HU ,

where γ is some coefficient. In the MFV-like models, where the flavor symmetry does not

distinguish between D̄1 and HU , γ ∼ 1, and we can redefine the messenger field as the

combination of HU and D̄1 that couples to X, thus eliminating the term γXD1HU .

In the non-MFV models of this paper, γ is given by some power of λ. In addition,

the Kähler potential contains mixing terms such as δD̄†HU with δ ∼ γ. Redefining and

rotating the fields to get a canonical Kähler potential and to eliminate the superpotential

term XD1HU , one obtains the superpotential in Eq. (2.1) with YU → YU + γyU , and

yU → yU + ǫYU , where ǫ ∼ γ, δ. Alternatively, one can use the flavor symmetry to eliminate

the superpotential mixing term altogether [1].

We also assume that the µ term is forbidden by an additional PQ symmetry. We will

not discuss the origin of the µ term, although it is possible to embed this PQ symmetry in

the flavor symmetry [1], and to generate a small “supersymmetric” µ term.4

3 Motivated by the fact that full dynamical supersymmetry-breaking models that generate the required

vacuum expectation values for X often require an X3 term [3], earlier FGM papers starting with [1]

considered a Z3 instead of a U(1).
4We note that many of our examples require only a small B term which can be obtained radiatively

from the µ term.
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B Soft Terms

We first specify our conventions for the Yukawas and soft terms. We define the Lagrangian

and the superpotential as

L =

∫

d4θ K +

(
∫

d2θW + h.c.

)

, (B.1)

W = X(TI T̄I +DID̄I) + yUijD̄1qiu
c
j + YUijHUqiu

c
j + YDijHDqid

c
j + YLijHDlie

c
j , (B.2)

which yields the SM Yukawa interactions

L ⊃ −YUijHU (ψq)i(ψuc)j , (B.3)

etc., and the soft terms

− L ⊃ m̃2
qij q̃

∗
i q̃j + m̃2

lij l̃
∗
i l̃j + m̃2

uRij ũ
∗
i ũj + m̃2

dRij d̃
∗
i d̃j + · · ·+AuijHU q̃iũ

∗
j + · · · , (B.4)

where q̃ and ψq (ũ∗ and ψuc) are the scalar and fermion components of the superfield q

(uc). In this paper, following [16], we use the common notation for the SM Yukawas

Yu = (YU )
∗, Yd = (YD)

∗, yu = (yU)
∗, (B.5)

which appears in the Lagrangian as (e.g., Sec. 11 of [65]),

L ⊃ −YuijHU (ψq)i(ψu)j . (B.6)

The leading order GMSB contributions to the soft masses are [2, 3, 66]

M̃i =
g2i

(4π)2
N5

F

M
g(x) , (B.7)

m̃2
HU

=
1

(4π)4
2N5

(

3

4
g42 +

3

20
g41

) ∣

∣

∣

∣

F

M

∣

∣

∣

∣

2

, (B.8)

m̃2
HD

=
1

(4π)4
2N5

(

3

4
g42 +

3

20
g41

) ∣

∣

∣

∣

F

M

∣

∣

∣

∣

2

, (B.9)

m̃2
q =

1

(4π)4
2N5

(

4

3
g43 +

3

4
g42 +

1

60
g41

) ∣

∣

∣

∣

F

M

∣

∣

∣

∣

2

13×3 , (B.10)

m̃2
uR

=
1

(4π)4
2N5

(

4

3
g43 + g41

4

15

) ∣

∣

∣

∣

F

M

∣

∣

∣

∣

2

13×3 , (B.11)

m̃2
dR

=
1

(4π)4
2N5

(

4

3
g43 +

1

15
g41

) ∣
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∣

F

M

∣
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∣

2

13×3 , (B.12)

m̃2
l =

1

(4π)4
2N5

(

3

4
g42 +

3

20
g41

) ∣

∣

∣

∣

F

M

∣
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2

13×3 , (B.13)

m̃2
e =

1

(4π)4
2N5

(

3

5
g41

) ∣

∣

∣

∣

F

M

∣
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∣

2

13×3 , (B.14)
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at the messenger scale, where x = F/M2 and [67]

g(x) =
1

x2
[(1 + x) log(1 + x) + (1− x) log(1− x)] = 1 +

x2

6
+O(x4). (B.15)

We did not include the corresponding term for sfermion masses [68] in our numerical cal-

culations. This is for consistency of the two-loop messenger–matter terms that are leading

order in F/M2.

Due to the messenger–matter interactions these parameters are corrected. The one-

and two-loop contributions at the messenger scale are summarized as

δm̃2
HU

= − 3

(4π)4

[

Tr
(

Y †
u yuy

†
uYu

)

+ 2Tr
(

Yuy
†
uyuY

†
u

)

]

∣

∣

∣

∣

F

M

∣

∣

∣

∣

2

, (B.16)

δm̃2
HD

= − 3

(4π)4
Tr

(

Y †
d yuy

†
uYd

)

∣

∣

∣

∣

F

M

∣

∣

∣

∣

2

, (B.17)

δm̃2
q = − 1

(4π)2
1

6

(

yuy
†
u

) F 4

M6
h(x)

+
1

(4π)4

{

[

3Tr
(

y†uyu
)

− 16

3
g23 − 3g22 −

13

15
g21

]

yuy
†
u + 3yuy

†
uyuy

†
u + 2yuY

†
uYuy

†
u

− 2Yuy
†
uyuY

†
u + yuY

†
u Tr

(

3y†uYu
)

+ Yuy
†
uTr

(

3Y †
u yu

)
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∣

∣

∣

F

M
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(B.18)
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y†uyu
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M6
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(4π)4
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g21
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y†uyu + 6y†uyuy
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uyu + 2y†uYuY

†
u yu

+ 2y†uYdY
†
d yu − 2Y †

u yuy
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uYu + 2y†uYuTr
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3Y †
u yu

)

+ 2Y †
u yuTr
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3y†uYu
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∣

∣

∣

F
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∣

∣

∣
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(B.19)

δm̃2
dR

= − 1

(4π)4
2Y †

d yuy
†
uYd

∣

∣

∣

∣

F

M

∣

∣

∣

∣

2

, (B.20)

δm2
l = δm2

eR = 0. (B.21)

In the expressions for δm̃2
q and δm̃2

uR
, the first line is the one-loop contribution suppressed

by a factor of x2 over the 2-loop and the GMSB contributions with [69]

h(x) = −3
(2 − x) log(1− x) + (2 + x) log(1 + x)

x4
= 1 +

4x2

5
+O(x4).

In addition, the A-terms receive the one-loop contributions

A∗
u = − 1

16π2

[(

yuy
†
u

)

Yu + 2Yu

(

y†uyu

)] F

M
, (B.22)

A∗
d = − 1

16π2

[(

yuy
†
u

)

Yd

] F

M
. (B.23)
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BP SOFTSUSY mh [GeV] FeynHiggs mh [GeV]

MFV-t (Fig. 3) 124.6 123.5 ± 2.6

MFV-ct (Fig. 4) 125.0 121.6 ± 3.6

U11 (Fig. 5) 118.0 117.8 ± 2.6

U22L (Fig. 6) 117.8 117.7 ± 2.6

U22 (Fig. 7) 124.6 120.2 ± 5.5

U32-c (Fig. 9) 125.0 123.3 ± 3.5

U32-t (Fig. 10) 124.9 123.3 ± 3.0

U32-ct (Fig. 11) 125.7 120.2 ± 2.6

Table 4: Comparison of the Higgs mass obtained from SOFTSUSY and FeynHiggs.

C Higgs Mass Validation

Since the computation of the Higgs mass in some regions of the parameter space involves

various subtleties, we also computed it with FeynHiggs [38–42] for our examples. The

comparison in Table 4 shows that for the selected points in parameter space, the two codes

are in good agreement, with the largest discrepancies for the heavy 7 TeV squarks spectrum

of Fig. 7 and the mixed t̃− c̃ spectrum of Fig. 11. For spectra in the multi-TeV range, this

may be due to the implementation of resummation in FeynHiggs.

D Calculation of Flavor-Violating Parameters

In this work, following [24], we have used the formula

(

δqij
)

MM
=

∆m̃2
ji

m̃2
q

(

Kq
M

)

ij

(

Kq
M

)∗

jj
(D.1)

to parameterize the flavor violation in the M -handed squark sector, where we ignore the

LR mixing. Here ∆m̃2
ji = m2

q̃j
−m2

q̃i
is the squared-mass difference of M -handed squarks,

m̃2
q = 1

3

∑3
α=1m

2
q̃α

is the average mass, and (Kq
M )ij is the mixing appearing in the quark–

squark–gluino coupling. This formula is obtained from the MIA formula [70]

∑

a

∆m̃2
a

m̃2
q

(

Kq
M

)

ia

(

Kq
M

)∗

ja
, (D.2)

where ∆m̃2
a = m2

q̃a
− m̃2

q. In some of our spectra, there are noticeable differences in the

values obtained for δ using the two formulae: this typically occurs when there are sizable

mass splittings between or mixings of the first two generations and the third generation.

Thus, as a reference, we show the values of (δu12)MM in both of the formulae in Table 5. The

other parameters (δd12)MM and (δd23)MM are not shown as they are far below the bounds

in Table 1. All the spectra satisfy the bound on |(δu12)|MM in Table 1, which is calculated

for m̃q = 1 TeV and scales approximately linearly with m̃q. When one takes into account

this scaling, the BPs U11, U22L, and U22 have values of
√

|(δu12)LL||(δu12)RR| that exceed

the bounds by factors of 2–3 assuming O(1) phases; therefore, these examples will require

mild suppression of their phases [47, 70].
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Table 5: (δu
12
)MM for the example spectra in Secs. 3 and 4 given by the two formulae Eq. (D.1)

and Eq. (D.2).

BP formula |(δu12)LL| |(δu12)RR|
√

|(δu12)LL||(δu12)RR|
MFV-t (Fig. 3) D.1 0.0018 0.0063 0.0033

D.2 0.0010 2.3 × 10−5 1.6× 10−4

MFV-ct (Fig. 4) D.1 3.8 × 10−4 0.0077 0.0017

D.2 6.0 × 10−4 0.022 0.0036

U11 (Fig. 5) D.1 0.10 0.0011 0.011

D.2 0.10 0.0011 0.011

U22L (Fig. 6) D.1 0.099 0.0020 0.014

D.2 0.099 0.0020 0.014

U22 (Fig. 7) D.1 0.12 0.0023 0.016

D.2 0.12 0.0023 0.016

U32-c (Fig. 9) D.1 0.0040 0.0026 0.0032

D.2 2.7 × 10−4 0.0026 8.4× 10−4

U32-t (Fig. 10) D.1 1.9 × 10−4 7.4 × 10−4 3.7× 10−4

D.2 5.7 × 10−5 7.4 × 10−4 2.0× 10−4

U32-ct (Fig. 11) D.1 0.0010 0.0045 0.0022

D.2 2.8 × 10−4 0.0024 8.1× 10−4
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