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Abstract
With only the tree level operator, the decay of Λb → pK is predicted to be one order smaller

than the experimental data. The QCD penguin effects should be taken into account. In this

paper, we explore the one-loop QCD corrections to the decay of Λb → pK within the framework

of QCD factorization approach. For the baryon system, the diquark approximation is adopted.

The transition hadronic matrix elements between Λb and p are calculated in the light front quark

model. The branching ratio of Λb → pK is predicted to be about 4.85 × 10−6 which is consistent

with experimental data (4.9 ± 0.9) × 10−6. The CP violation is about 5% in theory.
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I. INTRODUCTION

The weak decays of the heavy baryon Λb provide an ideal place to extract information

about the Cabibbo-Kobayashi-Maskawa (CKM) parameters and explore the mechanism of

CP violation complementary to the B meson system. For the non-leptonic processes, the

strong interaction dynamics is very complicated. Thus, these processes are also good probes

to test different QCD models and factorization approaches. In early works of [1, 2], the weak

decay of Λb to Λc and light baryons (p, Λ) are systematically studied. The hadronic transition

matrix elements parameterized by form factors are calculated by use of a light-front quark

model (LFQM) [3–8]. Since there are three valence quarks in a baryon, the quark-diquark

picture was employed for simplification. It is found that the diquark approximation not only

greatly simplifies the calculations, but also gives well theoretical predictions.

With a simple factorization hypothesis, many non-leptonic processes of Λb to a light

baryon and a meson are calculated in [1]. The theory predictions of branching ratios are well

consistent with the experiment data except one process of Λb → p K−. The theory result is

Br(Λb → p K−) = 2.58×10−7, which is one order smaller than the data (4.9±0.9)×10−6 [9].

What is the reason? In fact, the physics reason had been discussed in [1]. The calculations

are performed at the tree level. In most cases, the tree operator contribution is dominant.

However, for the Λb → p K− process, the tree level contribution is suppressed by the CKM

matrix elments VubV
∗
us. For the penguin diagram, the main contribution comes from the loop

where top quark is the dominant intermediate fermion. The CKM entry would be VtbV
∗
ts

which is almost 50 times larger than VubV
∗
us. Thus even though there is a loop suppression

of order αs/4π, it is compensated by the much larger CKM parameter, so the contributions

from penguin diagrams are dominant. The effects of QCD penguin have been displayed in

B → πK processes. For example, the process of B0 → K+π− is QCD penguin dominated

and its branching ratio is (1.94±0.06)×10−5, while for a tree dominated process B0 → π+π−

with Br(B0 → π+π−) = (5.15± 0.22)× 10−6, the ratio is a factor of three smaller than that

of B0 → K+π−.

Using the method of perturbative QCD (pQCD) approach, Λb → p K− has been calcu-

lated in [10]. The result is 1.82 × 10−6 in conventional pQCD approach and 2.02 × 10−6 in

hybrid pQCD approach. We can see that it is smaller than a half of the experimental data

(4.9±0.9)×10−6. In this paper, we will study the QCD corrections in the decay Λb → p K−

at one-loop order within the framework of QCD factorization approach [11–14]. This factor-

ization approach provides a systematic method to treat the non-factorizable QCD effects.

It has been widely applied into many B meson non-leptonic processes. We will employ this

approach into the heavy baryon decays, the Λb → p K− process in this study.

The paper is organized as follows: In Section II, we list the effective Hamiltonian for the

transition Λb → p K−, give the QCD factorization approach to Λb → p K−, the decay rate,

and then discuss CP asymmetry and the relation to decay of B̄0 → K−π+. In Section III, we

will give the numerical calculations. In Section IV, a discussion and conclusion is provided.
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II. THE DECAY Λb → pK−

A. Effective Hamiltonian for Λb → pK−

In the decay Λb → pK−, the initial Λb and final p are baryons with three valence quarks.

When the diquark picture is employed, i.e. the inner quark structure of Λb is b[ud] and p

is u[ud] where [ud] is a scalar diquark in this case and acted as a spectator. The effective

Hamiltonian Heff for b → s transitions can be written by:

Heff =
GF√
2

∑

q=u,c

VqbV
∗
qs

(

C1O
q
1 + C2O

q
2 +

10
∑

i=3

CiOi + C7γO7γ + C8gO8g

)

, (1)

where Ci are the Wilson coefficients evaluated at the renormalization scale µ; the current-

current operators Ou
1 and Ou

2 read

Ou
1 = s̄αγ

µLuα · ūβγµLbβ , Ou
2 = s̄αγ

µLuβ · ūβγµLbα, (2)

The usual tree-level W-exchange contribution in the effective theory corresponds to O1 and

O2 emerges due to the QCD corrections. The QCD penguin operators O3 −O6 are

O3 = s̄αγ
µLbα ·

∑

q′
q̄′βγµLq

′
β , O4 = s̄αγ

µLbβ ·
∑

q′ q̄
′
βγµLq

′
α,

O5 = s̄αγ
µLbα ·

∑

q′
q̄′βγµRq′β , O6 = s̄αγ

µLbβ ·
∑

q′ q̄
′
βγµRq′α, (3)

They contribute in order αs through the initial values of the Wilson coefficients at µ ≈ MW

[15] and operator mixing due to the QCD correction [16]. Some operators O7, . . . , O10 which

arise from the electroweak-penguin diagrams are

O7 =
3

2
s̄αγ

µLbα ·
∑

q′
eq′ q̄

′
βγµRq′β, O8 =

3

2
s̄αγ

µLbβ ·
∑

q′
eq′ q̄

′
βγµRq′α,

O9 =
3

2
s̄αγ

µLbα ·
∑

q′
eq′ q̄

′
βγµLq

′
β , O10 =

3

2
s̄αγ

µLbβ ·
∑

q′
eq′ q̄

′
βγµLq

′
α, (4)

Here α and β are the SU(3) color indices. There are still two operators

O7γ =
−e

8π2
mbs̄σµν(1 + γ5)F

µνb, O8g =
−gs
8π2

mbs̄σ
µνRGµνb. (5)

O7γ and O8g are the electromagnetic, chromomagnetic dipole operators and Gµν denotes the

gluonic field strength tensor. In the above equations, L and R are the left- and right-handed

projection operators with L = 1−γ5 and R = 1+ γ5 respectively. The sum over q′ runs over

the quark fields that are active at the scale µ = O(mb), i.e. q′ = u, d, s, c, b. The difficult

problem is how to calculate the hadronic matrix elements of the local effective operators.
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FIG. 1: Order αs corrections to the hard-scattering kernels T 1 (first two rows)and T 2 (last row)

B. Λb → p K− in QCD factorization approach

The naive factorization neglects the strong interactions between the final K meson and

two baryons. It is necessary to consider the non-factorizable contributions. There are several

approaches which are beyond the naive factorization. In this study, we use the method called

QCD factorization approach [11–14]. The QCD factorization proves that in the heavy quark

limit, the decay amplitude can be factorized into a product of hard scattering kennel and

non-perturbative part. The K meson and proton are both light hadron and energetic. The

interaction between them should be caused by large momentum transfer. Although the proof

is given for the B meson case, it would be valid for the baryon system, too. Since we adopt

the diquark approximation, the complications caused by more valence quarks nearly vanish.

The diquark, as a whole, seems to be a light quark (it should be noted that the diquark in

our case is a scalar while quark is a fermion). Thus, we assume that QCD factorization can

be applicable to Λb → pK−.

The diagram for the αs order QCD corrections to Λb → pK− is plotted in Fig. 1. The

fist two rows represents one-loop vertex corrections and αs corrections to electromagnetic,

chromomagnetic dipole operators. The last row represents the hard spectator scattering. At

present, we don’t know the wave function for a baryon with a quark and a diquark. One may

use a meson like wave function, but a quantity like the decay constant is unknown. Thus, we

will neglect the hard spectator contributions. After this simplification, the decay amplitude

of Λb → pK− can be written by

〈pK−|Oi|Λb〉 = FΛb→p T 1
i ∗ fKΦK . (6)

Here, FΛb→p represents the Λb → p form factors which will be defined below; ∗ represents a

convolution in the light-cone momentum fraction space; T 1
i represents the four-quark hard

scattering kernel; ΦK represents the kaon meson light-cone wave function.
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In QCD factorization, the amplitude Λb → pK− is obtained as

M =
GF√
2

{

VubV
∗
usa1 + VqbV

∗
qs [a

q
4 + aq10 +R (aq6 + aq8)]

}

×〈p | ūγµLb | Λb〉〈K− | s̄γµLu | 0〉, (7)

Here, a summation over q = u, c is implicit. The ai are written as

a1 = C1 +
C2

Nc

[

1 +
CFαs

4π
VK

]

,

aq4 = C4 +
C3

Nc

[

1 +
CFαs

4π
VK

]

+
CFαs

4π

P q
K,2

Nc

,

aq6 = C6 +
C5

Nc

(

1− 6
CFαs

4π

)

+
CFαs

4π

P q
K,3

Nc

,

aq8 = C8 +
C7

Nc

(

1− 6
CFαs

4π

)

+
α

9π

P q,EW
K,3

Nc

,

aq10 = C10 +
C9

Nc

[

1 +
CFαs

4π
VK

]

+
α

9π

P q,EW
K,2

Nc

. (8)

where Ci ≡ Ci(µ), αs ≡ αs(µ), CF = (N2
c − 1)/(2Nc), and Nc = 3. The quantities VK ,

P q
K,2, P q

K,3, P q,EW
K,2 , and P q,EW

K,3 are hadronic parameters that contain all nonperturbative

dynamics. Their expressions are given in [13]. These quantities consist of convolutions

of hard-scattering kernels with meson distribution amplitudes. The term VK denotes the

vertex corrections, P q
K,2 and P q

K,3 denote QCD penguin corrections and the contributions

from the dipole operators. For penguin terms, the subscript 2 or 3 indicates the twist of the

corresponding projections.

C. The decay rate

In Eq. (7), the first factor 〈p|Jµ|Λb〉 in the hadronic matrix element is parameterized by

form factors. The calculations of these non-perturbative form factors is one essential work of

hadron physics. The form factors for the weak transition Λb → p are defined in the standard

way as

〈p(P ′) | ūγµ(1− γ5)b | Λb(P )〉

= ūp(P
′)

[

γµf1(q
2) + iσµν

qν

MΛb

f2(q
2) +

qµ
MΛb

f3(q
2)

]

uΛb
(P )

−ūp(P
′)

[

γµg1(q
2) + iσµν

qν

MΛb

g2(q
2) +

qµ
MΛb

g3(q
2)

]

γ5uΛb
(P ), (9)
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The second factor of matrix element in Eq. (7) defines the decay constants as follows

〈K−(P )|Aµ|0〉 = fKPµ. (10)

In the above definition, we omit a factor (−i) for the pseudoscalar meson decay constant for

simplification.

Substituting the expressions of 〈K− | s̄γµ(1 − γ5)u | 0〉 and 〈p | ūγµ(1 − γ5)b | Λb〉 one

can obtain the decay amplitude of Λb → p K− as

M(Λb → p K−) = ūp(A+Bγ5)uΛb
, (11)

with

A = λfK(MΛb
−Mp)f1(M

2
K), B = λfK(MΛb

+Mp)g1(M
2
K),

where

λ =
GF√
2

{

VubV
∗
usa1 + VqbV

∗
qs [a

q
4 + aq10 + R (aq6 + aq8)]

}

.

Then we get the decay rate of Λb → p K−

Γ =
pc
8π

[

(MΛb
+Mp)

2 −M2
K

M2
Λb

| A |2 +(MΛb
−Mp)

2 −M2
K

M2
Λb

| B |2
]

. (12)

where pc is the proton momentum in the rest frame of Λb.

D. CP asymmetry and relation to decay of B̄0 → π+K−

The CP violation is defined in the same way as PDG book [9] by

ACP ≡ Br(Λ0
b → p K−)−Br(Λ̄0

b → p̄ K+)

Br(Λ0
b → p K−) +Br(Λ̄0

b → p̄ K+)
, (13)

At the quark level, the CP violation is represented by b quark decay minus b̄ quark. The

similar definition of CP violation for meson is

ACP ≡ Br(B̄0 → f)−Br(B0 → f̄)

Br(B̄0 → f) +Br(B0 → f̄)
. (14)

Under the diquark approximation, the baryon is similar to a meson. In fact, at the quark

level, Λb → pK− has the same sub-processes b → suū as that in B̄0 → π+K−. The amplitude

of B̄0 → π+K− is

M(B̄0 → π+K−) =
GF√
2

{

VubV
∗
usa1 + VqbV

∗
qs [a

q
4 + aq10 +R (aq6 + aq8)]

}

×〈π+ | ūγµLb | B̄0〉〈K− | s̄γµLu | 0〉. (15)
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Compare it to Eq. (7), we can obtain a relation between the baryon and meson processes,

Br(Λb → p K−) = BrExp(B̄0 → π+K−)× Brtree(Λb → p K−)

Brtree(B̄0 → π+K−)
. (16)

Where the ”tree” represents the branching ratio with only the tree operator contribution.

This relation will be used to estimate the branching ratio of Λb → p K− from the meson

process B̄0 → K−π+. About the CP violation, under the above assumption, ACP in the two

processes should be equal.

III. NUMERICAL RESULTS

At first, we list some parameters used in the numerical calculations. The input parameters

are taken from [9] and the previous works.

mu = 0.3 GeV, ms = 0.45 GeV, mc = 1.3 GeV,

mK = 0.4937 GeV, mb = 4.4 GeV, m[ud] = 0.5 GeV,

MΛb
= 5.619 GeV, Mp = 0.938 GeV, mB = 5.280 GeV,

mπ = 0.1396 GeV, fK = 0.160 GeV FB→π
0 (0) = 0.3 .

The above quark masses of u, d are the constitute masses which are used in the LFQM.

While for the current quark masses, mu = 2.3 MeV and ms = 95 MeV.

Following [1], we recalculate the from factors of Λb → p in the LFQM. The form factors

at different q2 are parametrized in a three-parameter form as

F (q2) =
F (0)

(

1− q2

M2

Λ
b

)

[1− a

(

q2

M2

Λ
b

)

+ b

(

q2

M2

Λ
b

)2

]

. (17)

where the fitted values of a, b, and F (0) are given in Table I. Our results reproduce those

TABLE I: The value of a, b and F (0).

F F (0) a b

f1 0.1131 1.70 1.60

f2 -0.0356 2.50 2.57

g1 0.1112 1.65 1.60

g2 -0.0097 2.80 2.70

given in [1].

For Wilson coefficients Ci, we use the leading order (LO) results as given in [13] and list

them in Table II. As for the CKMmatrix elements, we adopt the Wolfenstein parametrization

7



TABLE II: The Wilson coefficients Ci in LO.

C1 C2 C3 C4 C5 C6

µ = mb/2 1.185 -0.387 0.018 -0.038 0.010 -0.053

µ = mb 1.117 -0.268 0.012 -0.027 0.008 -0.034

µ = 2mb 1.074 -0.181 0.008 -0.019 0.006 -0.022

C7/α C8/α C9/α C10/α

µ = mb/2 -0.012 0.045 -1.358 0.418

µ = mb -0.001 0.029 -1.276 0.288

µ = 2mb 0.018 0.019 -1.212 0.193

beyond the LO from [17]:

Vud = 1− 1

2
λ2 − 1

8
λ4 +O(λ6), Vus = λ+O(λ7), Vub = Aλ(ρ− iη),

Vcd = −λ +
1

2
A2λ5[1− 2(ρ+ iη)] +O(λ7),

Vcs = 1− 1

2
λ2 − 1

8
λ4(1 + 4A2) +O(λ6), Vcb = Aλ2 +O(λ8),

Vtd = Aλ3[1− (ρ+ iη)(1− 1

2
λ2)] +O(λ7),

Vts = −Aλ2 +
1

2
A(1− 2ρ)λ4 − iηAλ4 +O(λ6),

Vtb = 1− 1

2
A2λ4 +O(λ6). (18)

Here, we take the value A = 0.822, λ = 0.22535, ρ = 0.155, η = 0.358.

By use of the above input parameters, we can get the Wilson coefficients ai which is rele-

vant to the process of Λb → p K− with the αs order QCD corrections. The numerical results

are given in Table III. Considering the theoretical uncertainties, our results are consistent

with those in [13]. The small difference can be ascribed to the input parameters and the

hard spectator contributions we neglected. Although the scale µ dependence of the Wilson

coefficients ai is reduced compared to the LO ones, there is still effect which is not negligible.

This dependence implies the importance of higher order effects.

Now, we can obtain the branching ratio of Λb → p K−. The predicted results at different

scale µ are listed in Table IV. As discussed above, the results have an un-negligible depen-

dence on the choice of scale µ. The higher the scale is, the lower the prediction is. The

result at µ = mb/2 give prediction of 4.85 × 10−6 which is very well with the recent LHCb

data (4.9± 0.9)× 10−6. The good coincidence indicates that µ = mb/2 is more appropriate.

From phenomenological point of view, mb is the largest scale in b quark decay subprocess

and each quark in the final hadrons does not carry the total momentum. The momentum

transfer between dirrerent quarks should be smaller than mb. So the choice of µ at µ = mb/2

is more reasonable than at mb.

8



TABLE III: The numerical values of ai in QCD factorization.

µ = mb/2 µ = mb µ = 2mb

a1 1.089 + 0.047i 1.064 + 0.026i 1.044 + 0.015i

au4 −0.033 − 0.018i −0.031 − 0.016i −0.029 − 0.014i

ac4 −0.034 − 0.006i −0.036 − 0.005i −0.033 − 0.005i

au6 −0.049 − 0.018i −0.038 − 0.015i −0.031 − 0.013i

ac6 −0.054 − 0.007i −0.041 − 0.006i −0.034 − 0.006i

au8 3.3 × 10−4 (1.9 − 0.6i) × 10−4 (0.9 − 1.0i) × 10−4

ac8 3.2 × 10−4 (1.8 − 0.3i) × 10−4 (0.7 − 0.5i) × 10−4

au10 (6.4 + 12.9i) × 10−4 (2.3 + 9.1i) × 10−4 (−1.8 + 6.6i) × 10−4

ac10 (6.4 + 13.0i) × 10−4 (2.2 + 9.4i) × 10−4 (−2.0 + 7.2i) × 10−4

TABLE IV: The branching ratios of Λb → p K−.

µ = mb/2 µ = mb µ = 2mb

QCD factorization 4.85 × 10−6 3.35 × 10−6 2.57× 10−6

Estimation from meson data 4.82 × 10−6

Experimental data (4.9 ± 0.9) × 10−6

Under the assumption by neglecting the strong interactions with the spectator quark (di-

quark for the baryon), Λb → p K− contains the same strong dynamics with B̄0 → π+K−.

We can use the data of meson process to extract the strong interaction information. The

advantage of this method is that the scale µ dependence is eliminated and the theory un-

certainties of QCD factorization approach is reduced by experiment. By the aid of of the

experimental data of Br(B̄0 → π+K−) and the Eq. (16), we estimate the decay rate with

Br(Λ0
b → p K−) = 4.82× 10−6. It coincides with the experimental measurement very well.

The results of CP violation is displayed in Table V. Contrary to the branching ratio, the

numerical results of CP violation of Λb → p K− becomes smaller as the scale µ decreases.

At scale µ = mb/2, the CP violation is about 5%. The experimental data from LHCb is

0.37± 0.17± 0.03. The central value is several times larger than theory prediction. Because

the experimental error is still large, it’s too early to give a conclusion whether the theory

coincides with the experiment or not. It is interesting and necesaary to compare the CP

violation to the meson case. The data of CP violation in B̄0 → π+K− is also provided

in Table V for comparison. The value is −0.080 ± 0.007 ± 0.003 with a negative sign. In

our calculations under the diquark approximation, the CP violation of B̄0 → π+K− and

Λb → p K− should be equal. However, we see that the experimental data for the two

processes are quite different, especially the sign is opposite. In fact, the CP violation for the

process of B̄0 → π+K− in the QCD factorization approach is a challenging problem for a

9



TABLE V: The CP violation ACP (Λb → p K−).

µ = mb/2 µ = mb µ = 2mb

QCD factorization 0.049 0.076 0.095

Experimental data 0.37± 0.17 ± 0.03

ACP (B̄0 → π+K−) −0.080 ± 0.007 ± 0.003

long time. The theory prediction is not only inconsistent with the experiment data but also

is wrong in sign.

IV. DISCUSSION AND CONCLUSION

The weak decay of Λb contains fruitful information of strong interaction and provides

an important probe to test different theory approaches. In this work, we extend the QCD

factorization approach to the heavy baryon decays, in particular the process of Λ0
b → p K−.

The previous literature considers only the tree diagram contribution and the theory result is

one order smaller than the experiment. The Λ0
b → p K− is a type of b → s transition which

the QCD penguin diagram contribution is more important than the tree diagram because of

the CKM parameter enhancement. The QCD correction is calculated to αs order and the

Wilson coefficients at different renormalization scale are given. For the baryon, the diquark

approximation is applied. The Λb → p form factors are calculated in the light-front quark

model. The branching ratio of Λ0
b → p K− is predicted to be 4.85× 10−6 at scale µ = mb/2.

The theory coincides with the experimental data (4.9± 0.9)× 10−6 very well.

From the coincidence of theory and experiment, we can obtain some conclusions as fol-

lowing. (1) The perturbative contribution is dominant. The success provides a confidence of

applicability of QCD factorization method to the more complicated heavy baryon processes.

(2) The choice of µ = mb/2 is appropriate. Because the largest scale is mb in the b quark

decay subprocess, the real momentum transfer cannot reach mb and should be smaller than

it. (3) The diquark ansatz works very well. The diquark approximation not only lead to a

clear physics picture but also a great simplification for the numerical calculations. From this

study and the previous literatures on heavy baryon decays, we may say that the diquark is

really a working ansatz.

The main theory uncertainties come from several origins: the choice of scale µ, the Λ →
p form factors, the neglected hard spectator interaction and the non-perturbative power

corrections. The problem of scale µ has been discussed in the article. Its scale dependence is

not negligible. The higher loop corrections may help to reduce the dependence but are usually

difficult to be realized. Although the Λ → p form factors depend on model calculations, the

reliability can be fitted by experiemnt. In [1], it shows that our calculated Λ → p form

factors give a well prediction for Λb → p π−: the theory result of the branching ratio is

3.15 × 10−6 and the experimental data is (3.5 ± 0.6(stat) ± 0.9(syst)) × 10−6. Thus, the

10



model-dependent form factors don’t cause large theoretical uncertainties.

For the meson case, the hard spectator scattering contributes a leading power correction.

It modifies the Wilson coefficient a5 largely. For the coefficients a4 and a6 which is relevant to

this study, the hard spectator correction is either numerically small (about 10%) or absent.

Thus, for the baryon case, the contribution from the hard spectator interaction is small. The

weak annihilation contribution is power suppressed. At the realistic mb scale, it is necessary

to consider its effect. The estimation of it suffers from the problem of end-point singularity.

According to analysis in [13], the numerical values of annihilation correction is less than

25% compared to the leading power term. Even this, the correction has included the chiral

enhanced twist-3 contribution. For the baryon case, we might expect a similar small or

even smaller weak annihilation contribution because no such chiral enhancement exist for

the baryon of proton.

The higher power correction is usually difficult to calculate. The consistence of theory at

µ = mb/2 with data indicates that the non-perturbative power correction is less important

and the perturbative contribution is dominant. One can use the data from B̄0 → π+K− to

reduce the theory uncertainties in QCD factorization approach. By this way, we obtain the

decay rate with Br(Λ0
b → p K−) = 4.82× 10−6 which coincides the experiment very well.

About the CP violation, it provides us a very different physics picture. Under the diquark

approximation and neglecting the spectator interactions, the theory predicts CP violation

at level of about 5% for both the baryon process Λ0
b → p K− and meson case B̄0 → π+K−.

The origin of the strong phase in QCD factorization approach comes from the quark loop in

the vertex corrections. For the meson case, the theory result is positive. But the experiment

data is negative, about −10%. This obvious inconsistence implies the importance of non-

perturbative corrections for CP violation. For the baryon Λ0
b → p K−, the experiment data

gives a very large result: 0.37±0.17±0.03. In QCD factorization approach, the perturbative

contribution cannot reach 10%. Because it’s quite difficult to estimate the non-perturbative

corrections, the prediction of CP violation in theory is a challenging research. We hope the

future LHCb data can provide us a more precise measurement of CP violation in Λ0
b → p K−

to improve the development of theory.
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Note added After we put the manuscript of this work on arXiv:1603.02800 [hep-ph],

we are noticed a similar research [18]. The authors had studied Λb → p M within the

generalized factorization approach. For the process of Λb → p K, the predicted branching

ratio and direct CP violation are similar to us. But it should be noted that the form factors
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and the Wilson coefficients in the two works are different.
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