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Abstract

In this paper we point out that Starobinky inflation could be induced by quantum

effects due to a large non-minimal coupling of the Higgs boson to the Ricci scalar. The

Higgs Starobinsky mechanism provides a solution to issues attached to large Higgs

field values in the early universe which in a metastable universe would not be a viable

option. We verify explicitly that these large quantum corrections do not destabilize

Starobinsky’s potential.
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The idea that inflation may be due to degrees of freedom already present in the stan-

dard model of particle physics or quantum general relativity is extremely attractive and has

received much attention in the recent years. In particular two models stand out by their

simplicity and elegance. Higgs inflation [1–3] with a large non-minimal coupling of the Higgs

boson H to the Ricci scalar (ξH†HR) and Starobinsky’s inflation model [4] based on R2

gravity are both minimalistic and perfectly compatible with the latest Planck data.

These two models should not be considered as physics beyond the standard model but

rather both operators ξH†HR and R2 are expected to be generated when general relativity

is coupled to the standard model of particle physics. We will come back to that point

shortly. The aim of this paper is to point out an intriguing distinct possibility, namely that

Starobinsky inflation is generated by quantum effects due to a large non-minimal coupling

of the Higgs boson to the Ricci scalar. In that framework, we do not need to posit that the

Higgs boson starts at a high field value in the early universe which would alleviate constraints

coming from the requirement of having a stable Higgs potential even for large Higgs field

values [5–7].

We shall now argue that both terms necessary for Higgs inflation or Starobinsky’s model

are naturally present when the standard model of particle physics is coupled to general rela-

tivity. While the quantization of general relativity remains one of the outstanding challenges

of theoretical physics, it is possible to use effective field theory methods below the energy scale

M⋆ at which quantum gravitational effects are expected to become large. The energy scale

M⋆ is usually assumed to be of the order of the Planck scale MP =
√
8πGN

−1
= 2.4335×1018

GeV, however recent work has shown that even in four space-time dimensions this energy

scale is model dependent. At energies below M⋆, we can describe all of particle physics and

cosmology with the following effective field theory (see e.g. [8–10])

S =

∫

d4x
√
−g

((

1

2
M2 + ξH†H

)

R− Λ4
C + c1R

2 + c2C
2 + c3E + c4�R + (1)

−LSM − LDM +O(M−2
⋆ )

)

where we have restricted our considerations to dimension four operators which are ex-

pected to dominate at least at low energies. Note that we are using the Weyl basis and

the following notations: R stands for the Ricci scalar, Rµν for the Ricci tensor, E =

RµνρσR
µνρσ − 4RµνR

µν + R2, C2 = E + 2RµνR
µν − 2/3R2, the dimensionless ξ is the non-

minimal coupling of the Higgs boson H to the Ricci scalar, the coefficients ci are dimension-

less free parameters, the cosmological constant ΛC is of order of 10−3 eV, the Higgs boson

vacuum expectation value, v = 246 GeV contributes to the value of the Planck scale

(M2 + ξv2) = M2
P , (2)
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LSM contains all the usual standard model interactions (including mass terms for neutrinos)

and finally LDM describes the dark matter sector (this is the only part of the model which

has not been tested yet experimentally). Submillimeter pendulum tests of Newton’s law [11]

lead to extremely weak limits on the parameters ci. In the absence of accidental cancellations

between these coefficients, they are constrained to be less than 1061 [12]. The discovery of

the Higgs boson and precision measurements of its couplings to fermions and bosons at the

LHC can be used to set a limit on ξ. One finds that |ξ| < 2.6× 1015 [13]. Clearly very little

is known about the values of ci and ξ.

Besides describing all of particle physics and late time cosmology, the action given in

Eq. (1) can also describe inflation if some of its parameters take specific values and if some

of its fields fulfil specific initial conditions in the early universe. This action, depending on

the initial conditions can describe either Higgs inflation if ξ ∼ 104 and the Higgs field is

chosen to take large values in the early universe or Starobinsky inflation if c1 ∼ 109 and the

corresponding scalar extra degree of freedom which can be made more visible by going to

the Einstein frame takes large values in the early universe.

If we assume that the Higgs fields take small values in the early universe, Eq. (1) reduces

to

SJ
Starobinsky =

∫

d4x
√
g
1

2

(

M2
PR + cSR

2
)

(3)

during inflation which in the Einstein frame gives

SE
Starobinsky =

∫

d4x
√
g





M2
P

2
R− 1

2
∂µσ∂

µσ − M4
P

cS

(

1− exp

(

−
√

2

3

σ

MP

))2


 . (4)

We have assumed that the scalar degree of freedom σ hidden in R2 takes large field values

in the early universe. A successful prediction of the density perturbation δρ/ρ requires

cS = 0.97 × 109 [14, 15]. On the other hand, if we assume that only the Higgs field takes

large values in the early universe,the action (1) reduces to

SJ
Higgs =

∫

d4x
√−g

(

M2

2
R + ξHH

†HR− LSM

)

(5)

=

∫

d4x
√
−g

(

M2 + ξHh
2

2
R− 1

2
∂µh∂

µh +
λ

4
(h2 − v2)2

)

+ . . . .

In the Einstein frame, one obtains

SE
Higgs =

∫

d4x
√

ĝ

(

M2
P

2
R̂− 1

2
∂µχ∂

µχ+ U(χ) + . . .

)

(6)

with

dχ

dh
=

√

Ω2 + 6ξ2Hh
2/M2

P

Ω4
(7)
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where Ω2 = 1 + ξ2Hh
2/M2

P and

U(χ) =
1

Ω(χ)4
λ

4
(h(χ)2 − v2)2. (8)

A successful prediction of the density perturbation δρ/ρ requires ξH = 1.8× 104.

These two models are very attractive because they do not necessitate physics beyond the

standard model. Furthermore, they are compatible with current cosmological observations

which favor small tensor perturbations that so far have not been observed. It has actually

been pointed out that both models are phenomenologically very similar [16, 17]. However,

while Starobinky’s inflation model does not suffer from any obvious problem, it has recently

been pointed out that in the case of Higgs inflation, which necessitate the Higgs field to take

very large field values, our universe will not end up in the standard model Higgs vacuum if

it is metastable as suggested by the latest measurement of the top quark mass, but rather

in the real vacuum of the theory which does not correspond to the world we observe. In

this paper we point out that there is an alternative possibility. Namely when quantum

corrections are taken into account, a large non-minimal coupling of the Higgs boson can

generate Starobinsky inflation by generating a large coefficient for the coefficient of R2 in

the early universe. While the model corresponds to Starobinsky’s model, the Higgs boson

plays a fundamental role as it triggers inflation by generating a large coefficient for R2.

The action given in Eq. (1) needs to be renormalized. We will work in dimensional

regularization to avoid having to discuss the dependence of observables on the cutoff (this

problem is due to the non-renormalizability of quantum gravity). We shall neglect the

cosmological constant which is not important for inflation purposes. In that case, Newton’s

constant does not receive any correction to leading order. On the other hand, the coefficient

c1 of R2 gets renormalized and one can define a renormalization group equation for this

coupling constant. Ns scalar fields with a non-minimal coupling to the Ricci scalar ξ will

lead to the following renormalization group equation [8–10]

µ∂µc1(µ) =
(1− 12ξ)2

1152π2
Ns (9)

to leading order (i.e. neglecting the graviton contribution which is suppressed by 1/ξ), note

that fermions and vector fields do not contribute to the renormalization of c1 in the Weyl

basis. The renormalization group equation can be easily integrated, one finds [8–10]:

c1(µ2) = c1(µ1) +
(1− 12ξ)2Ns

1152π2
log

µ2

µ1

. (10)

The bounds on c1 in today’s universe are very weak as mentioned before. Even if c1(today)

is of order unity, it would have been large in the early universe if the Higgs non-minimal
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coupling ξ is large. Indeed, we assume that inflation took place at some high energy scale

e.g. µ ∼ 1015 GeV, the log term is a factor of order 60 if we take the scale µ1 of the order of

the cosmological constant. A Higgs non-minimal coupling to the Ricci scalar of ξ = 1.8×104

would lead to a coefficient c1 = 0.97 × 109 for R2. Assuming that the scalar extra degree

contained in R2 took large field values in the early universe, a large non-minimal coupling

of the Higgs boson to the Ricci scalar can trigger Starobinsky inflation even if the standard

model vacuum is metastable as the Higgs boson itself does not roll down its potential during

inflation. Inflation is due entirely to the R2, but is triggered by the Higgs large non-minimal

coupling.

Let us emphasize two important points. The first one is that c1 ∼ 0.97×109 is fixed by the

CMB constraint. This parameter only takes such a large value at inflationary energy scales

due to its renormalization group evolution. The second one, is that we are neglecting the

running of the Higgs boson non-minimal coupling to the Ricci scalar. However, this is a very

good approximation. The leading contributions of the standard model to the beta-function

of the non-minimal coupling are known [20] :

βξ =
6ξ + 1

(4π)2

[

2λ+ y2t −
3

2
g2 − 1

4
g′2
]

(11)

where λ is the self-interaction coupling of the Higgs boson, g the SU(2) gauge coupling and

g′ the U(1) gauge coupling. Quantum gravitational corrections will be suppressed by powers

of the Planck mass and can thus be safely ignored as long as we are at energies below the

Planck mass.

One might worry that if the large non-minimal coupling of the Higgs boson triggers

a large coefficient for the operator R2, it might also generate new terms in the effective

action which could destabilize the potential. The leading order effective action to the second

order in the curvature expansion induced by scalar fields non-minimally coupled to gravity

is known [8, 9]:

SEFT =
1

16πG

∫

d4x
√−g

(

R + αR2 + βR log
−�

µ2
R + γC2 + . . .

)

. (12)

Note that here we are neglecting the cosmological constant, α = c1×16πG and γ = c2×16πG

are renormalized coupling constants and we shall assume that c2 is small at the scale of

inflation, it is not sensitive to the Higgs boson’s non-minimal coupling, while we have fixed the

Higgs non-minimal coupling such that c1 = 0.97×109. The coefficient β is a prediction of the

effective action and is given byNs(1−12ξ)2/(2304π2)×16πG where Ns is the number of scalar

field degrees of freedom in the model, in our case 4. The coefficient Ns(1 − 12ξ)2/(2304π2)

is indeed large and of the order of 7.8 × 106 and we have to check that the log-term does

not lead to sizable contributions to the effective potential of the Starobinsky’s field. Before
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verifying this explicitly, let us mention that the large non-minimal coupling between the

Higgs boson and the Ricci scalar which is necessary to induce Starobinsky inflation does not

lead to perturbative unitarity problems [18] (see Appendix A).

Note that the coefficients of E and of C2 do not depend on the non-minimal coupling of

the Higgs boson to the Ricci scalar. Furthermore in 4 dimensions, E does not contribute to

the equations of motion. The coefficient of the term C2 is assumed before renormalization

to be of the same order as that of R2, i.e. of order 1. However, after renormalization the

coefficient of R2 is tuned to be very large and of the order of 109 while the coefficient of C2

remains small compared to the renormalized coefficient of R2. C2 is thus negligible.

We shall treat the effective action (12) as a F (R) gravity with F (R) = R + αR2 +

βR log −�

µ2 R. There is a well established procedure to map such models from the Jordan

frame to the Einstein frame, see e.g. [19]. The potential for the inflaton in the Einstein

frame is given by

V (φ) =
1

2κ2

(

e
√

2

3
κφR(φ)− e2

√
2

3
κφF (R(φ))

)

(13)

where κ2 = 8πG and R(φ) is a solution to the equation

φ = −
√

3

2

1

κ
log

dF (R)

dR
. (14)

We can find a formal solution to this equation

R(φ) =
1

2α





1

1 + β

2α
log
(

−�

µ2

)





(

e−
√

2

3
κφ − 1

)

. (15)

This expression for R(φ) can be understood as a series β

2α
which is a small parameter:

R(φ) =
1

2α

(

1−
∞
∑

n=1

(−1)n+1

(

β

2α
log

(−�

µ2

))n
)

(

e−
√

2

3
κφ − 1

)

. (16)

where the log-term can be expressed using

log

(−�

µ2

)

=

∫ ∞

0

ds

(

1

µ2 + s
− 1

−�+ s

)

. (17)

The zeroth order term in β

2α
∼ 4× 10−3 corresponds to the usual Starobinsky solution:

R(φ)(0) = R(φ)Starobinsky =
1

2α

(

e−
√

2

3
κφ − 1

)

. (18)

The series expansion will generate higher order terms corresponding to operators of the type

exp(−
√

2
3
κφ)(2/3κ2∂µφ∂

µφ −
√

2/3κ�φ) and higher derivatives thereof. These new terms
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are however suppressed by powers of β

2α
and can be safely ignored. It is easy to check that the

log-term appearing in the F (R) term of the potential (13) is also suppressed by β

2α
compared

to the usual Starobinsky’s potential.

We conclude that the large quantum corrections induced by the large Higgs boson non-

minimal coupling do not affect the flatness of Starobinsky’s potential. Let us add a few

remarks. The model discussed above is not a new model. Physics (including reheating or

preheating and all of particle physics) is identical to that predict in Starobinsky’s model. We

merely identify a new connection between the Higgs boson and inflation. As in the case of the

standard Starobinsky model, a coupling φ2h2 will be generated. It is however suppressed by

factors of m2
Higgs/M

2
P which is a small number, particle physics will thus not be affected and

the Higgs boson behaves as the standard model Higgs boson. Furthermore, the Higgs field

does not take large values in the early universe, we can thus safely ignore the term H†HR

when studying the inflationary potential. Note that there are subtleties when considering

the equivalence of quantum corrections in different parameterizations/representations of the

theory (i.e. when going from the Jordan frame to the Einstein frame). Here we are avoiding

this problem: we renormalized the theory in the Jordan frame where the model is defined

and then map the effective action to the Einstein frame. When proceeding this way, there

are no ambiguities or risk to mix up the orders in perturbation theory and the expansion in

the conformal factor (see e.g. [21–23]) .

In this paper, we have identified a new connection between the Higgs boson and inflation.

In the model envisaged here, the Higgs boson is not the inflaton but it generates inflation

by creating a large Wilson coefficient for the R2 operator and it is thus at the origin of

Starobinsky’s inflation. This mechanism is interesting as it does not require physics beyond

the standard model. The Higgs boson does not need to take large field values in the early

universe and we could thus be living in a metastable potential.
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Appendix A

It has been shown in [18] that a large non-minimal coupling of the Higgs to the Ricci scalar

does not lead to a new physical scale. While perturbative unitarity appears to be naively

violated at an energy scale of MP/ξ, it can be shown by resumming an infinite series of one-

loop diagrams in the large ξ and large N limits but keeping ξGNN small that perturbative
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unitarity is restored (this phenomenon has been called self-healing by Donoghue). In this

limit one finds

iDαβµν
dressed = − i

2s

LαβLµν

(

1− sF1(s)
2

) . (19)

where Lαβ = ηαβ − qαqβ/q2 and

F1(q
2) = − 1

30π
NsGN(h̄)(1 + 10ξ + 30ξ2) log

(−q2

µ2

)

. (20)

The background dependent Newton’s constant is given by

GN(h̄) =
1

8π(M2 + ξh̄2)
. (21)

In the model described in this paper, one has h̄ = v. Note that F1(s) is negative, there is

thus no physical pole in the propagator. The dressed amplitude in the large ξ and large N

limits is given by

Adressed =
48πGN(h̄)sξ

2

1 + 2
π
GN(h̄)sξ2 log(−s/µ2)

(22)

One easily verifies that the J = 0 partial-wave dressed amplitude fulfils

|a0|2 = Im (a0) . (23)

In other words, unitarity is restored within general relativity without any new physics or

strong dynamics (we are keeping ξGN small) and there is no new scale associated with the

non-minimal coupling despite naive expectations. The cut-off of the effective theory is thus

the usual Planck scale.
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