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and Instituto Carlos I de Fı́sica Teórica y Computacional
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We undertake a covariance error analysis of the pion-nucleon-nucleon coupling constants from the Granada-
2013 np and pp database comprising a total of 6713 scattering data. Assuming a unique pion-nucleon coupling
constant we obtain f 2 = 0.0761(3). The effects of charge symmetry breaking on the 3P0, 3P1 and 3P2 partial
waves are analyzed and we find f 2

p = 0.0759(4), f 2
0 = 0.079(1) and f 2

c = 0.0763(6) with minor correlations
among the coupling constants. We successfully test normality for the residuals of the fit.
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I. INTRODUCTION

The meson exchange picture is a genuine quantum field the-
oretical feature which implies, in particular, that the strong
force between protons and neutrons at long distances is dom-
inated by the exchange of the lightest hadrons compatible
with the conservation laws, namely neutral and charged pi-
ons. The strong force acting between nucleons at sufficiently
large distances or impact parameters ∼ 3fm is solely due to
one pion exchange (OPE) and was suggested by Yukawa 80
years ago [1]. The verification of this mechanism not only
provides a check of quantum field theory at the hadronic level
but also a quantitative insight onto the determination of the
forces which hold atomic nuclei [2]. While the mass of the
pion may be determined directly from analysis of their tracks
or electroweak decays, the determination of the coupling con-
stant to nucleons needs further theoretical elaboration. The
pion-nucleon-nucleon coupling constant is rigorously defined
as the πNN vertex function when all three particles are on
the mass shell and in principle any process involving the ele-
mentary vertices p→ π0 p, n→ π0n, p→ π+n and n→ π−p
(or their charge conjugated) is suitable for the determination
of the corresponding couplings provided all other relevant ef-
fects are accounted for at an acceptable confidence level. The
combinations entering in NN scattering are (we use the con-
ventions of [3] and when possible, for simplicity, omit the π

label),

f 2
p = fπ0 pp fπ0 pp (1)

f 2
0 =− fπ0nn fπ0 pp (2)

2 f 2
c = fπ−pn fπ+np (3)

Usually the charge symmetry breaking is restricted to mass
differences by setting fp = − fn = fc = f . The relevant rela-
tionships between the pseudo-scalar pion coupling constants,
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gπNN , and the pseudo-vector one, fπNN , are given by

g2
πaNN′

4π
=

(
MN +MN′

mπ+

)2

f 2
πaNN′ (4)

where N,N′ = n, p and πa = π0,π± (the factor mπ± is con-
ventional). Thus, we may define g2

0, g2
c , g2

p and g2
n. We take

Mp = 938.272 MeV the proton mass, Mn = 939.566 MeV
the neutron mass, and mπ± = 139.570 MeV the mass of the
charged pion.

There is a long history of determination of pion-nucleon
coupling constants using different approaches. The very first
determination was made in 1940 by Bethe by looking at
deuteron properties [4, 5] soon after Yukawa proposed his the-
ory and before the pion was experimentally discovered, find-
ing the common value f 2 = 0.077− 0.080. Based on PCAC
Goldberger and Treiman deduced gπNN(0)Fπ = MNgA [6]
strictly valid at the pion off-shell point q2 = 0. The first di-
rect and quantitative evidence for OPE was found in 1960 by
Signell [7] by directly fitting the neutral pion mass to differen-
tial cross section in p-p Scattering data. The method of partial
wave analysis (PWA) was soon afterwards used by Macgre-
gor et al. at Livermore [8]. A variety of methods and re-
actions have been used since the seminal Yukawa paper and
more complete account of the subsequent numerous deter-
minations can be traced from comprehensive overviews [9–
11]. During many years πN scattering determination through
fixed-t dispersion relations was advocated as a precision tool
(see e.g. [12] and references therein). The latest most ac-
curate πN scattering determinations one has [13] based on
the GMO rule g2

c/(4π) = 14.11(20) ( f 2
c = 0.0783(11)), us-

ing fixed-t dispersion relations g2
c/(4π) = 13.76(8) [14] and

the most recent determination [15, 16] based on πN scatter-
ing lengths and π−d scattering and the GMO sum rule yields
g2

c/(4π) = 13.69(12)(15) = 13.69(19).
The modern era of high-quality NN interactions initiated

by the Nijmegen group [17] enabled to decrease the reduced
χ2/ν from 2 to 1, thanks to the implementation of charge-
dependence, vacuum polarization, relativistic corrections and
magnetic moments interactions and a suitable selection crite-
rion for compatible data. Their analysis comprised a total of
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4313 NN scattering data. This promoted the determination of
the pion-nucleon coupling constant from np and pp scattering
to a competitively accurate approach. The main advantage of
an NN analysis as compared to the πN analysis, which has so
far been restricted to charged pions, is that one can determine
both neutral and charged-pion coupling constants simultane-
ously and search for isospin breaking effects. The originally
recommended charge independent value f 2 = 0.0750(9) [18]
was revised [19] and confirmed in the 1997 review on the sta-
tus of the pion-nucleon-nucleon coupling constant [9]; this is
the most accurate NN determination to date. There, it was
suggested that with more data and better statistics a charge-
independence breaking could be checked.

Most of the analyses determining the pion nucleon coupling
constants involve heavy statistical analysis for a large body of
experimental data, mostly χ2−fits, which are subjected to a
number of a posteriori tests [20]. The verification of these
tests buttress a sensible analysis of uncertainties of theoretical
models [21]. The Nijmegen group [19, 22] checked the statis-
tical quality of pp fit residuals to the time of their analysis us-
ing the moments test, which for increasing orders overweights
the tails.

In this paper we study the possible difference among the
pion-nucleon coupling constants by analyzing np and pp scat-
tering data using the NN Granada-2013 3σ -self consistent
database designed and analyzed recently [23–26]. 1 There, out
of 8000 published np and pp experimental data measured in
the period 1950-2013 we have selected 6713 which satisfacto-
rily passes the tail-sensitive test based on the quantile-quantile
plot for the combined np+pp residuals (see also Ref. [27] for
an application of these ideas to ππ scattering).

The paper is organized as follows. In Section II we describe
the OPE potential to display our notation and discuss the con-
ditions under which we naturally expect to unveil charge de-
pendence in the pion-nucleon coupling constants. In Sec-
tion III we review the main aspects of our partial wave analy-
sis and the Granada-2013 database as well as some motivation
for incorporate charge dependence in the P-waves, besides the
customary charge dependence on S-waves implemented in all
modern high quality fits. Our numerical results are presented
and discussed in Section IV. Finally, in Section V conclusions
are presented. In the Appendix we show the extended opera-
tor basis accommodating both S- and P-waves charge depen-
dence.

II. CHARGE-DEPENDENT ONE PION EXCHANGE

The charge dependent one pion exchange (CD-OPE) po-
tential incorporates charge symmetry breaking by considering
the mass difference of the neutral and charged pions as well
as assuming different coupling constants. Using the conven-
tion for πNN Lagrangians defined in the review [3], the quan-
tum mechanical potential which reproduces the corresponding

1 The Granada database is located at the website http://www.ugr.es/

~amaro/nndatabase/.

Feynman diagrams for on-shell static nucleons in the Born ap-
proximation in the pp, nn and np channels is expressed as

VOPE,pp(r) = f 2
pVm

π0 ,OPE(r), (5)

VOPE,nn(r) = f 2
n Vm

π0 ,OPE(r), (6)

VOPE,np(r) =− fn fpVm
π0 ,OPE(r)− (−)T 2 f 2

c Vm
π± ,OPE(r),(7)

respectively. Here Vm,OPE is given by

Vm,OPE(r) =
(

m
mπ±

)2 1
3

m [Ym(r)σ1 ·σ2 +Tm(r)S1,2] , (8)

being Ym and Tm are the usual Yukawa functions,

Y (r) =
e−mr

mr
(9)

T (r) =
e−mr

mr

[
1+

3
mr

+
3

(mr)2

]
(10)

and tensor, σ1 and σ2 the single nucleon Pauli matrices and
S12 = 3σ1 · r̂σ2 · r̂−σ1 ·σ2 the tensor operator. Unfortunately,
the CD-OPE potential by itself cannot be directly compared
to experimental data, and the only way we know how to deter-
mine these pion-nucleon couplings is by carrying out a PWA.

From a purely classical viewpoint, in order to measure the
nuclear force directly it would just be enough to hold and
pull two nucleons apart at distances larger than their elemen-
tarity size, which is or the order of 2fm [23]. For such an
ideal experiment the behavior of the system at shorter dis-
tances would be largely irrelevant, as nucleons would behave
as point-like particles. This situation would naturally occurs if
nucleons were truly infinitely heavy in which case the poten-
tial would correspond to the static energy of the system with
baryon number B = 2 and total charge Q = 2,1,0 depending
on whether we have pp,pn and nn 2. Of course, the quantum
mechanical nature of the nucleons prevents such a situation
experimentally and we are left with scattering experiments.
Good operating conditions are achieved when the maximum
relative CM momentum, pmax, is small enough to avoid com-
plications due to inelastic channels and large enough to con-
tain as many data as possible. This generates a resolution
ambiguity of the order of the minimal relative de Broglie
wavelength, λmin = ∆r ∼ 1/pmax. Since the NN → πNN
channel opens up at pmax ∼

√
mπ MN ∼ 360MeV, we have

∆r ∼ 0.6fm. Unfortunately, in the quantum mechanical NN
scattering problem scales are somewhat intertwined, and thus
some information of the short distance and unknown compo-
nents of the potential have to be considered before a scatter-
ing amplitude, cross section or polarization asymmetry can
be evaluated. We naturally expect that the low energy behav-
ior depends more strongly on the long distance properties of

2 This is the case ,e.g. in lattice calculations, where static sources are placed
at a fixed distance [28, 29]. In the quenched approximation it has been
found that for a pion mass of mπ = 380 MeV the value g2/(4π) = 12.1±
2.7 which is encouraging [30] but still a crude estimate.

http://www.ugr.es/~amaro/nndatabase/
http://www.ugr.es/~amaro/nndatabase/


3

the interaction, some coarse grained information of the un-
known contribution is actually needed and can indeed be de-
duced from experiment with an overall sufficient accuracy as
to determine differences in the pion-nucleon couplings. This
viewpoint allows to determine a priori the number of inde-
pendent parameters NPar needed for a successful fit [23] 3.
These ideas where introduced by Aviles long ago [31] and
underly the recent NN analysis carried out by the present au-
thors within recent times where a large database comprising
about 8000 published experimental data measured in the pe-
riod 1950-2013 was considered [23, 24].

There is no symmetry reason why the strong force between
protons and between neutrons should be exactly identical, so
one should see the difference with a sufficiently large amount
of experimental data, NDat. These differences are in fact small
and hard to pin down since a priori electromagnetic correc-
tions should scale with the fine structure constant δg/g∼α ∼
1/137 and strong (QCD) corrections should scale with the u−
d quark mass differences (relative to the s-quark mass) which
means δg/g∼ (mu−md)/ΛQCD∼ (Mp−Mn)/ΛQCD∼ 1/100
for ΛQCD ∼ 250MeV. This simple estimates suggest that in
order to witness isospin violations in the couplings we should
determine them with a target accuracy better than 1− 2%,
which is not too far from the most recent values. On a purely
statistical basis the relative uncertainty due to N independent
measurements is ∆g/g ∼ 1/

√
N. If we have some extra pa-

rameters (λ1, . . . ,λNPar),the condition ∆g ∼ δg ∼ 0.01− 0.02
would require N = NDat−NPar ∼ 7000− 10000 independent
degrees of freedom. Since NDat� NPar this is comparable to
the total amount of existing elastic np and pp scattering data.
While these are rough estimates, we stress the independence
character of the measurements in order to make these esti-
mates credible; it is not just a question of having more data.
From the point of view of χ2-fits this requires passing satisfac-
torily normality tests guaranteeing the self-consistency of the
fit. In particular, adding many incompatible data invalidates
this analysis.

III. THE GRANADA-2013 ANALYSIS

In a series of works we have upgraded the NN database
to include a total of 6713 np and pp published experimental
data by using a coarse grained representation of the interaction
and applying stringent statistical tests on the residuals of the
χ2-fits after a 3σ self consistent selection process has been
implemented [25]. The resulting Granada-2013 is at present
the largest NN database which can be described by a CD-OPE
contribution. The about 60% more data than the 4313 data

3 There is is found that for rc = 3fm , NPar ∼ 60. The argument is based on
the idea that if we take the CD-OPE potential above rc we can estimate
the number of independent potential values V (rn) below rc in any partial
wave channel, with rn = n∆r. Since the maximum angular momentum in
the partial wave expansion is lmax ∼ pmaxrc and we have four independent
waves for each l we would have NPar ∼ 4lmax(rc/∆r). Excluding the points
rn below the centrifugal barrier the number becomes NPar ∼ 2(pmaxrc)

2.

used in the latest Nijmegen upgrade [9], suggests that we
can improve on the errors for the pion-nucleon couplings as
discussed in the previous section.

We have discussed in detail the many issues in carrying out
the data selection, fitting and the corresponding joint np+pp
partial wave analysis. We review here the main aspects as a
guideline and refer to those works for further details.

We separate the potential into two well defined regions de-
pending on a chosen cut-off radius rc fixed in such a way that
for r > rc the CD-OPE is the only strong contribution. In
addition, for r > rc we also have em (Coulomb,vacuum polar-
ization,magnetic moments) [24] and relativistic pieces which
we simply add to the strong potential.

V (r) =VOPE(r)+VEM(r), r > rc (11)

Below the cut-off radius, r < rc we regard the NN force as un-
known, and we use delta-shells located at equidistant points
separated by ∆r = 0.6fm and corresponding to the shortest de
Broglie wavelength at about pion production threshold. The
fitting parameters are the real coefficients (λi)

JS
ll′ for each par-

tial wave:

V JS
l,l′(r) =

1
2µ

N

∑
i=1

(λi)
JS
ll′δ (r− ri), r ≤ rc. (12)

where µ is the NN reduced mass. Alternatively the poten-
tial can be expanded in an operator basis extending the AV18
potentials in coordinate space, see the appendix. The transfor-
mation between partial wave and operator basis was given in
Ref. [24].

It turns out that rc = 3fm provides statistically satisfactory
fits to the selected 3σ -self consistent Granada-2013 database.
While it would be interesting to separate explicitly the known
from the unknown pieces of the interaction below the cut-off
radius rc, this is actually a complication in the fitting proce-
dure, and will not change the values of the most-likely pion-
nucleon coupling constants. Another advantage of taking
rc = 3fm is that in our analysis there is no need of form fac-
tors of any kind, and thus we are relieved from disentangling
finite size effects, quark exchange and the intrinsic resolution
∆r inherent to any finite energy PWA 4

The possible Ay problem for np scattering raised by the data
of Ref. [33] suggested a sizable isospin breaking of coupling
constants. The problem was re-analyzed theoretically by [34]
motivated the reanalysis of the data [35] in particular the dis-
entanglement between systematic and statistical errors. Ac-
tually, [34] found that these data might be explained in an
isolated fashion when isospin was broken thus, we allow this
isospin breaking to foresee the possibility of recovering the
data.

4 An Explanation of the Apparent Charge Dependence of the Pion Nucleon
Coupling was attributed to the strong form factor [32].
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FIG. 1. (Color online) Phaseshifts obtained from a partial waves
analysis to pp and np data and statistical uncertainties. Blue band
from [24] and red band from a fit with charge symmetry breaking on
the 3P0, 3P1 and 3P2 partial waves.

IV. NUMERICAL RESULTS

In our previous analysis we took a fixed and the common
value for the coupling constant suggested by the Nijmegen
group. When we relax this assumption and assume a unique
pion-nucleon coupling constant we obtain f 2 = 0.07611(33)
which is 1σ compatible with the latest Nijmegen recommen-
dation [9] of f 2 = 0.0750(8) but almost three times more ac-
curate.

Following the common practice of other analyses [17, 36,
37] , we have previously allowed different pp and np parame-
ters only on the 1S0 partial wave [23, 24, 38, 39] and found that
this symmetry breaking is indeed necessary to obtain an accu-
rate description of the pp and np scattering data. The large
collection of about 8000 available data also makes it possible
to test charge symmetry breaking on the parameterization of
higher partial waves, e.g. 3P0, 3P1 and 3P2.

To carry out such a test we used different parameters on
those partial waves and performed a full PWA and selection
process as described in [24, 39] by fitting the delta-shell po-
tential parameters to the complete database and then apply-

ing the 3σ rejection criterion iteratively until a self consistent
database is obtained. The consistent database obtained in this
case has 3001 pp data and 3727 np data including normaliza-
tions and the value for the chi square per number of data is
χ2/Ndata = 1.03 When comparing with our previous consis-
tent data base [24] this symmetry breaking can only describe
15 additional data out of more than 1000 rejected data. Fig. 1
compares the low angular momentum phaseshifts of the PWA
in [24] (blue bands) with this new analysis (red bands). The pp
phaseshifts show no significant difference, while the np ones
are statistically different and the differences are even greater
for higher angular momentum partial waves.

Usually the charge symmetry breaking is restricted to mass
differences by setting fp = − fn = fc = f and the value f 2 =
0.075 recommended by the Nijmegen group [40] has been
used in most of the potentials since the seminal 1993 partial
wave analysis [17]. We test this charge independence with the
large body of data available today by using fp, f0, and fc as
extra fitting parameters along with the previous 46 delta-shell
parameters. We carry out the complete process of fitting the
full data base first and iteratively apply the 3σ rejection cri-
terion to obtain a consistent data base. The final data base
has a total of 6712 data, just one less than our previous analy-
sis [24], with χ2/Ndata = 1.04.

We show our results in Table I depending on different
strategies regarding isospin breaking in S-waves and S- and P-
waves as well as in the coupling constants. Assuming a unique
pion-nucleon coupling constant we obtain f 2 = 0.07611(33)
which is 1σ compatible with the latest Nijmegen recommen-
dation [9] of f 2 = 0.0750(8) but almost three times more
accurate. The working group summary of 1999 provides a
recent compilation of coupling constants chronological dis-
play [10]. The most recent determination [15, 16] based on
πN scattering lengths and π−d scattering and the GMO sum
rule yields g2

c/(4π) = 13.69(12)(15) = 13.69(20). From our
full covariance matrix analysis we get g2

n/(4π) = 14.91(39),
g2

p/(4π) = 13.72(7) and g2
c/(4π) = 13.81(11). The last value

is compatible with these determinations, but slightly more ac-
curate.

The fitting delta-shell parameters obtained in our differ-
ent strategies regarding CD breaking in just S-waves and CD
breaking in S and P waves can be seen in Tables II and III
respectively. We use the resulting parameters along with their
covariance matrix to calculate f 2

p , f 2
0 and f 2

c , and propagate
the corresponding statistical uncertainties and test charge in-
dependence. Fig. 2 shows the correlation ellipses obtained
with the fits with (dashed red line) and without (solid blue
line) charge symmetry on the P waves.

The standard assumption underlying a conventional χ2-fit
is that the sum of ν-independent gaussian variables belonging
to the normal distribution N(0,1) has a χ2 distribution with
ν-degrees of freedom [20]. One can actually check a posteri-
ori if the outcoming residuals do indeed fulfill the initial as-
sumption with a given confidence level. The self-consistency
of the fit is an important test, since it validates the analysis
made in Section II, and provides some confidence on the in-
crease in accuracy that we observed as compared to previous
works. The normality test of the three fits presented on this
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TABLE I. The pion-nucleon coupling constants f 2
p , f 2

0 and f 2
c determined from different fits to the Granada-2013 database and their charac-

teristics. We indicate the partial waves where charge dependence is allowed.

f 2
p f 2

0 f 2
c CD-waves χ2

pp χ2
np χ2 NDat NPar χ2/ν

0.075 idem idem 1S0 3051.64 3958.08 7009.72 6713 46 1.051
0.0761(3) idem idem 1S0 3051.54 3951.30 7002.84 6713 46+1 1.051
0.0759(4) 0.079(1) 0.0763(6) 1S0 2999.17 3951.40 6950.57 6713 46+3 1.043
0.0758(4) 0.080(2) 0.0765(6) 1S0,P 3043.64 3863.77 6907.40 6727 46+3+9 1.036

(a)
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f
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7.9
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(c)
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f
2 0
×

1
0
2

7.647.637.627.617.67.597.587.577.567.557.547.53

8.2

8.15

8.1

8.05

8

7.95

7.9

7.85

7.8

FIG. 2. (Color Online) Correlation ellipses for the coupling constants f 2
c , f 2

p and f 2
0 appearing in the OPE potential from a PWA with (solid

blue line) and without (dashed red line) charge independence on the P waves and a 3σ consistent database

TABLE II. Fitting delta-shell parameters (λn)
JS
l,l′ (in fm−1) with their

errors for all states in the JS channel for a fit with isospin symme-
try breaking on the 1S0 partial wave parameters only and the pion-
nucleon coupling constants f 2

0 , f 2
p and f 2

c as fitting parameters We
take N = 5 equidistant points with ∆r = 0.6fm. − indicates that the
corresponding fitting (λn)

JS
l,l′ = 0. The lowest part of the table shows

the resulting OPE coupling constants with errors

Wave λ1 λ2 λ3 λ4 λ5
1S0np 1.20(6) −0.78(2) −0.15(1) − −0.024(1)
1S0pp 1.31(2) −0.721(5) −0.189(2) − −0.0208(4)
3P0 − 0.95(2) −0.320(7) −0.062(3) −0.023(1)
1P1 − 1.20(2) − 0.073(2) −
3P1 − 1.351(5) − 0.0577(5) −
3S1 1.67(6) −0.46(1) − −0.073(1) −
ε1 − −1.65(2) −0.32(2) −0.242(8) −0.015(3)
3D1 − − 0.35(1) 0.106(9) 0.011(3)
1D2 − −0.21(1) −0.203(3) − −0.0190(3)
3D2 − −1.09(3) −0.13(2) −0.251(6) −0.013(2)
3P2 − −0.482(1) − −0.0288(7)−0.0037(4)
ε2 − 0.31(2) 0.191(4) 0.050(2) 0.0127(6)
3F2 − 3.50(6) −0.229(5) − −0.0142(5)
1F3 − − 0.17(2) 0.076(8) −
3D3 − 0.53(2) − − −

f 2
p f 2

0 f 2
c

0.0759(4) 0.079(1) 0.0763(6)

work are summarized on Fig. 3 as rotated quantile-quantile
plots. The tail-sensitive test compares the empirical quantiles
of the residuals with the expected ones from an equally sized
sample from the standard normal distribution. The red bands

TABLE III. Same as Table II for a fit with isopsin symmetry breaking
on the 1S0, 3P0, 3P1 and 3P2 partial waves parameters

Wave λ1 λ2 λ3 λ4 λ5
1S0np 0.99(6) −0.69(2) −0.20(1) − −0.020(2)
1S0pp 1.32(2) −0.721(5) −0.189(2) − −0.0207(4)
3P0np − 0.98(4) −0.31(1) −0.083(5) −0.019(1)
3P0pp − 0.95(2) −0.323(7) −0.062(3) −0.023(1)
1P1 − 1.25(2) − 0.070(3) −
3P1np − 1.21(2) − 0.049(1) −
3P1pp − 1.366(5) − 0.0571(6) −
3S1 1.51(7) −0.40(1) − −0.070(1) −
ε1 − −1.67(2) −0.37(2) −0.236(8) −0.015(3)
3D1 − − 0.45(2) 0.07(1) 0.014(3)
1D2 − −0.20(1) −0.205(3) − −0.0188(3)
3D2 − −0.96(5) −0.22(2) −0.234(8) −0.016(3)
3P2np − −0.435(4) − −0.046(2) −0.0022(7)
3P2pp − −0.483(1) − −0.0279(8)−0.0041(4)
ε2 − 0.30(2) 0.193(4) 0.050(2) 0.0127(6)
3F2 − 3.40(7) −0.222(5) − −0.0141(6)
1F3 − − 0.26(3) 0.06(1) −
3D3 − 0.77(3) − − −

f 2
p f 2

0 f 2
c

0.0758(4) 0.080(2) 0.0765(6)

represent the 95% confidence interval of the normality test.
For more details of the Tail-Sensitive test see [26].

Since the strong proton-proton and neutron-neutron poten-
tials correspond to the exchange of a neutral pion, the differ-
ence in the couplings manifests in the difference of the po-
tentials above the estimated exclusive domain of the CD-OPE
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FIG. 3. (Color Online) Rotated quantile-quantile plots for the fits introduced in this work. All points should be inside the confidence band to
state that residuals of the fit follow a normal distribution N(0,1), in which case the fit is self-consistent a posteriori. Left panel, assuming a
charge independent pion-nucleon constant used as a fitting parameter and charge symmetry breaking only on the 1S0 partial wave parameters.
Central panel, assuming three different charge dependent pion-nucleon constants used as a fitting parameters and charge symmetry breaking
only on the 1S0 partial wave parameters. Right panel, assuming three different charge dependent pion-nucleon constants used as a fitting
parameters and charge symmetry breaking on the 1S0 and P partial wave parameters

interaction. We can illustrate the main result pictorially in
Fig. 4 by choosing the transversely and longitudinally polar-
ized protons and neutrons. So we see that in any of the cases
considered the strength of the nn potential is stronger than the
pp potential, for instance |Vn↑,n↑| > |Vp↑,p↑| for r > rc = 3fm.
Note that we cannot determine the neutron-neutron interaction
below rc, and in particular the corresponding neutron-neutron
scattering length cannot be determined from the present cal-
culation.
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FIG. 4. Proton-proton and neutron-neutron interaction above 3fm
due to exchange of a neutral pion for different spin polarization
states. The bands correspond to the statistical uncertainties from
a fit to 6713np+pp scattering data below TLAB = 350MeV with
χ2/ν = 1.039.

V. CONCLUSIONS

We summarize our points. Using the 3σ self-consistent
Granada-2013 database for np and pp scattering we have in-
vestigated isospin breaking in the pion-nucleon coupling con-
stants by separating the nuclear potential in two distinct con-
tributions: Above 3 fm we use charge dependent one pion ex-
change potential for the strong part and electromagnetic and
relativistic corrections. Below 3 fm we regard the interaction
as unknown and we coarse grain it down to the shortest de
Broglie wavelength corresponding to pion production thresh-
old which is about 0.6 fm. With a total number of 55 pa-
rameters plus the three pion-nucleon coupling constants we
describe a total number of 6713 np and pp data including nor-
malization factors provided by the experimentalists which a
total χ2 of 6916, which means χ2/ν = 1.039. We see clear ev-
idence that the coupling of neutral pions to neutrons is larger
than to protons. As a consequence neutrons interact more
strongly than protons.
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Appendix A: Operator basis

To incorporate charge dependence on P waves two more
operators need to be added to the basis we used previously
getting a total of 23 operators On. The potential is written as
a sum of functions multiplied by each operator

V (r) = ∑
n=1,23

Vn(r)On (A1)

The first fourteen operators are charge independent and corre-
spond to the ones used in the Argonne v14 potential

On=1,14 = 1,τ1·τ2, σ1·σ2,(σ1·σ2)(τ1·τ2), S12,S12(τ1·τ2),

L·S,L·S(τ1·τ2),L2,L2(τ1·τ2), L2(σ1·σ2),

L2(σ1·σ2)(τ1·τ2), (L·S)2,(L·S)2(τ1·τ2) .

(A2)

These fourteen components are denoted by c, τ , σ , στ , t,
tτ , ls, lsτ , l2, l2τ , l2σ , l2στ , ls2, and ls2τ . The remaining
charge dependent operators are

On=15,21 = T12, (σ1·σ2)T12 ,S12T12, (τz1 + τz2) ,

(σ1·σ2)(τz1 + τz2) ,L2T12,L2(σ1·σ2)T12 .

L·ST12,(L·S)2T12 (A3)

and are labeled as T , σT ,tT , τz,στz, l2T , l2σT , lsT and
ls2T . The first five were introduced by Wiringa, Stoks and
Schiavilla in [36]; the following two were included in [24] to
restrict the charge dependence to the 1S0 by following certain
linear dependence relations between VT , VσT , Vl2T and Vl2σT .
The last two terms are required for the charge dependence on
the 3P0, 3P1 and 3P2 partial waves.

As in our previous analysis we set VtT = Vτz = Vστz = 0
to exclude charge dependence on the tensor terms and charge
asymmetries. To restrict the charge dependence to the S and
P waves parameters the remaining potential functions must
follow

48Vl2T =−5VT +3VσT +12VlsT −48Vls2T (A4)
48Vσ l2T =VT −7VσT +4VlsT −16Vls2T (A5)
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