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Abstract

We construct several dynamical supersymmetry breaking (DSB) models within a single ten-
dimensional supersymmetric Yang-Mills (SYM) theory, compactified on magnetized tori
with or without orbifolding. We study the case that the supersymmetry breaking is trig-
gered by a strong dynamics of SU(NC) SYM theory with NF flavors contained in the
four-dimensional effective theory. We show several configurations of magnetic fluxes and
orbifolds, those potentially yield, below the compactification scale, the field contents and
couplings required for triggering DSB. We especially find a class of self-complete DSB mod-
els on orbifolds, where all the extra fields are eliminated by the orbifold projection and
DSB successfully occurs within the given framework. Comments on some perspectives for
associating the obtained DSB models with the other sectors, such as the visible sector and
another hidden sector for, e.g., stabilizing moduli, are also given.
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1 Introduction

Supersymmetric models for particle physics have been quite actively studied for decades, and
they will attract much more attention under the second season of Large Hadron Collider.
The most famous and successful one is the minimal supersymmetric standard model (MSSM),
which is indeed respected in many of supersymmetric models. In a generic model building,
these supersymmetric models are accompanied by a sequestered hidden sector which breaks
supersymmetry (SUSY) spontaneously, even when that is not mentioned explicitly. The SUSY
breaking sector is certainly a key constituent of SUSY scenarios because of the fact that SUSY
is broken in our real world at least below the electroweak scale.

A wide variety of models for SUSY breaking sectors, solely or in association with the visible
sector, have been proposed so far. In particular, many models of dynamical supersymmetry
breaking (DSB) due to the strong dynamics of non-Abelian gauge theories, were proposed after
the Seiberg duality revealed infrared behaviors of strongly coupled N = 1 SUSY theories [1, 2].
These DSB scenarios are quite promising for completing SUSY models, because a large hierarchy
between the Planck scale and the SUSY breaking scale (intrinsic strong scale) is easily generated
by a logarithmic running of strong gauge couplings.

In this paper, we construct DSB models in four-dimensional (4D) low-energy effective theory
derived from ten-dimensional (10D) supersymmetric Yang-Mills (SYM) theories compactified
on three 2-tori with magnetic fluxes. Extra-dimensional space with magnetic fluxes has been
addressed as a hopeful candidate for the origin of flavor structure of the quarks and leptons,
which is a big mystery of the standard model and its SUSY extensions. Magnetic fluxes on
tori lead to gauge symmetry breaking and derive a product gauge group from a single large
group, realizing generations of chiral fermions as degenerate zero-modes in the bi-fundamental
representations [3, 4] in the 4D effective theory.

Indeed, a semi-realistic flavor structure was obtained in an MSSM-like model derived from
the magnetized SYM theories [5, 6], where a suitable Yukawa hierarchy consistent with the
observed masses and mixings of quarks and leptons is realized. This hierarchy is essentially due
to the quasi-localization of wavefunctions in extra-dimensional space [7] caused by the magnetic
fluxes. It was also shown that this model can be consistent with the recent experimental
constraints on the Higgs boson mass and SUSY particle spectra, where a certain class of SUSY-
breaking mediation mechanism is assumed [6].

With Z2 orbifolding [8], these attractive properties of magnetic fluxes remain still and three-
generation models of the quarks were studied on orbifolds [9]. In Refs. [10], realistic Yukawa
hierarchies were indeed realized on magnetized Z2 ×Z ′

2 orbifolds. These magnetized orbifolds1

lead to a different flavor structure from the magnetized tori without orbifolding [15, 16, 17].
Besides that, the orbifold projection can eliminate extra adjoint fields (those remain massless on
tori and are phenomenologically disfavored in many cases), which would be a great advantage
in a realistic model building.

Thus, magnetized toroidal compactification with or without orbifolding is an exciting pos-
sibility of realizing the suitable visible (MSSM) sector in extra-dimensional field theories. As a

1 Recently, Z3, Z4 and Z6 orbifold models were also studied [11, 12, 13, 14].
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second step towards completing these models, it is important to study SUSY breaking mecha-
nisms on magnetized tori and orbifolds, which is the main purpose of this paper.

The following sections are organized as follows.
In Sec. 2, we review the 10D SYM theories compactified on magnetized tori. We adopt a

4D N = 1 description of 10D SYM theories, which is quite useful for the later model building.
With this description, we give an overview of zero-mode configurations when the theory is
compactified on three 2-tori with magnetic fluxes with/without Z2 orbifolding.

Sec. 3 is the main part of this paper, where the construction of various DSB models is
shown with several concrete magnetized backgrounds. In Sec. 3.1, we show certain aspects
for DSB on magnetized tori with a simple configuration of magnetic fluxes which yields the
gauge symmetry breaking U(N) → U(NC)×U(NX), by assuming certain vacuum expectation
values (VEVs) of the adjoint fields and their masses around them. First, a (metastable) DSB
model is constructed in Sec. 3.1.1 respecting the Intriligator-Seiberg-Shih (ISS) model [18],
that is, SU(NC) SYM theory with NF fundamental massive quarks, satisfying NC − 1 ≤
NF < 3

2
NC . We also construct a DSB model without massive quarks in Sec. 3.1.2, deriving a

tadpole term from tri-linear couplings in the superpotential, via a suitable strong dynamics.
In Sec. 3.2, we extend the flux configuration in such a way that the gauge symmetry breaking
U(N) → U(NC)×U(NX)×U(NY ) occurs. Then, we show a class of self-complete DSB models
on magnetized orbifolds, where all the extra unwanted fields are eliminated by the orbifold
projection and DSB successfully occurs within the given framework without any nontrivial
assumptions. In Sec. 3.3, we comment on some perspectives for embedding the obtained DSB
models into a single whole system including the visible (MSSM) sector and another hidden
sector for the moduli stabilization.

We conclude with the future prospects in Sec. 4.
In Appendix A, the other flux configurations are shown for deriving the same class of DSB

models as the one demonstrated in Sec. 3.2.

2 10D SYM theory on magnetized tori

We review 10D SYM theories on magnetized tori and orbifolds briefly, following Ref. [19]. In
this paper, the theories are compactified on M4 × T 2 × T 2 × T 2 with/without Z2 orbifolding.
First, we introduce a 4D N = 1 description of higher dimensional SUSY theories which is quite
useful for our model building. Using the description, we turn on Abelian magnetic fluxes in
extra dimensional space and show an overview of zero-mode configurations on the magnetized
tori. Finally, we explain about magnetized Z2 orbifolds which are one of key ingredients in
some of our DSB models.

2.1 4D N = 1 decomposition

The 10D SYM theory consists of a 10D vector field AM (M = 0, 1, . . . , 9) and a 10D Majorana-
Weyl spinor field λ. For the extra dimensional directions, we define complex coordinates zi
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(i = 1, 2, 3) and vectors Ai with complex structures τi as

zi ≡ 1

2

(

x2+2i + τix
3+2i

)

, Ai ≡ − 1

Im τi
(τ ∗i A2+2i − A3+2i) .

The periodic boundary conditions for the three 2-tori are given by zi ∼ zi + 1 and zi ∼ zi + τi.
On this complex basis, the metric of three 2-tori is represented by

ds26D ≡ 2hījdz̄
īdzj , hīj = δīj2(2πRi)

2,

where Ri determines the period of i-th 2-torus.
Now, the 10D vector field AM has been decomposed into a 4D vector and three complex

scalar fields, Aµ and Ai. The spinor field can also be decomposed into four 4D Weyl spinors,
which are distinguished by their chiralities on each 2-torus. We denote them as λ+++, λ+−−,
λ−+− and λ−−+ where the i-th subscript ± expresses the chirality on the i-th 2-torus, and the
others (e.g., λ−−−) are excluded by the 10D Weyl condition. We redefine these four spinors as

λ0 ≡ λ+++, λ1 ≡ λ+−−, λ2 ≡ λ−+−, λ3 ≡ λ−−+,

for later convenience.
These 4D component fields form 4DN = 1 supermultiplets, which are assigned to a vector V

and three chiral superfields φi as

V ≡ −θσµθ̄Aµ + iθ̄θ̄θλ0 − iθθθ̄λ̄0 +
1

2
θθθ̄θ̄D, (1)

φi ≡ 1√
2
Ai +

√
2θλi + θθFi. (2)

The authors of Refs. [20, 21] proposed an action in the 4D N = 1 superspace, that is equivalent
to the usual component-action of 10D SYM theory with the definitions (1) and (2). Ref. [19]
showed its extension to the toroidal compactifications where background magnetic fluxes are
turned on. In the superspace formulation, a 4D N = 1 SUSY out of the full N = 4 SUSY
possessed by 10D SYM theories becomes manifest, which is preserved by the configurations of
magnetic fluxes. The N = 1 SUSY-preserving conditions are read from field equations for the
auxiliary fields D and Fi, those are shown later.

2.2 Zero-modes on magnetized tori

Next we show the zero-mode structure on magnetized tori. In U(N) gauge theory, magnetic
fluxes on the i-th 2-torus can be represented by N ×N matrix M (i) in

〈Ai〉 =
π

Im τi
M (i)z̄ī.

We consider nonvanishing integer values for only diagonal entries of M (i), i.e., the Abelian
magnetic fluxes. When some of them are degenerate, the gauge symmetry is broken as U(N) →

3



U(Na) × U(Nb) × · · · . We require these magnetic fluxes to satisfy conditions 〈Fi〉 = 〈D〉 = 0
to preserve 4D N = 1 SUSY. These can be rewritten simply as [19, 22]

1

A(1)
M (1) +

1

A(2)
M (2) +

1

A(3)
M (3) = 0, (3)

where A(i) represents the area of the i-th 2-torus. If this is not satisfied, SUSY is broken at
a compactification scale which is, in general, extremely higher than the electroweak scale and
some of SUSY particles get tachyonic masses due to 〈D〉 6= 0.

In the following, we denote (a, b)-entries of U(N) adjoint superfield φj by φab
j . For such bi-

fundamental fields of U(Na)× U(Nb), zero-mode equations on the magnetized 2-tori are given
by

[

∂̄ī +
π

2Im τi
M

(i)
ab zi

]

φab
j = 0 for i = j, (4)

[

∂i −
π

2Im τi
M

(i)
ab z̄ī

]

φab
j = 0 for i 6= j, (5)

where M
(i)
ab ≡ M

(i)
a − M

(i)
b expresses the difference between two diagonal entries in M (i). For

positive values ofM
(i)
ab , we find M

(i)
ab -degenerate zero-modes as solutions of Eq. (4), while Eq. (5)

has no normalizable solution. On the other hand, for M
(i)
ab < 0, only Eq. (5) allows |M (i)

ab |-
degenerate zero-modes. Thus, magnetic fluxes yield generations of chiral fermions.

2.3 Magnetized orbifold

We now consider Z2 orbifolding on magnetized tori. The superfield description introduced
above is compatible with orbifold projections, when we assign the same Z2 parity to all the
component fields contained in a single superfield. For example, we consider a Z2 orbifold which
acts on the first and the second 2-tori as (z1, z2) → (−z1,−z2). Under this Z2 transformation,
the superfields behave as

V (xµ, z1, z2, z3) = PV (xµ,−z1,−z2, z3)P
−1,

φ1(xµ, z1, z2, z3) = −Pφ1(xµ,−z1,−z2, z3)P
−1,

φ2(xµ, z1, z2, z3) = −Pφ2(xµ,−z1,−z2, z3)P
−1,

φ3(xµ, z1, z2, z3) = Pφ3(xµ,−z1,−z2, z3)P
−1,

where the projection operator P is given by an N ×N matrix satisfying P 2 = 1. Then, all the
elements are assigned into either even- or odd-parity mode under this Z2 transformation.

Orbifold projections reduce the number of degenerate zero-modes generated by magnetic
fluxes, or eliminate them completely. Ref. [8] identified the number of degeneracy of each
Z2-eigenmode with the sequence of magnetic fluxes on Z2 orbifolds, that is shown in Table 1.

From these results, we find that the orbifold background gives variety to a magnetized
model building. In the next section, we construct various DSB models on magnetized tori and
orbifolds based on them.
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M 0 1 2 3 4 5 6 7 8 9 10 2n 2n + 1
Even 1 1 2 2 3 3 4 4 5 5 6 n+ 1 n+ 1
Odd 0 0 0 1 1 2 2 3 3 4 4 n− 1 n

Table 1: This shows the number of active zero-modes on the magnetized orbifold.

3 Dynamical supersymmetry breaking

In this section, we construct DSB models on a variety of magnetized background.
First, we consider the simple configurations of magnetic fluxes leading to a gauge symmetry

breaking U(N) → U(NC) × U(NX), and show some specific configurations with which the
resultant zero-modes contain certain DSB models such as the ISS model [18] and others. In the
ISS model, for example, SUSY is broken by a strong dynamics of SU(NC) gauge theory with
NF flavors. In our magnetized model building, NC and NF are determined by the degeneracies
of Abelian magnetic fluxes and the degeneracies of the bi-fundamental zero-modes, respectively.
These models seem quite simple but there appear some extra massless modes, those should be
eliminated or decoupled somehow to obtain successful DSB. As we will see, orbifold projections
are not available for such a purpose, and we have to assume some extrinsic effects to eliminate
the extra fields in this simple class of models.

In the second part of this section, we consider more structural flux configurations that
cause a gauge symmetry breaking U(N) → U(NC)× U(NX) × U(NX′). A great advantage of
such extended configurations is that all the extra fields can be eliminated by a combination
of magnetic fluxes and a certain orbifold projection, within a given framework of magnetized
orbifold. They are really promising at least as long as we focus on the SUSY breaking sector.

We finally discuss prospects of our DSB models in association with other sectors, such as
the visible (MSSM) and other hidden (especially moduli stabilization) sectors.

3.1 Models with U(N) → U(NC)× U(NX)

3.1.1 ISS-type models

In the first type of our model building, we try to realize the ISS model [18], that is, the mag-
netized background is required to derive SU(NC) SYM theory with NF massive fundamental
flavors from a single 10D U(N) SYM theory. The IR description of such a model is given by

W = λφinΦ
ijφ̄n

j + µ2Φii,

where Φ and φ correspond to baryons and mesons (i, j = 1, 2, . . . , NF and n = 1, 2, . . . , NC).
We can see that all the F-terms of Φij , FΦij

∼ µ2δij + λφinφ̄
n
j , cannot vanish simultaneously

for NF > NC . This is the so-called rank-condition mechanism of SUSY breaking. In generic
SU(NC) theories with NF flavors, SUSY breaking metastable vacua are realized within a range
NC − 1 ≤ NF < 3

2
NC . In particular, they can be long-lived when the quark mass scale is much

smaller than the dynamical scale.
We consider the configurations of magnetic fluxes which break the gauge symmetry as

U(N) → U(NC)× U(NX). For a while, we take both the U(NC) and U(NX) gauge groups to
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be non-Abelian (NC , NX ≥ 2) for the sake of generality. Such magnetic fluxes are given by

M (1) =

(

0× 1NC
0

0 M × 1NX

)

, M (2) =

(

0× 1NC
0

0 −1× 1NX

)

,

M (3) =

(

0× 1NC
0

0 0× 1NX

)

, (6)

where these matrices represent the U(NC +NX) gauge space. This configuration preserves at
least a 4D N = 1 SUSY with A(1)/A(2) = M fixed for a positive value of M . The chirality
projection caused by these magnetic fluxes eliminates the zero-modes of certain elements of the
U(N) adjoint chiral superfields, and we find for M > 0,

φ1 =

(

Ξ1 0
q Ω1

)

, φ2 =

(

Ξ2 q̃
0 Ω2

)

, φ3 =

(

Ξ3 0
0 Ω3

)

.

The magnetized background (6) induces M-pairs of vector-like quarks (q, q̃) in off-diagonal
entries of φ1 and φ2. Diagonal entries, Ωi and Ξi, correspond to U(NC) and U(NX) adjoint
fields respectively.

The 10D SYM theory allows couplings between φi’s only in the form φ1φ2φ3 in the N = 1
superpotential. When the Wilson lines for U(NX) in the third 2-torus are somehow generated,
they lead to a nonvanishing VEV of Ω3 and then the mass term 〈Ω3〉qq̃ is generated for the
quarks. Then, the ISS-type DSB would occur if the quark mass scale is smaller than the
dynamical scale of SU(NC) SYM theory. However, in order to realize the ISS model exactly,
we need to further assume that the fluctuations of adjoint fields Ωi and Ξi around their VEVs
(〈Ω3〉 6= 0, 〈Ω1,2〉 = 〈Ξi〉 = 0 in the present case) should be eliminated or decoupled from the
DSB dynamics. Orbifold projections are not useful for such a purpose, because the nonvanishing
(continuous) Wilson lines are generically incompatible with the orbifold background. Here, we
just assume these extra fields obtain heavy masses due to some extrinsic effects from, e.g.,
supergravity/string corrections.

Under the above assumption, we have two gauge theories with massive quarks: SU(NC)
SYM with M ×NX fundamental flavors and SU(NX) SYM with M ×NC fundamental flavors.
In the case with

NC − 1 ≤ M ×NX <
3

2
NC , (7)

the ISS model is realized by the SU(NC) gauge theory. In this scenario, we have another
constraint on the values of NC and NX . The running of SU(NX) gauge coupling must be
milder than that of SU(NC), which leads to the constraint

M ×NX − 3NC < M ×NC − 3NX ⇔ NX < NC . (8)

While one can easily see that both conditions (7) and (8) cannot be satisfied with M = 1, it
becomes easier for M ≥ 2 to fulfill them and we can find many successful ansatzes, e.g.,

NC = 3, NX = 2, M = 2.

When the extra U(NX) gauge theory is Abelian, that is, NX = 1, we can realize similar
models much easier, because the second condition (8) is not required in this case. Thus, we
can construct DSB models concerning about only the first one (7).
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3.1.2 Models without massive quarks

We have another scenario on the magnetized background (6) where the nonvanishing Wilson-
lines are not required for DSB. As we have noticed, a key ingredient of this background is the
following coupling,

gΩ3qq̃ = g
(

〈Ω3〉+ Ω̃3

)

qq̃, (9)

where g is a coupling constant. In the previous model, we have assumed a nonvanishing VEV
〈Ω3〉 and the absence of its fluctuation Ω̃3 at a low energy to realize the ISS-type DSB which
has only the mass term for the vector-like quarks in the superpotential. Alternatively here we
consider the case that Ω̃3(= Ω3) is active while the Wilson-line 〈Ω3〉 is vanishing.

Without the Wilson lines, the higher dimensional SYM theory does not produce any mass
terms for q and q̃ (as well as Ω3) at least at the leading order. This allows us to infer that,
turning on a VEV 〈Ω3〉 6= 0 breaks some kinds of global symmetries of higher-dimensional SYM
theory on magnetized tori, which prohibits the masses of bi-fundamental (as well as adjoint)
fields. Thus, in the following, we can consider our models to be a chiral theory, as long as we do
not introduce the continuous Wilson lines. This will become more clear in the next subsection.

For the purpose to derive a DSB model without massive quarks, let us consider a situation
where we can ignore the other block-diagonal entries of φi than Ω3 at a low energy (i.e., Ω1,
Ω2 and Ξi are decoupled) for simplicity. Again, this could not be realized by orbifolds because
Ω3 and Ξ3 have the same orbifold parity and both of them survive or vanish simultaneously
under the orbifold projection. We should consider some extrinsic mechanisms to make the extra
fields heavy as in the previous models. When they are somehow decoupled, the superpotential
contains only the above Yukawa coupling (9).

In SU(NC) SYM theory with Nf fundamental flavors, for NC > NF , the Affleck-Dine-
Seiberg (ADS) potential [23, 24]

WADS = CNC ,NF

(

Λ3NC−NF

det M̂

)1/(NC−NF )

,

is obtained, where Λ is the dynamical scale, NF ×NF matrix M̂ is defined as M̂ i
j ≡ qinq̃nj , and

CNC ,NF
are constants. Our magnetized model contains SU(NC) SYM withM×NX fundamental

flavors and SU(NX) SYM with M × NC fundamental flavors. We consider the case that the
dynamics of the former non-Abelian gauge theory produces the above ADS potential, that is,
NC > M × NX . The total effective superpotential can be written in terms of the operator M̂
as

Weffective = gTrΩ3M̂ + CNC ,NF

(

Λ3NC−NF

det M̂

)1/(NC−NF )

.

This is almost the simplest DSB model found by Affleck, Dine and Seiberg [25]. This potential
makes the operator M̂ develop a nonvanishing VEV, 〈M̂〉 ∼ Λ, and the resulting low-energy
superpotential for Ω3 is

W = gΛ2Ω3 +W0,

7



which is just like the Polonyi model [26].
When the extra gauge theory is non-Abelian, NX ≥ 2, we have to concern about the

condition (8) on NC and NX , again. However, this is always satisfied when the ADS potential
is generated , NC > M ×NX , for any positive value of M . As for Abelian cases NX = 1, such
an extra constraint is not of course required. Thus, we can obtain a wide variety of this class
of models as well as the previous ISS-type models discussed in Sec. 3.1.1.

ForNC = NF , the ADS potential is not generated. In this case, however, it is known that the
strong dynamics induces chiral condensations yielding a vacuum with det〈M̂〉 6= 0. Therefore
the Yukawa coupling (9) produces a tadpole term for Ω3 breaking SUSY. Thus, a DSB model
can be also obtained for NC = M ×NX . Here, the consistency condition (8) requires M ≥ 2.

3.2 Models with U(N) → U(NC)× U(NX)× U(NY )

So far, we have assumed that the extra adjoint fields are somehow decoupled. We here propose
another class of DSB models on magnetized orbifold, where DSB successfully occurs within
the given framework without requiring any extrinsic effects. We will find that more structural
configurations of magnetic fluxes which cause a gauge symmetry breaking U(N) → U(NC) ×
U(NX) × U(NY ) lead to self-complete DSB models on Z2 × Z ′

2 orbifolds, where all the extra
unwanted fields are eliminated below the compactification scale.

We first explain an overview of this new class of models before giving a concrete configuration
of magnetized background. Let us consider the gauge symmetry breaking due to magnetized
backgrounds as U(N) → U(NC) × U(NX) × U(NY ). Field contents responsible for the DSB
dynamics here are (i 6= j 6= k 6= i)

φi =



 S



 , φj =





Q̃


 , φk =





Q



 , (10)

where three diagonal-blocks represent the product gauge group U(NC) × U(NX) × U(NY ) in
U(N) = U(NC +NX +NY ) adjoint matrices and then the off-diagonal blocks in φi’s are chiral
multiplets in the corresponding bi-fundamental representations. Every mass term for S, Q̃ and
Q is forbidden by the (unbroken) gauge symmetry. In order to avoid chiral anomaly in adjunct
U(NX) and U(NY ) gauge theories, we simply set NX = NY = 1 in the following. Even in this
simple setup, the number of flavors can be controlled because the magnetic fluxes produce the
degeneracy of zero-modes, enhancing the effective flavors.

Chiral superfields S, Q and Q̃ have a Yukawa coupling in the superpotential,

W = gSQQ̃, (11)

where g expresses the effective coupling constant, which is given by an overlap integral of
wavefunctions determined by magnetic fluxes and is calculable on magnetized tori (see [4, 9]
for reviews). In accordance with the discussion in the previous subsection, for NC ≥ NF ,
the U(NC) gauge dynamics enforces the operator M̂ ≡ QQ̃ to develop a nonvanishing VEV,
breaking SUSY.
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3.2.1 The essential structure

We here aim to realize a minimal setup, that is, NF pairs of quarks (Q, Q̃) and a singlet S in
U(NC) SYM theory. We require the degeneracy of S to be one in order to avoid the presence
of extra massless fields.

The generation structure of Q and Q̃ should be produced on a single 2-torus. Otherwise, the
rank of their Yukawa matrix is reduced and some fields become irrelevant to the DSB dynamics.
Let us suppose that it is produced on the first 2-torus and denote magnetic fluxes felt by Q, Q̃

and S by MQ
1 , M Q̃

1 and MS
1 , respectively, where the subscript discriminates the first 2-torus.

The gauge invariance enforces them to satisfy MQ
1 +M Q̃

1 +MS
1 = 0. Furthermore, we find that

only one of the three is positive and the others have to be negative. The reason is that the
Yukawa coupling (11) originates from the 10D gauge coupling φ1φ2φ3, and positive (negative)
magnetic fluxes are required in order to produce zero-modes in φ1 (φ2,3) on the first 2-torus,
which can be seen from Eqs. (4) and (5).

On a magnetized orbifold, Q, Q̃ and S are assigned into either even- or odd-parity mode
under the Z2 transformation. The numbers of their zero-modes are determined by the magnetic

fluxes (MQ
1 ,M

Q̃
1 ,M

S
1 ) and their Z2 parity. We show the relation between magnetic fluxes

and the number of zero-modes on magnetized orbifolds in Table 1. The Z2 invariance of
Yukawa coupling (11) allows us to consider three cases for their Z2 parity assignments, those
are (even-even-even), (odd-odd-even) or (even-odd-odd) for (Q, Q̃, S). Note that (odd-even-
odd) is equivalent to (even-odd-odd) under the renaming (Q, Q̃) ↔ (Q̃, Q), then we exclude
the former.

We eventually found only six patterns satisfy these conditions, which are shown in Table 2.

Z2 parity of (Q, Q̃, S) (MQ
1 ,M

Q̃
1 ,MS

1 )
Pattern 1 (even, even, even) (−n, n, 0)
Pattern 2 (even, even, even) (−2n, 2n+ 1, −1)
Pattern 3 (even, odd, odd) (−n, n+ 3, −3)
Pattern 4 (even, odd, odd) (−2n, 2n+ 4, −4)
Pattern 5 (odd, odd, even) (−n, n, 0)
Pattern 6 (odd, odd, even) (−2n− 1, 2n+ 2, −1)

Table 2: The six allowed combinations of Z2 parity assignment and magnetic fluxes

(MQ
1 ,M

Q̃
1 ,M

S
1 ) are listed, where n is an arbitrary positive integer.

In order to produce the singlet S without its multiplicity, |M | = 0, 1 unit of fluxes are
allowed for the even-parity mode and |M | = 3, 4 for the odd-parity mode. The condition

MQ
1 + M Q̃

1 + MS
1 = 0 (one is positive and the other two are negative) severely restricts the

values of MQ
1 and M Q̃

1 , because the zero-mode number of Q and that of Q̃ have to be equal for
a successful DSB. Therefore, we can conclude that any other configurations are excluded.

We find some differences among these six patterns. The first one is the value of coupling
constants in λijSQiQ̃j. The Yukawa matrix λij is proportional to the identity matrix with
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Patterns 1 and 5. In the other cases, λij have nonvanishing values in their off-diagonal entries
which can be calculated explicitly. The second difference is a constraint on the torus areas given
by the SUSY preserving condition (3). In general, Patterns 2, 3, 4 and 6 yield characteristic
values of the ratios A(1)/A(2) and A(1)/A(3) as one can see in Appendix A. This might be of
importance in combination with, especially, the visible sector. We will discuss about it in the
last of this section.

These six patterns allow us to construct several realistic DSB models within the given
framework of magnetized orbifold without any nontrivial assumptions, which will be shown
below.

3.2.2 A self-complete model

We propose concrete DSB models with explicit configurations of magnetic fluxes and orbifolds
in the whole extra compact space. As discussed above, let us suppose that the main structure
of our DSB models is produced on the first 2-torus. The configurations on the other two 2-tori
are determined in order to eliminate all the extra field contents other than Q, Q̃ and S in φ1,
φ2 and φ3 without affecting the generation structure of them realized on the first 2-torus. The
Z2 parity assignments and the magnetic fluxes on the first 2-torus are selected from the six
patterns shown in Table 2 and the magnetic fluxes on the second and third 2-tori are enforced
to satisfy the SUSY preserving condition (3).

In the following, we construct an illustrating model on the basis of Pattern 1. That is, Q,

Q̃ and S are assigned into the even-parity mode on the first 2-torus with (MQ
1 ,M

Q̃
1 ,M

S
1 ) =

(−n, n, 0). With the other five patterns, we can also realize similar models which we show in
Appendix A.

Let us consider the following magnetized background,

M (1) =





0 0 0
0 M 0
0 0 M



 , M (2) =





0 0 0
0 −1 0
0 0 0



 , M (3) =





0 0 0
0 0 0
0 0 −1



 , (12)

which breaks the U(N) gauge symmetry down to U(NC) × U(1)X × U(1)Y , while preserving
N = 1 SUSY with A(1)/A(2) = A(1)/A(3) = M . We take the value of M to be positive. In this
case (before orbifolding) zero-mode contents are given by

φ1 =





Ξ1 0 0

Q̃′ Ξ′

1 0
Q 0 Ξ′′

1



 , φ2 =





Ξ2 Q̃ 0
0 Ξ′

2 0
0 S ′ Ξ′′

2



 , φ3 =





Ξ3 0 Q′

0 Ξ′

3 S
0 0 Ξ′′

3



 .

On this magnetized tori, we consider two Z2 orbifold projections, i.e., a Z2 × Z ′

2 orbifold.
The first one, Z2 orbifolding, acts on the first and the second 2-tori (z1, z2, z3) → (−z1,−z2, z3)
with the projection operator

P+−− =





+ 0 0
0 − 0
0 0 −



 .
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This operator successfully assigns the even-parity to all of Q, Q̃ and S as in Pattern 1, while
eliminating S ′ and all the diagonal entries of φ1 and φ2. The second one is Z ′

2 projection acting
on the second and the third 2-tori (z1, z2, z3) → (z1,−z2,−z3) with the projection operator

P+−+ =





+ 0 0
0 − 0
0 0 +



 ,

which eliminates Q′, Q̃′ and all the diagonal entries of φ3. Consequently, the remaining zero-
mode contents are exactly the ideal ones (10). All the extra fields have been completely elimi-
nated in the combination of magnetic fluxes and orbifolding.

The total degeneracy of S is certainly one. As for Q and Q̃, their degeneracy is counted as
the resulting number of Z2 even modes with |M | units of fluxes, which is read from Table 1. We
have obtained desirable SU(NC) SYM theory with NF = 1, 2, 3, . . . flavors, which can satisfy
the condition NC = NF ≥ 2 or NC > NF for a successful DSB. We show similar DSB models
with Pattern 2 to 6 in Appendix A.

One might consider that the following configuration of magnetic fluxes is better than
Eq. (12),

M (1) =





0 0 0
0 M 0
0 0 M



 , M (2) =





0 0 0
0 −1 0
0 0 −1



 , M (3) =





0 0 0
0 0 0
0 0 0



 .

The last 2-torus is vacant and the condition A(1)/A(2) = M ensures that the SUSY is preserved.
As for the gauge symmetry, U(N) is broken down to U(NC)× U(2). This U(2) symmetry can
be further broken to U(1)X×U(1)Y by orbifold projections. We again consider Z2×Z ′

2 orbifolds
for this magnetized background. The first Z2 acts on the first and the second 2-tori with the
operator P+−−, and the second Z ′

2 on the second and the third 2-tori with P+−+. The surviving
zero-modes are described as

φ1 =





0 0 0
0 0 0
Q 0 0



 , φ2 =





0 Q̃ 0
0 0 0
0 0 0



 , φ3 =





0 0 0
0 0 S
0 S ′ 0



 , (13)

and their full superpotential is found as

W = gSQQ̃, (14)

which has the same form as Eq. (11).
Although there is an extra massless field S ′, it would not affect the DSB dynamics because

this is a singlet under U(NC) and has no coupling in the superpotential.2 In this model, the
zero-modes of both S and S ′ have no multiplicity, while the zero-mode degeneracies of Q and
Q̃ are equivalent to the previous model. Thus, the strong dynamics of SU(NC) gauge theory

2We expect that this S′ can get a mass at loop-levels after DSB, because Q, Q̃ and S have U(1)X gauge
charges.
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can generate DSB depending on the values of NC and M , without any nontrivial assumptions
for extra field contents. This can be another self-sustained DSB model. Although this model
contains a decoupled massless field S ′, the model has a clear advantage to the previous one.
There is no magnetic fluxes on the third 2-torus, then its area A(3) is not constrained by SUSY
conditions. This can be helpful for associating this model with the other sectors as we will
discuss in the next subsection.

3.3 Comments on the association with other sectors

We have constructed models for a SUSY breaking (hidden) sector, which must be combined with
the MSSM (visible) sector and the other phenomenologically/cosmologically required sectors
such as the moduli stabilization sector. Especially, when we consider a moduli stabilization
mechanism based on non-perturbative effects such as gaugino condensations, like the Kachru-
Kallosh-Linde-Trivedi (KKLT) scenario [27], one or more strong gauge theories in the hidden
sector are required for the non-perturbative dynamics. There are some key issues for combining
these sectors altogether.

Our models are based on SYM theories compactified on magnetized tori with/without orb-
ifolds. The DSB models shown in subsection 3.1 is constructed without orbifolding, and thus,
all the associated sectors such as the visible sector must also be constructed without orbifolding.
On the other hand, the other DSB models on orbifolds have to be combined with the visible
and the other sectors all constructed on the same orbifold. As the promising candidates for
the visible sector, realistic flavor structures of MSSM-like models on magnetized tori [5] and
orbifolds [9, 15] were derived so far. It is known that they are drastically different from each
other. Therefore, we expect that models with or without orbifolding will be distinguishable
phenomenologically.

The values of higher-dimensional gauge coupling g, torus area A(i) and complex structure
τi, are universal for all the sectors derived from the single higher-dimensional SYM theory.
Thus, we have to choose common values for every sectors to be consistent with each other. We
naively expect that most of these values are strongly constrained in the visible sector.

First, the gauge coupling g should be determined as follows. The 4D effective gauge coupling
constant at the compactification scale, which is roughly given by a product of g and the volume
of extra compact space, must be consistent with the experimental data in the visible sector, i.e.,
the observed values of standard model (SM) gauge couplings. For example, if we consider MSSM
for the visible sector, it automatically leads to a unified value of three SM gauge couplings at
around 1016 GeV which is usually identified as the compactification scale, and the 4D effective
gauge coupling can be fixed by the unified value. Next, the complex structures of tori are very
important degrees of freedom to control the hierarchical structure of Yukawa couplings in the
visible sector. Their values should be set to realize the quark and lepton masses and mixing
angles [5, 10]. Finally, the configurations of magnetic fluxes in the visible sector are extremely
limited in order to realize the three generation structure of quarks and leptons, and the ratios
of three torus areas, A(1)/A(2) and/or A(1)/A(3), are determined through the SUSY preserving
conditions depending on the flux configuration.

We remark that these constraints on parameters from the visible sector inevitably affect the

12



model building for hidden sectors. Indeed, the DSB models shown in this paper also restrict
the ratios A(1)/A(2) and/or A(1)/A(3), those must be consistent with the constraints from the
visible sector. Therefore, the existence of unconstrained parameters in each sector is a great
advantage, when we construct the whole system as a combination of the solely constructed
visible and hidden sectors. Note that some of our DSB models with a vanishing flux in the
third 2-torus restrict only one of the above two ratios.

The models with two magnetized 2-tori (or even with a single magnetized 2-torus) among
three are interesting from another point of view. We expect that our magnetized models based
on 10D SYM theories would be completed being embedded into magnetized D9-brane systems,
while the economically fluxed models have a potential to be compatible with D7-branes (or
even D5-branes).3

When we construct the whole system by combining our DSB sector with the certain visible
and other sectors, we also have to care about the direct couplings among them. All the sectors
should be embedded into a single U(N) gauge theory, if we regard our models as D-brane models
with a single stack. On the other hand, with multi-stacks of D-branes (e.g., D3/D7 or D5/D9
systems4), we can start from a product of multiple U(N) gauge groups. In general, there exist
bi-fundamental fields charged under two different sectors, depending on the configurations of
magnetic fluxes and orbifolding. In particular, such bi-fundamental fields charged under the
SM gauge groups are phenomenologically dangerous in many cases. We should also require
that the strong dynamics of DSB and moduli stabilization sectors do not disturb each other
through light fields charged under both sectors.

Although these bi-fundamental fields are troublesome in generic cases, vector-like fields
charged under both the MSSM and DSB sectors can be interesting, because they behave as
messenger fields which mediate SUSY breaking contributions to the visible sector. In the
previous analyses [5] of magnetized models, it has been mostly assumed that the SUSY spectra
are dominated by the moduli-mediation and/or anomaly-mediation [29, 30], which depends
on how to stabilize the moduli fields in association with the DSB sector. For example, in
the KKLT-like moduli stabilization scenarios [27] with some concrete DSB sectors [31, 32],
contributions from the above two mediations can be comparable, and the so-called mirage
mediation scenario [33, 34, 35, 36] is realized. By assuming such a mediation scenario, the
SUSY spectrum was studied in concrete magnetized models of the visible sector and some
generic features were obtained [5]. Then, it is interesting to employ one of our DSB models as
the concrete hidden sector in this kind of scenario. The previous results can be deflected by
the gauge-mediated contributions due to the appearance of messengers in the bi-fundamental
representation between the MSSM and DSB sectors. We will study them in another places.

3 It is argued that lower-dimensional D-branes may be derived from a magnetized D-brane in higher-
dimensions with an infinite number of magnetic fluxes [4]. The effective field theory of such lower-dimensional
branes can be derived based on such an argument [28].

4The superfield formulation to describe such mixed D-brane systems was also constructed [28].

13



4 Summary

We have studied DSB models within the framework of 10D SYM theories compactified on
magnetized tori and orbifolds.

First, aspects for DSB on magnetized tori/orbifolds have been shown with the simple con-
figurations of magnetic fluxes which causes the gauge symmetry breaking U(N) → U(NC) ×
U(NX), by assuming (non)vanishing VEVs of adjoint fields and (non)decoupling of their fluc-
tuations from the DSB dynamics around the VEVs. Then, in order for the strong dynamics
of SU(NC) SYM theories with NF flavors to trigger a dynamical SUSY breaking, certain rela-
tions between NC and NF are required. It is remarkable that the number of flavors NF can be
controlled by magnetic fluxes in our model, in other words, the background flux configuration
determines whether DSB occurs or not.

At the same time, however, we also find that the decoupling of some extra adjoint fields,
those could not be eliminated by orbifold projections in the model building procedures, is nec-
essarily assumed in this simple class of models. Otherwise the existence of them could spoil the
successful DSB and/or are already ruled out by phenomenological/cosmological observations.
In the case that some extrinsic mechanisms realize the assumed situations, these DSB models
on magnetized tori are available for a further model building, while the decoupling of extra
adjoint fields is in general a challenging issue in the model building based on SYM theories in
higher-dimensional spacetime.

Then, next, we have proposed another class of DSB models on orbifolds by extending the
previous configurations of magnetic fluxes which preserve U(NC)× U(NX) symmetry to those
yield U(NC)× U(NX)× U(NY ), especially, to the simplest one U(NC)× U(1)X × U(1)Y . We
have searched such flux configurations that the SU(NC) SYM theory contains NF vector-like
pairs (Q, Q̃) with their nonvanishing Yukawa couplings to a singlet S. As the result, we found
six patterns of suitable configurations.

On the basis of one of these six patterns, we demonstrated the construction of a self-complete
DSB model on a Z2 × Z ′

2 orbifold, where all the extra fields below the compactification scale
are eliminated by the combination of chiral projections due to magnetic fluxes and the orbifold
projections. In Appendix A, we also show the other five patterns allow us to construct similar
feasible models. Therefore, we conclude that, in this class of magnetized orbifold models, we
can realize DSB without relying on any extrinsic mechanisms to eliminate extra fields.

Furthermore, we have studied another choice of magnetic fluxes, where only two of the
three 2-tori are fluxed. Although this permits a presence of one more singlet S ′ without the
Yukawa couplings to quarks, it of course does not disturb the DSB dynamics and can be another
self-sustained DSB model. It is remarkable that the existence of unfluxed 2-torus can be an
advantage when we combine the DSB (hidden) sector with the MSSM (visible) sector [28].

As discussed in the previous section, our DSB models should be embedded into a larger
unified system being compatible with the MSSM sector and the others, e.g., the moduli stabi-
lization sector. This must be an important task from both theoretical and phenomenological
points of view. We expect some of the six patterns we found and their extensions being suit-
able for such embeddings. Finally, it is an interesting possibility that such a whole system is
realized by magnetized D-branes. In this case, we should verify some stringy consistency of the
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full system containing all the sectors for completing our scenario on magnetized tori/orbifolds.
These are remained as future works.
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A Other self-complete models with Pattern 2 to 6

We have shown a concrete DSB model based on Pattern 1 shown in Table 2. We find that
similar models can be realized with the other patterns and demonstrate them here (Models
shown here contain just NF -pairs of (Q, Q̃) and one singlet S.).

We start from Pattern 2, where all of Q, Q̃ and S are assigned into the even-parity mode,

and their fluxes are parametrized as (MQ
1 ,M

Q̃
1 ,M

S
1 ) = (−2n, 2n+1, −1) with a positive integer

n. The suitable magnetic fluxes are given by

M (1) =





0 0 0
0 2n 0
0 0 2n+ 1



 , M (2) =





0 0 0
0 −1 0
0 0 0



 , M (3) =





0 0 0
0 0 0
0 0 −1



 ,

which break gauge symmetry as U(N) → U(NC) × U(1) × U(1) and satisfy the SUSY pre-
serving condition with A(1)/A(2) = 2n and A(1)/A(3) = 2n+ 1. We need two different orbifold
projections to eliminate extra fields completely, then consider a Z2 × Z ′

2 orbifold. The Z2 orb-
ifolding acts on the first and the second tori with the projection operator P+−−, while the Z ′

2

orbifolding acts on the second and the third tori with the projection operator P+−+. These are
consistent with the parity assignment of Pattern 2 and eliminate all the extra entries of φi. The
net number of zero-mode of S is one. That of Q (Q̃) is identified as the number of even-parity
mode with |M | = 2n (2n+1) fluxes. We see from Table 1 that both the degeneracies of Q and
Q̃ are equal to n+ 1.

With Pattern 3, (Q, Q̃, S) are assigned into the (even,odd,odd)-parity mode, and their fluxes
are given by (−n, n+3, −3) with a positive integer n. A similar model is obtained on the same
Z2 × Z ′

2 orbifold as Pattern 2 but with the different magnetic fluxes,

M (1) =





0 0 0
0 n 0
0 0 n+ 3



 , M (2) =





0 0 0
0 −1 0
0 0 0



 , M (3) =





0 0 0
0 0 0
0 0 −1



 .

The net number of Q (Q̃) is identified as that of even-parity (odd-parity) mode with n (n+ 3)
fluxes. We find the degeneracies of Q and Q̃ are equal to each other.
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With Pattern 4, (Q, Q̃, S) are assigned into the (even,odd,odd)-parity mode, and their fluxes
are given by (−2n, 2n+4, −4) with a positive integer n. A similar model is obtained with the
following magnetic fluxes,

M (1) =





0 0 0
0 2n 0
0 0 2n+ 4



 , M (2) =





0 0 0
0 −1 0
0 0 0



 , M (3) =





0 0 0
0 0 0
0 0 −1



 ,

on the Z2 ×Z ′

2 orbifold, where Z2 acts on the first and the second tori with P+−+, and Z ′

2 acts
on the second and the third tori with P+−+. The net number of Q (Q̃) is identified as that of
even-parity (odd-parity) mode with 2n (2n+4) fluxes. We find both the degeneracies of Q and
Q̃ are n+ 1.

With Pattern 5, (Q, Q̃, S) are assigned into the (odd,odd,even)-parity mode, and their fluxes
are given by (−n, n, 0) with a positive integer n. A similar model is obtained with the following
magnetic fluxes,

M (1) =





0 0 0
0 n 0
0 0 n



 , M (2) =





0 0 0
0 −1 0
0 0 0



 , M (3) =





0 0 0
0 0 0
0 0 −1



 ,

on the Z2 ×Z ′

2 orbifold, where Z2 acts on the first and the second tori with P+++, and Z ′

2 acts
on the second and the third tori with P+−+. Both the net numbers of Q and Q̃ are equal to
that of odd-parity mode with n fluxes.

Finally with Pattern 6, (Q, Q̃, S) are assigned into the (odd,odd,even)-parity mode, and
their fluxes are parametrized as (−2n − 1, 2n + 2, −1) with a positive integer n. A similar
model is obtained on the same Z2 × Z ′

2 orbifold as Pattern 5 but with the different magnetic
fluxes,

M (1) =





0 0 0
0 2n+ 1 0
0 0 2n+ 2



 , M (2) =





0 0 0
0 −1 0
0 0 0



 , M (3) =





0 0 0
0 0 0
0 0 −1



 .

The net number of Q (Q̃) are identified as that of odd-parity mode with |M | = 2n+1 (2n+2)
fluxes. Both the degeneracies of Q and Q̃ are equal to n.
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