
ar
X

iv
:1

60
6.

00
64

2v
2 

 [
he

p-
th

] 
 3

1 
A

ug
 2

01
7

Stabilization of moduli in spacetime with nested warping and the UED
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Abstract

The absence, so far, of any graviton signatures at the LHC imposes severe constraints on the Randall-

Sundrum scenario. Although a generalization to higher dimensions with nested warpings has been shown

to avoid these constraints, apart from incorporating several other phenomenologically interesting features,

moduli stabilization in such models has been an open question. We demonstrate here how both the moduli

involved can be stabilized, employing slightly different mechanisms for the two branches of the theory. This

also offers a dynamical mechanism to generate and stabilise the scale for the Universal Extra Dimensions,

another long-standing issue.
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1 Introduction

The discovery of the Higgs boson [1, 2], while seemingly completing the jigsaw that the Standard Model (SM)

is, has also brought into sharp focus a long-standing puzzle that has plagued the SM. The very lightness of its

being militates against the conventional wisdom that the mass of a fundamental scalar should flow, at the very

least, to the next-higher scale in the theory. Several “resolutions” of this hierarchy problem have been proposed,

some technically natural and others not so, most of these relying on some new dynamics and/or new states

appearing at the few–TeV scale that would serve to nullify the largest of the quantum corrections accruing from

within the SM. The continuing absence of any direct evidence of such states, though, bring into question many

such explanations.

A particularly elegant resolution is proffered by higher-dimensional theories. While models with large extra

dimensions [3, 4] have been quite popular, these fail to truly solve this problem in that these proffer no mechanism

to stabilize the corresponding moduli. Similar is the case with Universal Extra Dimensions (UED) [5] which,

while proffering interesting phenomenological consequences, such as an origin of Dark Matter, flavour physics as

well as collider signatures, again do not really solve the problem of large hierarchies. Quite the opposite is the

case of theories with a warped geometry [6, 7, 8], wherein one assumes space-time to be a slice of AdS5, bounded

by two 3-branes, on one of which (the TeV brane) the SM fields are confined. There is but one fundamental

scale (the scale of gravity M5, very close to the derived scale MPlanck) in the theory, and the smallness of the

electroweak scale (with respect to M5) is only an apparent one, caused by the non-trivial dependence of the

background metric on our brane’s location in the fifth (x4) dimension, or rather its distance, rc, from the other,

and equally “end–of–the–world”, 3-brane (also termed the UV-brane). To be specific, one has, for the Higgs

vacuum expectation value (and, similarly, for the mass), v = ṽ exp(−π k5 rc), where ṽ = O(M5) and k5 is a

measure of the bulk curvature.

With the extent of the hierarchy now being determined by the modulus (rc) of the compactified fifth dimension,

the latter must be stabilized, an issue not addressed by the originators of the model. In other words, if the

modulus is construed to be a dynamical field M, then a mechanism that forces the field to settle ( at 〈M〉 = rc)

should exist and be operative. As Ref.[9] showed, this could be achieved by introducing a new scalar field

φ, with a non-vanishing potential, in the five-dimensional bulk. As φ interacts with M through the metric,

integrating out the former would result in an effective potential Veff(M). An apt and simple choice of the

scalar-potential alongwith boundary conditions (without any discernible hierarchy) can, then, lead to a suitable

form for Veff(M) and, thereby, an appropriate rc.

With gravity percolating into the bulk, it is obvious that compactification would lead to a Kaluza-Klein (KK)

tower of gravitons, with masses given by mn = xn k5 exp(−π k5 rc) where xn denote the roots of the Bessel

function of order one. Both the applicability of semi-classical arguments (upon which the model hinges) as

well as string theoretic arguments relating the D3 brane tension to the string scale (and, hence, to M5 through

Yang-Mills gauge couplings) restrict k5/M5 <∼ 0.15 [10]. Thus, one expects the first KK-mode of the graviton,
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to be, at best, a few times heavier than the Higgs boson. Furthermore, the very warping that explains the

hierarchy also concentrates the KK-modes (though, not the lowest and massless mode) near the TeV brane,

thereby enhancing their couplings to the SM fields. Consequently, several search strategies at the LHC were

designed [11, 12, 13, 14] to detect their signatures in a multitude of channels. Negative results from the same viz.

m1
>∼ 2.66TeV (at 95% C.L.) [15, 16], thus, impose severe constraints on the model. It can be argued that,

unless we allow a little hierarchy in the ratio ṽ/M5, the RS scenario can be ruled out as a solution to the SM

hierarchy problem.

The situation improves significantly if one were to consider an extension of the scenario to two extra dimensions

with nested warpings [17]. The graviton spectrum, while now being enlarged to a tower of towers, is different

from that in the five-dimensional case in two crucial aspects. For one, the change wrought in the graviton wave

function results in the mass of the first KK-mode being significantly higher than that of the corresponding mode

in the (five-dimensional) RS case1. As this happens for natural values of the parameters, and does not need any

fine-tuning, this feature, on its own, would imply a weakening of the aforementioned “little hierarchy” that the

original RS scenario needed so as to explain the nonobservation of gravitons at the LHC [18]. More importantly,

the large coupling (to the SM fields) enhancement that allowed for the graviton KK-modes to be extensively

produced at the LHC, is now tempered to a great degree [18], a consequence, once again, of the double warping.

Consequently, the graviton production rates are further suppressed and the scenario easily survives the current

bounds from the LHC [18, 19]. On the other hand, while the allowed parameter space of the model is still quite

extensive, it can be probed well in the current run of LHC.

This, along with the fact that formulating the theory in a six-dimensional world has many other benefits,

especially when the SM fields are also allowed into the bulk [20, 21], renders this construction rather interesting.

In particular, with the four-dimensional theory getting supplanted by a five-dimensional one at the lower of the

two compactification scales, the infrared is effectively screened from modes traversing the far ultraviolet. This

is also reflected by the explicit computations of the electroweak precision variables[21], which demonstrated

that the little hierarchy is no longer a major issue. However, the very issue of stabilizing the moduli (two in

the current case, as opposed to a single one in the 5-dimensional one) has not been addressed so far. This

assumes particular significance in that the structure formulated in Ref.[17] does not boast of a conformally flat

geometry. Furthermore, the branes are not necessarily flat and this introduces its own set of complications.

In this paper, we aim to rectify this situation and develop two related, but distinct, stabilization mechanisms,

somewhat analogous to those in Refs.[9, 22, 23, 24]. This would also be seen to offer a stabilization mechanism

for the modulus in a UED theory, thereby addressing a long-standing general lacuna in this otherwise attractive

scenario.

1This is easy to understand once one realizes that the resolution of the hierarchy between the electroweak scale and the

fundamental scale is now shared between two warpings. Consequently, the extent of the individual warpings is smaller here than

required in the RS case.
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Before we venture into the actual stabilization mechanism or even a detailed discussion of the scenario, we

wish to clarify certain issues. Naively, it might be argued that having the gravitons to be heavier than in the

RS would result in a worse fine tuning for the electroweak scale. As we have already mentioned, this moderate

heaviness is but a consequence of there being two extra dimensions. To appreciate this, let us consider a sequence

of unrelated scenarios. The first example would be an ADD [4]-like scenario with two extra-dimensions being

compactified toroidally, with radii (possibly different) only somewhat larger than M−1
6 , namely Ri = θiM

−1
6

with θi >∼ 1. This would have meant M2
Pl = M2

6 θ1 θ2. In the analogous five-dimensional theory, one would have,

instead, M2
Pl = M2

5 θ1. Thus, for the theory with the larger number of extra dimensions, one would have a

smaller hierarchy between the fundamental M5, M6 etc. as the case may be and the electroweak scale. Consider,

as the next example, a simplistic generalization of the RS scenario to a slice of AdS6 bounded by two 4-branes,

such that the apparent scale on the IR-brane is a few TeVs. This particular (multi-TeV) scale would, then, be

protected with the graviton KK-modes now lying at at the same scale. If the 5-dimensional world be further

compactified (or, even, orbifolded) over a circle of small radius, there would extend an additional factor in the

relation between M6 and MPl, thereby further ameliorating the hierarchy problem. As we shall see, much the

same happens in the present case.

On a related note, the cutoff of the effective four-dimensional theory needs to be identified too. For an

effective theory, this is often described as the scale at which the loop contributions (often very large) are to be

cut off, for the new physics beyond this scale would naturally regulate such contributions. Nonetheless, with the

ultraviolet completion of the present theory being unknown (in the absence of any quantum theory of gravity),

this cancellation cannot be demonstrated exactly. However, within the five-dimensional context, it has been

argued that the addition of the Planck-brane and/or the TeV-brane allows for a holographic interpretation,

with the former acting as a regulator leading to a UV cutoff, of the order of the inverse of the modulus, on the

corresponding conformal field theory [25, 26, 27]. A similar conclusion also holds for theories with gauge fields

extended in to the warped bulk [10, 28, 29]. While no such duality has been explicitly constructed for the six-

dimensional case, one such would obviously exist, for, in a certain limit, the bulk is indeed AdS6–like. Thus, the

branes would provide a regulator, albeit in a deformed CFT. In particular, the cutoff for the four-dimensional

quantum field theory is set not by M6, but the inverse of the larger of the two moduli. At such a scale,

the higher-dimensional nature of the theory becomes quite apparent, and the four-dimensional effective theory

(including the graviton KK-modes) is no longer an apt language. And while the compactification mechanism

is not specified here (or within the RS theory), the physics responsible for it must be incorporated in any

description that reaches beyond this scale.

2 The 6D warped model

The space-time of interest is a six-dimensional one with successive (nested) warpings along the two compactified

dimensions. The uncompactified directions support four-dimensional (xµ) Lorentz symmetry while the com-
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pactified directions are individually Z2-orbifolded. In other words, we have M1,5 → [M1,3 × S1/Z2] × S1/Z2.

Representing the compact directions by the angular coordinates x4,5 ∈ [0, π] with Ry and rz being the corre-

sponding moduli, the line element is, thus, given by [17]

ds26 = b2(x5)[a
2(x4)ηµνdx

µdxν +R2
ydx

2
4] + r2zdx

2
5 , (1)

where ηµν is the flat metric on the four-dimensional slice of spacetime. As in the RS case, orbifolding, in the

presence of nontrivial warp factors, necessitates the presence of localized energy densities at the orbifold fixed

points, and in the present case, these appear in the form of tensions associated with the four end-of-the-world

4-branes.

Denoting the natural (quantum gravity) scale in six dimensions by M6 and the negative (six dimensional)

bulk cosmological constant by Λ6, the total bulk-brane action is, thus,

S = S6 + S5

S6 =

∫
d4x dx4 dx5

√
−g6 (M

4
6R6 − Λ6)

S5 =

∫
d4x dx4 dx5

√−g5 [V1(x5) δ(x4) + V2(x5) δ(x4 − π)]

+

∫
d4x dx4 dx5

√
−g̃5 [V3(x4) δ(x5) + V4(x4) δ(x5 − π)] .

(2)

The five-dimensional metrics in S5 are those induced on the appropriate 4-branes which accord a rectangular

box shape to the space. Furthermore, the SM (and other) fields may be localized on additional 3-branes located

at the four corners of the box, viz.

S4 =
∑

yi,zi=0,π

∫
d4x dx4 dx5

√−g4 Li δ(x4 − yi) δ(x5 − zi) .

Since S4 is not relevant to the discussions of this paper, we shall not discuss it any further.

Rather than limit ourselves to the solutions to the Einstein equations presented in Ref.[17], we consider,

here, a more general class. To motivate it, let us recollect that, in such models, the presence of bent branes is

due to a “lower-dimensional cosmological constant” induced on the brane. For example, the four dimensional

components of the Einstein equations, in the presence of such a term Ω would read

a2
[

3

R2
y

(
a′′

a
+

a′2

a2

)
+

2

r2z

(
3ḃ2 + 2bb̈+

Λ6 r
2
z

2M4
6

b2
)]

=
Ω

r2z
,

where primes(dots) denote derivatives with respect to x4 (x5). Introducing a constant of separation Ω̃, we have

3ḃ2 + 2bb̈+
Λ6r

2
z

2M4
6

b2 = Ω̃ (3)

and
3

R2
y

(
a′′

a
+

a′2

a2

)
+

2

r2z
Ω̃ =

Ω

r2z a
2
. (4)
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The first equation has the solution

b(x5) = b1 cosh(k|x5|+ b2) , b1 =

√
−Ω̃

3 k2
= sech(kπ + b2) , k = rz

√
−Λ6

10M4
6

≡ rz M6 ǫ (5)

assuming2 Ω̃ < 0. While Ref.[17] had considered only the special case of b2 = 0, we shall admit the more

general solution. As we shall see below, a nonzero b2 would have very important consequences. Physically, Ω̃

(or equivalently b2) is related to the induced cosmological constant on a five dimensional hypersurface3 along

the constant x5 direction. Differing values of Ω̃, thus, correspond to inequivalent extent of bending of the four-

brane, and, hence, lead to different physical outcomes. We will demonstrate this shortly using widely different

(in essence, limiting) values for Ω̃. However, while the quantitative results do differ, qualitatively they turn out

to be quite similar, with certain aspects essentially not changing at all. This was to be expected as many of

the measurables (and certainly the most important ones) are only slowly varying functions of Ω̃. Consequently,

the physical consequences (and the exact stabilization potential) of any arbitrary intermediate value of Ω̃ can

be trivially obtained by effecting a simple interpolation between the results for the extremal values.

For future convenience, we have also introduced the dimensionless combination ǫ. Clearly, for a semi-classical

approach to be valid, the curvature must be significantly smaller than the mass scale of the theory. In other

words, ǫ must be small4, namely ǫ <∼ 0.15. On the other hand, as we shall see below, too small an ǫ would either

invalidate the resolution of the hierarchy problem, or, in the process, introduce a new (but smaller) hierarchy.

The solution to eqn.(4) for a nonzero Ω is given in terms of hyperbolic functions. While it is possible to work

with the general solution, the consequent algebra is exceedingly complicated and the exercise does not proffer

any extra insight that a simplifying choice does not. As a nonzero Ω results in a nonzero cosmological constant

in the four-dimensional world, and as the observed cosmological constant in our world is infinitesimally small,

we disregard it altogether and consider only5 Ω = 0. We do not claim to offer any rationale for this choice but

for the fact that it simplifies the algebra for the rest of the article without losing any of the essence. In this

2For Ω̃ > 0, one would, instead, have b(x5) =

√
Ω̃/2 k2 sinh(k|x5|+ b2). Not much would change materially, except for the fact

that b2 = 0 would no longer be allowed unless one is willing to admit a vanishing metric, albeit only at a given slice of space-time.

It is intriguing to note that the notion of a degenerate spacetime has received recent attention from a different standpoint [30].

3It should be realized that a five-dimensional cosmological constant is very different from a four-dimensional one. Indeed, even

for a large value of the former, one could be left with a vanishing value for the latter, as would be the case here.

4While a slightly larger ǫ can be admitted, say by arguments relating the brane tension to the scale of some underlying string

theory (or even to M6) [10], the applicability of the semiclassical approximation grows progressively worse. On the other hand,

ǫ <∼ 0.15 automatically ensures that the curvature in the x4 -direction is sufficiently small.

5While this may be perceived as a fine-tuning, it is, at worst, exactly the same as that in the RS model. Indeed, Ω = 0 is not a

special solution, and the same argument could be made against any finite value for Ω. On the other hand, Ω = 0 could, in principle,

be the result of some as yet unspecified symmetry [31].
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limit, the solution can be expressed as6

a(x4) = a1 e
−c|x4| c ≡ b1 k

Ry

rz
. (6)

Normalizing the warp factors, at their maximum values, through a(0) = 1 and b(π) = 1, and imposing the

orbifolding conditions, we have

b(x5) =
cosh(k|x5|+ b2)

cosh(kπ + b2)
, a(x4) = exp(−c |x4|) . (7)

The brane potentials are determined by the junction conditions. The ones at x5 = 0, π are simple and are given

by

V3 =
−8M4

6k

rz
tanh(b2) , V4 =

8M4
6k

rz
tanh(kπ + b2) , (8)

whereas the ones at x4 = 0, π have x5–dependent tensions

V1(x5) = −V2(x5) =
8M4

6 c

Ry b(x5)
=

8M4
6k

rz
sech(k|x5|+ b2) . (9)

It should be noted that the Israel junction condition V1 = −V2 is necessitated only by our focus on Ω = 0, or,

in other words, a configuration wherein the four-dimensional cosmological constant vanishes exactly. Had we

admitted Ω 6= 0, this equality of magnitude would neither have been necessary nor would it have held. This, of

course, is exactly as in the RS case. The dependence of V1,2 on x5 is easy to understand. Each slice of x5 could,

potentially, host a 4-brane, with distinct (3+1)-dimensional worlds at the ends. Only if the potentials localized

at the end of the branes are equal and opposite and related to the “overall size” of the 5-dimensional metric

in that slice (just as in the RS case), would these hypothetical (3 + 1)-dimensional worlds be associated with

a vanishing cosmological constant. As has been demonstrated in Refs.[17, 21], such a x5–dependent potential

could be occasioned by a brane-localized scalar field, such as a kink solution corresponding to a quartic potential,

or in a theory with a non-trivial kinetic term.

It should be noted, though, that with these particular forms for V1,2 are not strict requirements for the model.

Such a choice only helps to reduce the algebra. Indeed, as long as eqn.(9) holds at x5 = 0 (with no restrictions

for x5 6= 0), the vanishing of the four-dimensional cosmological constant is guaranteed. However, the relaxation

of eqn.(9) does not add anything qualitatively different to either the phenomenology (whether in the graviton

sector [18, 19] or in the SM sector[20, 21]) or to the main thrust of this paper, namely the stability of the

scenario.

We now turn to the consequences of choosing a particular value for b2 (this choice, as we shall see later,

also serves to determine c). Rather than discuss the generic case (which does not afford closed-form analytical

solutions), we illustrate the situations for two extreme limits. Physically, one of the limits corresponds to a

vanishing five-dimensional cosmological constant (equivalently, straight, or unbent, four-branes at the ends of

the world). The opposite limit corresponds to the case wherein the four-branes suffer the maximum possible

6Once again, we omit the second solution, viz. ecx4 for reasons analogous to those operative for b(x5).

7



bending commensurate with a semiclassical analysis (or, in other words, a five-dimensional cosmological constant

comparable to the fundamental scale). The low energy phenomenology, naturally, would turn out to be quite

different in the two cases. Clearly, any intermediate value of b2 would correspond to an intermediate value of

the five-dimensional cosmological constant and, similarly, for the low-energy phenomenology.

Case 1: The situation of b2 = 0 recovers the results of Ref.[17] and we have

c =
Ry k

rz
sech(kπ)

V1(x5) = −V2(x5) =
8M4

6k

rz
sech(k|x5|) ,

V3 = 0

V4 =
8M4

6k

rz
tanh(kπ) .

(10)

This, obviously, corresponds to a bent brane scenario with nonvanishing induced five-dimensional cosmological

constants on the hypersurfaces at x5 = 0, π. This could easily be seen by observing that the induced metric on

the x5 = 0 surface, apart from an overall b(0) factor, is given by

ds25 = e−2c|x4|ηµνdx
µdxν +R2

ydx
2
4 ,

or, in other words, the induced geometry is AdS5-like.

Case 2: In the opposite limit, viz. b2 → ∞, we have b(x5) ≈ (b1/2) exp(k|x5|+b2) and, hence, the normalization

of the warp factor would imply b1 ≈ 2 exp(−kπ − b2) → 0. Consequently, one is forced to c ≪ k, unless one

were to admit a large, and unpleasant, hierarchy between Ry and rz . This situation should be contrasted to the

previous case, where the limit was realizable for both branches of the theory, viz. c ≪ k as well as a moderate

c > k.

With c → 0 the brane potentials now read

V1 = −V2 ≈ 0

V3 ≈ −8M4
6k

rz
≈ −V4

(11)

The fact of V3 ≈ −V4 reveals the near vanishing of brane-induced cosmological constant. As for the line element,

in this limit,

ds2 = e2k(|x5|−π)
(
e−2c|x4|ηµνdx

µdxν +R2
ydx

2
4

)
+ r2zdx

2
5

≈ e2k(|x5|−π)
(
ηµνdx

µdxν +R2
ydx

2
4

)
+ r2zdx

2
5

or that the metric is nearly conformally flat. It should be realized, though, that the approximate conformal

flatness would have followed as long as c ≪ k (i.e., for k >∼ 10) and did not need b2 → ∞. However, a finite value
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of b2 would have translated to unequal brane tensions and, consequently, nonvanishing induced cosmological

constants.

The two opposing limits of b2 are not special, but only serve to simplify the algebra. Any intermediate value of

b2 would only lead to phenomenological situations that interpolate between those listed above. In the following,

we shall detail not only the stabilization of the radii, but also that of b2.

3 Radii Stabilization

While it may seem, at first sight, that moduli stabilization in this (6D) framework can proceed in a fashion

identical to that in the RS paradigm, there are certain crucial differences. In particular (and, as we shall see

below), if we attempt a naive GW [9]–like mechanism, only one combination of the two moduli can be stabilized.

This is but a reflection of the well-known fact that, for a multidimensional hidden compact space, it is easier

to stabilize the shape rather than the volume. It should be realized, though, that had we been interested in

a different compactification (such as, for example, M (1,3) × S2 with an appropriate orbifolding), a single-field

GW-like mechanism would indeed be enough. This is as expected, for in such a case there would, but, be only

one modulus to stabilize. However, such a compactification is not favoured phenomenologically as, on the one

hand, it requires extra fields to counterbalance the curvature of S2, while, on the other, if the SM fields are

extended in to the bulk (so as to fully exploit the advantages of the 6D construction), the resultant spectrum

cannot, easily, be made consonant with low energy observations.

While the same mechanism would work irrespective of the choice for induced cosmological constant, the

algebraic simplification is significant in the two limits discussed in the preceding section. Similarly, treating

the two distinct regimes (viz small k and large k) separately brings forth an appreciation of both the overall

mechanism, as well as the subtle differences in the implementation thereof.

Before we do this, though, let us reexamine some potentially confusing features of this scenario, in particular

the roles of the brane localized potentials Vi, the separation constant Ω̃ and the constant b2. At first glance, the

“choices” might seem to associated with fine-tunings. We begin by showing that not all of them are independent

and, then, explore the stabilization of the truly independent.

To begin with, it should be realized that the special case of Ω̃ = 0 would have led to a generic solution of the

form

b(x5) = β1 cosh2/5
[
5kx5

2
+ β2

]

where β1,2 are the constants of integration, with β1 to be fixed by our normalization of b(x5 = π) = 1. This

special solution is unique to Ω̃ = 0 and untenable for Ω̃ 6= 0, when only the solution of eqn.(5) applies. More

importantly, the two solutions differ by at most 50% (almost independent of the value of Ω̃). For large k

(∼ 8, as would be the case for preferred solution for the hierarchy problem), the warp factors are very nearly

indistinguishable, throughout the bulk, with the difference being noticeable only very close to the IR brane. In
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other words, the conclusions that we would draw are not very sensitive to the exact value of Ω̃. Put differently,

there is no severe fine-tuning associated with Ω̃.

Note further that eqn.(5) also implies

Ω̃ = −3 b21 k
2 = −3 k2 sech2(k π + b2)

whereas eqn.(8)

V3 = −8

√
−Λ6 M4

6

10
tanh b2 ,

−V4

V3
=

tanh(kπ + b2)

tanh b2
.

In other words, there is a one-to-one relation between (V3, V4) and (k, b2) or, equivalently, (k, Ω̃). Stabilizing

one set automatically stabilizes the others. While we propose below a mechanism to stabilize the last (or,

equivalently, the first) set, note that we have already seen that the dependence of physical observables on Ω̃ is

a suppressed one. Thus, stabilizing k would be enough.

3.1 Small k and large c

As we have discussed in Sec.2, in this regime, the metric cannot be approximated by a conformally flat one, and,

of the two limits discussed therein, only Case I can be applicable. Rather than work with the general solution,

we shall work in this limit, for it simplifies the algebra considerably without altering the physical essence.

As we have also explained earlier, starting with a single canonically quantized scalar field, it is not possible to

stabilize both the moduli. Consequently, we postulate two such scalar fields. In order to minimize the number

of effective four-dimensional fields (on KK reduction), we incorporate one scalar field φ1(xµ, x4, x5), permeating

the entire bulk, that would serve to stabilize rz (or, equivalently, the dimensionless quantity k). A second field

φ2(xµ, x4), introduced (localized) only on the x5 = 0 brane, would, similarly, stabilize the length (Ry) of the

brane. Given the box structure and the orbifolding, together, they stabilize both the moduli.

The Lagrangians for these scalars are given by

L6 =
√−g

(
− 1

2
gMN∂Mφ1∂Nφ1 −

1

2
m2φ2

1

)
+
√−g5

(
U1(φ1)δ(x5) + U2(φ1)δ(x5 − π)

)
(12)

and

L5 =
√−g5

(
− 1

2
gM̄N̄∂M̄φ2∂N̄φ2 −

1

2
m2φ2

2

)
δ(x5) +

√−g4

(
U3(φ2)δ(x4) + U4(φ2)δ(x4 − π)

)
δ(x5) (13)

respectively. Here, g = det(gMN ) = −a4b5Ryrz, whereas, for the induced metrics, we have g5 = det(gM̄N̄ ) =

−Rya
4b5 and g4 = det(gµν) = −a4b4.

In particular, the 5d metric, apart from the constant b2(0), induced on the x5 = 0 brane is

ds25 = e−2c|x4|ηµνdx
µdxν +R2

ydx
2
4 .

Given this AdS5 geometry and the form of L5, it is clear that the stabilization of Ry can proceed exactly as

in the GW mechanism [9] or its variants [22] using the classical configuration of φ2. Since this technique is
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well-known, we, for the sake of brevity, will eschew any details here, assuming that Ry can be stabilized. Indeed,

with an appropriately modified five-dimensional potential for φ2, it is also possible to take into account the back

reaction and achieve an exact solution[23]. We will come back to a generalized version of this.

Unlike the 4-brane at x5 = 0 (hereafter called the 40 brane) itself, the x5−direction possesses a non-zero

induced cosmological constant, as shown in section 2. Stabilization of this direction, thus, requires a more

careful analysis which we proceed to now.

The effective potential for rz (equivalently, k) can be obtained, starting from the Lagrangian of eq. 12.

While the classical configuration of φ could, in principle, have nontrivial dependences on both x4 and x5 (and,

yet, maintain the requisite Lorentz symmetry), such a general consequence would have required complicating

the boundary-localized terms and does not add anything qualitatively different to the system. Since we are

primarily interested in the effective potential in the x5-direction, for brevity’s sake, we restrict our discussion

to the case where φ has a nontrivial dependence only along x5 and denoting it

〈φ1(xµ, x4, x5)〉 =
φ(x5)√
Ryrz

,

the effective one-dimensional Lagrangian for φ(x5) is given by

L̂6 =
a4b5

2

[
−r−2

z (∂5φ)
2 −m2φ2

]
+ a4b5Ry [U1(φ1)δ(x5) + U2(φ1)δ(x5 − π)] . (14)

Understandably, a(x4) appears only as an overall multiplicative factor and plays no dynamical role. The

corresponding equation of motion is

∂5(b
5∂5φ)− b5m2r2zφ+Ryr

2
zb

5
(∂U1(φ1)

∂φ
δ(x5) +

∂U2(φ1)

∂φ
δ(x5 − π)

)
= 0 . (15)

The solution, in the bulk, is given in terms of associated Legendre functions, viz.

φ = sech5/2(kx5)
[
c1P

ν
3/2(tanh(kx5)) + c2Q

ν
3/2(tanh(kx5))

]
, (16)

where c1,2 are the constants of integration and

ν =
5

2

√
1 +

4µ2

25
, µ ≡ mrz

k
=

m

M6 ǫ
. (17)

The constants c1,2 can be determined once boundary conditions are imposed. To do this, we turn to the

brane-localized potentials U1,2(φ1) which, until now, were unspecified. We are not sensitive to the exact form

of U1,2(φ1) as long as they admit nonzero minima at φ = v1,2 respectively. Noting that the cutoff scale

on this brane is given by R−1
y , such minima, for example, can be easily achieved if one were to consider

U1,2(φ1) = V3,4 + R−1
y λ1,2

(
φ2 − v21,2

)2

with λ1,2 being dimensionless constants and V3,4 being defined as in

11



eq.(2).7 This immediately leads to

c2 =
v1P

ν
3/2(τπ)− v2 cosh

5/2(kπ)P ν
3/2(0)

Qν
3/2(0)P

ν
3/2(τπ)−Qν

3/2(τπ)P
ν
3/2(0)

c1 =
1

P ν
3/2(0)

(
v1 − c2Q

ν
3/2(0)

)

τπ ≡ tanh(kπ) .

Putting the solution back in the effective Lagrangian 14, we have

L̂6 =
k2a4

2 r2z
sech5(kπ)

[
(5− 2ν)2

4

(
c1P

ν
5/2(tanh(kx5)) + c2Q

ν
5/2(tanh(kx5))

)2

−µ2
(
c1P

ν
3/2(tanh(kx5)) + c2Q

ν
3/2(tanh(kx5))

)2
]

.

Eliminating the irrelevant factor a4(x4) and integrating L̂6 over x5, we would obtain an effective potential for

k, defined, in dimensionless form, as

Veff(k) ≡
1

M2
6 v21

∫
dx5

L̂6

a4(x4)
. (18)

Since k = rz M6 ǫ, with the last two quantities being fixed parameters of the theory, Veff is, thus, equivalently,

a potential for rz. As a closed form expression for Veff is not possible, and even a good approximate form

complicated enough, we present it, instead, only in a graphical form.

In Fig.1, we display Veff(k) for a fixed value of the mass parameter µ (equivalently, m). As is obvious,

depending on the ratio v2/v1, minima exist for 0.1 <∼ k <∼ 0.6, the range that is of particular interest not only to

explain the non-observation (so far) of the KK-graviton at the LHC [18, 19], but also for scenarios wherein the

SM fields are extended in to the bulk [20, 21]. What is particularly encouraging is that such minima arise for

very natural values of the parameters and are not overly sensitive to their precise values. Indeed, the strongest

dependence, of the stabilized value of the modulus rz , is on the ratio v1/v2 of the classical values.

It is also instructive to examine the dependence of Veff(k) on ǫ (as depicted in the two panels of Fig.1) and µ

(as shown in Fig.2). As can be readily ascertained, while the size of the potential has a strong dependence on µ

(understandable, since it is µ that allows for a nontrivial Veff), the position of the minimum has only a muted

dependence.

Until now, we have neglected the back reaction on the metric due to the scalar field. While we could, in

principle, attempt this, as we shall indeed do for the other regime (namely, large k) in the next section. However,

7On the boundary, once the scalar field φ settles down to the vacuum v1,2, the brane localized potential becomes U1,2 = V3,4

and one recovers the action given in eq.(2). While this unifies the explanation of the brane-tensions V3,4 with the stabilization

mechanism, truthfully, it, of course, does not yet explain their values. On the other hand, as we have explained earlier, with

Einstein’s equations and matter equation of motion being coupled, only certain values of V3,4 can be consistent with the metric

and the orbifolding. The stabilization of k, though, would imply the stabilization of V3,4 too.
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Figure 1: The effective potential Veff (k) for different values of the ratio v2/v1 of the classical values of the field

φ on the two constant-x5 branes. The left (right) panels correspond to ǫ = 0.1 (0.01).
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Figure 2: The effective potential Veff (k) for different values of the mass of the bulk scalar φ1.

in the current context, the presence of a non-negligible induced cosmological constant Λind queers the pitch. In

the absence of Λind, the change in the warp factor due to back-reaction can be computed exactly by integrating

three first order equations (namely, the one for the scalar field, the warp factor and the bulk potential). For a

non-zero Λind, additional nonlinearities , that couple these three equations in a non-trivial manner, emerge [23],

and a closed-form analytic solution is not possible. Of course, the equations can still be solved numerically.

However, in view of the fact that such solutions can be easily obtained by deforming the solutions presented

13



above, we eschew a detailed discussion for the sake of brevity. The neglect of the back-reaction is eminently

justified, for the largest value of the scalar field mass that we have used is sufficiently smaller than Λ
1/6
6 (and,

certainly M6). Consequently, the energy content in the φ-field is rather subdominant to that due to the bulk

cosmological constant and the back-reaction in the bulk is not much of a worry. Furthermore, with the hierarchy,

for the most part, being dictated by the warp factor in the x4−direction, even moderate changes in b(x5), as

would be introduced by the back-reaction, have relatively little bearing on the phenomenology.

3.2 Large k and small c

In this regime, the metric is nearly conformally flat. With c being infinitesimally small, neglecting the

c−dependence of the metric would not introduce a decipherable difference in the analysis. To simplify the

algebra, we will take recourse8 to Case 2 of section 2, whence the metric reduces to

ds2 = e2A(x5)
(
ηµνdx

µdxν +R2
ydx

2
4

)
+ r2zdx

2
5 , (19)

where in the absence of backreaction A(x5) = k|x5|. With the 40-brane-localized induced cosmological constant

being infinitesimally small, it is possible to obtain an almost exact solution incorporating the back reaction as

well and we now attempt this. Introducing a scalar field φ in the bulk, the entire action is given by9

S =

∫
d6x

√−g

[
M4

6 R− 1

2
(∂φ)2 − V (φ)

]
. (20)

The corresponding equations of motion are

φ̈+ 5φ̇ Ȧ = r2z
∂V

∂φ

5Ȧ+ 2Ä =
−r2z
2M4

6

[
φ̇2

2 r2z
+ V (φ)

]

Ȧ2 =
r2z

10M4
6

[
φ̇2

2 r2z
− V (φ)

]
.

(21)

For a scalar with a localized potential on the x5−constant 4-branes V (φ) could be written as

V (φ) = Vbulk(φ) + r−1
z [f0(φ(0)) δ(x5) + fπ(φ(π)) δ(x5 − π)]

where Vbulk(φ) is the bulk potential and f0,π(φ(x5)) are some as-yet undetermined functions of the scalar field.

Integrating eqn.(21) across the 4-brane locations (α ≡ x5 = 0, π), we have

Ȧ
∣∣∣
α+ǫ

α−ǫ
=

−1

4M4
6

fα(φ(α))

φ̇
∣∣∣
α+ǫ

α−ǫ
= rz

∂fα
∂φ

(φ(α)) ,

8Once again, the choice of Case 2 does not represent a fine-tuning. Rather, it only serves to simplify the algebra permitting an

analytics closed-form solution.

9We do not write Λ6 explicitly, preferring to include it in V (φ).
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which provide the junction conditions. An exact closed-form solution to eqns.(21) can be obtained only for

particular bulk potentials. Borrowing from techniques of supersymmetric quantum mechanics, we assume the

bulk potential can be expressed as

Vbulk =
1

2

(∂W
∂φ

)2

− 5

2M4
6

W 2 , (22)

where W (φ) can be thought of as a superpotential. This, immediately leads to

Ȧ =
rz

2M4
6

W

φ̇ = − 2 rz
∂W

∂φ

(23)

as long as W (φ) satisfies the junction conditions

W
∣∣∣
α+ǫ

α−ǫ
=

1

2

1

rz
fα(φ(α))

∂W

∂φ

∣∣∣
α+ǫ

α−ǫ
= − 1

2

∂fα(φ(α)

∂φ
.

Each choice for W (φ) gives a different Vbulk, but an analytic closed-form solution can be found for only some.

An explicit example is afforded by a quadratic superpotential [23, 24], namely

W (φ) = 2M5
6 ǫ−

1

4
uM6 φ

2 ,

where u <∼ 0.1 is a constant, parameterizing not only the mass of φ, but its (quartic) self-interaction as well.

The corresponding brane localized potentials read

f0(φ) =
1

2 rz
W (φ)− 1

2

∂W

∂φ
(φ− v0) + γ2

0 (φ− v0)
2

fπ(φ) =
1

2 rz
W (φ)− 1

2

∂W

∂φ
(φ− vπ) + γ2

π (φ− vπ)
2 ,

where γπ,0 are arbitrary positive constants that ensure that φ(x5) assumes values vπ,0 on the Planck (TeV)

branes. The solutions to eqns.(23) are given by

φ(x5) = φ0 exp (uM6 rz |x5|)

A(x5) = k |x5| −
v40

8M4
6

exp (2 uM6 rz |x5|) .

(24)

Note that the warp factor has changed from the simple exponential form that it had in the absence of φ.

It is worthwhile to reflect on the difference between this analysis and that presented in the preceding subsec-

tion. While we could have adopted the same procedure, namely substitute eqn.(24) in eqn.(20) and integrate

over x5 to yield an effective potential Veff(rz), it is not necessary to do so. Rather, note that the very structure

of the solution (eqn.24), along with the boundary-localized potential ensures that

rz =
1

u πM6
ln

v2π
v20

. (25)
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No other value for rz would admit a solution, consistent with the boundary conditions, to the system of coupled

nonlinear differential equations that we are endowed with. It is also worthwhile to note that a natural set of

values for vπ/v0 and u can reproduce the required rz (and, hence, the correct warping) without any fine-tuning

being needed.

We now turn to the stabilization of Ry. If the approximation of eqn.(19) were truly exact, Ry cannot be

stabilized. On the other hand, it need not be, at least in the context of hierarchy stabilization, for it really does

not play a role in defining the overall warp-factor. Apparently, thus, the primary constraints would be those

on the ADD scenario [4], such as deviation from Newton’s law or the fast cooling of a supernova. And while it

might be argued that such an extremely large value for Ry reintroduces a hierarchy, it is not obvious that this

is a problem (far less a serious one), given that Ry plays only a subservient role in defining the gap between

M6 and the electroweak scale. Indeed, well before Ry becomes so large (the sub-millimeter range), c becomes

quite non-negligible. This not only invalidates the approximation of eqn.(19), but also carries the seed for the

stabilization of Ry.

The latter can proceed, for example, in a fashion exactly analogous to the GW mechanism as defined for the

original RS scenario. Consider, for example, a second scalar φ2 (of mass m2
<∼ M6) confined to the 4-brane

at x5 = π. Assume that the only self-interactions are localized at the boundaries, viz. at (x4, x5) = (0, π)

and (π, π) which, in turn, force φ2(0, π) = v3 and φ2(π, π) = v4. Clearly, this would lead to a stabilized

R−1
y ∼ O (m2 ln(v3/v4)), and, consequently, to a moderate Ry/rz and a small c (as desired).

A more interesting option would be to locate φ2 on the 40 brane instead, with the boundaries now corre-

sponding to (x4, x5) = (0, 0) and (π, 0) respectively. With m2 now suffering a large warping (due to b(x5)),

the stabilized value for R−1
y would, naturally, be in the TeV range. This, immediately, raises the intriguing

possibility that new physics at a few-TeV scale could indeed be stabilized by the SM Higgs itself (or a cousin

of its). Even more intriguingly, if one allows the SM fields to percolate into the x4 direction, the setup under

discussion would provide a dynamical justification for the scale in a Universal Extra Dimension-like scenario [5].

4 Conclusion

The six dimensional warped scenario provides a cure for various ailments of Randall-Sundrum model. Never-

theless, the problem of modulus stabilization, which was quite simple for Randall-Sundrum scenario, had, until

now, not been executed for either of the two moduli in the nested warped model, largely on account of the fact

that the model’s space-time is neither conformally flat, nor are the end-of-the world branes flat. Consequently,

the stabilization mechanism presents a technical challenge, and this is the issue that we have addressed in this

paper. To this end, we begin by exploring the metric for nested warping, showing that the solutions for each of

the two regimes allowed to the theory can be generalized beyond what was considered earlier.
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In the small k (equivalently, large c) regime of the theory, the induced geometries on the x5–constant 4-branes

are AdS5-like, and hence a Goldberger-Wise mechanism (or even one incorporating back-reaction) involving a

brane-localized scalar field trivially stabilizes the corresponding modulus Ry. The second modulus rz cannot

be stabilized by the same scalar field. It is intriguing to consider leaving it unstabilized, especially since

the corresponding warping is minor, and a slow temporal variation would have very interesting cosmological

ramifications. However, rz can also be stabilized by a six-dimensional analogue of the GW mechanism, as we

have demonstrated here. Although the form of the effective potential for rz is much more complicated than

that in the minimal RS scenario, a numerical analysis shows that a minimum does exist and reproduces the

desired hierarchy without the need for any fine tuning. Indeed, the phenomenologically acceptable domain in

the parameter space of the theory is more extensive than that in the RS model. As for the back-reaction, while it

can be incorporated, closed-form analytic solutions are not possible owing to the non-zero induced cosmological

constants on the constant–x5 hypersurfaces. However, numerical solutions are indeed possible.

In the other regime of the theory, characterized by a vanishingly small induced cosmological constant, the

scenario changes dramatically, with the bulk tending to become conformally flat (and the warp factor nearly

exponential). With the induced cosmological constant on the branes being infinitesimally small10, a closed form

solution can be found even on the inclusion of the backreaction. This allows us to stabilize rz without taking

recourse to any unnatural values of the parameters. And while the aforementioned exact solution is achievable

for only certain specific potentials, deviations thereof still lead to stabilization (with backreaction taken into

account) with the only difference being that the solutions can be expressed only in terms of complicated integrals.

The situation with the corresponding Ry is more intriguing. With c now being infinitesimally small, it

is tempting to consider the possibility of a rolling Ry, especially since a slowly varying Ry would have very

interesting and attractive cosmological consequences. On the other hand, Ry can indeed be stabilized, by

introducing a second scalar on one of the two 4-branes, viz. at x5 = π or at x5 = 0. The first alternative

naturally leads to Ry being stabilized to a value of the order of rz . The second alternative, on the other hand,

leads to a situation whereby a scalar field of apparently TeV-range mass (on account of the warping) leads to

Ry being stabilized at a scale somewhat higher than the electroweak one. If the SM fields were considered to be

five-dimensional ones, defined on the entire brane at x5 = 0, this immediately leads to a UED-like scenario with

the TeV-scale protected naturally. The orbifolding inherent to the system would not only eliminate unwanted

modes, but also introduce for a KK-parity that, in turn, provides for a Dark Matter candidate on the one

hand and eliminates many contributions to rare decays and precision variables on the other, thereby improving

agreement with observed phenomenology. It might be argued, though, that with c being different from zero,

the KK-parity is not exact. This is indeed so, but with the extent of Z2-breaking being determined by the

10Note that a non-zero value for the five-dimensional cosmological constant does not preclude a vanishing four-dimensional

cosmological constant (witness the original RS model), and, indeed, we do obtain the latter even in the general case. Furthermore,

a vanishing value of the former is not a requirement for our analysis, and serves only to simplify the algebra.

17



(vanishingly small) induced cosmological constant Ω̃, the lifetime of such DM-candidates would be exceedingly

long.

Before ending, we revisit the question of fine tuning in such models. Both the original formulation [17] as well

as the extended version (Sec.2) seemed to be dependent on the presence of particular values of brane tensions.

Exactly analogous to the original RS model, this could be interpreted as a fine-tuning endemic to this class of

models. Naively, the choice of values for b2 and the constant of separation Ω̃ represent additional fine-tunings.

We have shown here, though, this is not so. The exact value of Ω̃ (equivalently, b2) has relatively little bearing

on the phenomenology. Indeed, for any two values of b2, in the range 0 ≤ b2 < ∞, the difference between

the resultant warp factors differs by at most 50%, and that too, only for small k. For large k, on the other

hand, the warp factors are virtually indistinguishable except for very close to the IR brane. With the physical

observables being differentiable functions of b2 (and, hence, Ω̃), the (small) differences due to finite values of b2

can be easily worked out by interpolating between the results for b2 = 0 and b2 → ∞ respectively. We have,

consequently, chosen to demonstrate the results in these two limits as they admit simple analytical solutions

whereas the general b2 would need numerical methods to be employed.

Having argued that a specific value of Ω̃ (or, equivalently, b2) does not imply any fine-tuning over and above

that endemic to RS models, we now turn to the latter, or more specifically, to the analogue thereof. As we

have argued earlier, within the original RS model (sans modulus stabilization), the brane tension had to be just

so, for the bulk solution and the orbifolding to be valid simultaneously. Furthermore, these were not related

to the modulus. Here too, a similar situation seems to hold (see eq.8), with the recognition that the ratio

k/rz is determined entirely by fundamental scale M6 and the bulk cosmological constant Λ6. Indeed, it has

parallels with the RS model wherein the branes were allowed to have a nonvanishing cosmological constant. On

introducing the stabilization mechanism the brane tensions V3,4 were identified with the stabilized values of the

brane-localized potentials U1,2(φ) of the bulk scalar φ.

A deeper understanding is afforded if one considers possible quantum corrections to the bulk Einstein-Hilbert

action. While no such actual calculation is available, these, presumably, would appear as diffeomorphism-

invariant higher derivative terms. Assuming that these could be parametrized as a polynomial in R, Ref.[32]

considers, for example, a 5-dimensional bulk theory defined in the Jordan frame by

f(R) = R+ a1
R2

M2
+ a2

R3

M4
,

with the constants ai ∼ O(10−1) and M the cut-off scale. In the Einstein frame (obtained from the Jordan

frame through a conformal transformation), the extra degree of freedom associated with the higher-derivatives

can be recast in terms of a scalar field with a very nontrivial potential. Most interestingly, this degree of freedom

can play the role of the Goldberger-Wise scalar, thereby allowing for a “geometric stabilization” of the modulus.

A similar stabilization can occur in six-dimensions too with the field φ1 parameterizing such higher derivative

terms appearing in the bulk action. Additional possibilities arise in the shape of brane-localized f(R)-terms

(since the branes are characterized by matter fields, the quantum corrections to the Einstein-Hilbert action
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would, in general, be different on them). These extra terms would play the role of the brane-localized fields

(masquerading as our φ2) with their own potentials. Being very steep [32], these would enforce the system

being in the vacuum state, thereby according a quantum origin to V3,4. Of course, once again, this entire

paradigm depends upon the exact form of f(R), including the coefficients, for both the bulk and the branes.

However, the conjecture that the entire stabilization process is but a consequence of an effective geometric action

born of quantum corrections, is, undoubtedly, a very interesting one, especially in the quest to understand the

fine-tuning problem (such as that associated with choosing Ω = 0).

It is also worthwhile to consider extending the formalism developed herein to still higher dimensions. For

example, it has been shown [33, 34, 35] that a six-dimensional UED model not only suppresses proton decay

through a higher dimensional operator, but also gives a topological origin for the number of chiral fermion

generations. The extension of the formalism presented here to seven dimensional nested warping [17] would

accord a dynamical origin to the scale of the model. These and other issues are currently under investigation.
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