
ar
X

iv
:1

60
6.

01
17

7v
1

 [
cs

.O
H

]
 2

7
M

ay
 2

01
6

Axodraw Version 2

John C. Collins a and J.A.M. Vermaseren b

a Department of Physics, Pennsylvania State University,

University Park, Pennsylvania 16802, USA

bNikhef Theory Group

Science Park 105, 1098 XG Amsterdam, The Netherlands

(26 May 2016)

Abstract

We present version two of the LATEX graphical style file Axodraw. It has a num-
ber of new drawing primitives and many extra options, and it can now work with
pdflatex to directly produce output in PDF file format (but with the aid of an
auxiliary program).

http://arxiv.org/abs/1606.01177v1

Contents

1 Introduction 3

2 Changes 4
2.1 Changes relative to original, axodraw version 1 4
2.2 Changes relative to axodraw4j distributed with JaxoDraw 6
2.3 Backward compatibility, etc . 6

3 Installation 7
3.1 Installation from standard TEX distribution 7
3.2 Manual installation . 7

3.2.1 Style file textttaxodraw2.sty . 7
3.2.2 Helper program axohelp . 8
3.2.3 Testing . 8
3.2.4 Documentation . 9

4 Use 9
4.1 Basic example . 9
4.2 Document preparation . 10
4.3 Document compilation . 11

4.3.1 To make a postscript file . 11
4.3.2 To make a pdf file via latex . 12
4.3.3 To make a pdf file by pdflatex, lualatex, or xelatex 12

4.4 Automation of document compilation . 13

5 Reference 13
5.1 Package invocation . 13
5.2 Environment(s) . 14
5.3 Graphics drawing commands . 16

5.3.1 Grid drawing . 17
5.3.2 Ordinary straight lines . 17
5.3.3 Arcs . 18
5.3.4 Bézier lines . 19
5.3.5 Curves . 20
5.3.6 Gluon lines . 21
5.3.7 Photon lines . 23
5.3.8 Zigzag lines . 24
5.3.9 Vertices, circles, ovals . 25

5.4 Text . 30
5.4.1 TEX-type text . 31
5.4.2 Postscript-type text . 32

5.5 Options . 36

1

5.6 Remarks about Gluons . 38
5.7 Remarks about arrows . 40
5.8 Units and scaling . 45

5.8.1 Scaling for slides . 45
5.8.2 Scaling within article . 46
5.8.3 Canvas and object scales . 47

5.9 Settings . 48
5.10 Colors . 51

5.10.1 How to use colors . 51
5.10.2 Defined named colors . 54

6 Some examples 55
6.1 A Feynman diagram . 55
6.2 A diagrammatic equation . 56

A The axohelp program: Information for developers 59

2

1 Introduction

This is the documentation for axodraw2, a LATEX package for drawing Feynman graphs
(and other simple graphics). This version is a substantial update of the original axodraw
package [1], which was released in 1994, and which has become rather popular in the
preparation of articles in elementary-particle physics. One of its advantages is that its
drawing primitives are included in the .tex document, in a human-writable form. (This also
allows convenient production of axodraw figures by other software, e.g., Jaxodraw [2, 3].)
This is in distinction to methods that use a separate program to create graphics files that
are read in during the processing of the LATEX file. The objects needed in Feynman graphs
are often difficult to draw at high quality with conventional computer graphics software.

The original axodraw package has hardly been modified since its introduction. The
new version addresses several later needs. A detailed list of the changes is given in Sec. 2.

One change arises from the fact that TEX (and hence LATEX) themselves do not possess
sufficiently useful methods of drawing complicated graphics, so that the drawing of the
graphics is actually done inserting suitable code in the final output file (postscript or
pdf). The original axodraw worked only with the latex-dvips processing chain to put the
diagrams in the final postscript file.1 Now we also have in common use the pdflatex (and
lualatex and xelatex) programs that directly produce pdf. The new version of axodraw
works with pdflatex, lualatex, and xelatex, as well as with the latex-dvips method.

Furthermore, more kinds of graphical object and greater flexibility in their properties
have been found useful for Feynman graphs. The new version provides a new kind of line,
Bézier, and is able to make the various kinds of line doubled. There is now a very flexible
configuration of arrows. Many of the changes correspond to capabilities of JaxoDraw [2, 3],
which is a graphical program for drawing Feynman graphs, and which is able to write and
to import diagrams in the axodraw format.

Finally, substantial improvements have been made in the handling of colors, with much
better compatibility with modern packages used to set colors in the normal LATEX part of
a document.

Since some of the changes (especially in the internal coding) introduce potential incom-
patibilities with the original version of axodraw, the new version of the style file is given a
new name axodraw2.sty. Then the many legacy documents (e.g., on http://arxiv.org)
that use the old axodraw will continue to use the old version, and will therefore continue
to be compilable without any need for any possible changes in the source document, and
with unchanged output. Even so, as regards the coding of diagrams, there are very few
backwardly incompatible changes in axodraw2.

The software is available under the GNU General Public License [4] version 3.

1A pdf file can be produced from the postscript file by a program like ps2pdf.

3

http://arxiv.org

2 Changes

2.1 Changes relative to original, axodraw version 1

Relative to the original version of axodraw, the current version, axodraw2, has the following
main changes:

• A bug that the line bounding an oval did not have a uniform width has been corrected.

• A bug has been corrected that axodraw did not work with the revtex4 document
class when \maketitle and two-column mode were used.

• Axodraw2 works both when pdf output is produced directly using the programs
pdflatex, lualatex, and xelatex, as well as when a postscript file is produced by
the latex–dvips method. The old version only worked when postscript output was
produced. However, an auxiliary program is needed when using pdflatex, lualatex,
or xelatex. See Sec. 4.3 for how this is done.

• In the original axodraw, a diagram is coded inside a picture environment of LATEX.
Now, a specialized axopicture environment is provided and preferred; it provides
better behavior, especially when diagrams are to be scaled.

• In association with this, there are some changes in how scaling of diagrams is done.

• An inconsistency in length units between postscript and TEX has been corrected. All
lengths are now specified in terms of 1 pt = 1/72.27 in = 0.3515mm. Previously the
unit length for graphics was the one defined by postscript to be 1 bp = 1/72 in =
0.3528mm.

• Substantial improvements have been made in the treatment of color. When named
colors are used, axodraw2’s use of color is generally compatible with that of the
modern, LATEX-standard color.sty package. It also provides all the macros that
were defined in v. 1 of axodraw, including those of the colordvi.sty package used
by v. 1.

• The various types of line can now be produced as double lines, e.g., . This is
commonly used, for example, for notating Wilson lines.

• Lines can be made from Bézier curves. Currently this is only for simple lines, not
photon, gluon, or zigzag lines.

• Gluon, photon, and zigzag lines can be dashed.

• Macros are provided for drawing gluon circles, without the endpoint effects given by
the corresponding gluon arc macros.

• The positions and sizes of arrows can be adjusted. See Sec. 5.7 for all the possibilities.
One example is

4

• Macros for drawing polygons and filled polygons are provided.

• Macros for drawing rotated boxes are provided.

• A macro \ECirc is provided for drawing a circle with a transparent interior.

• A macro \EBoxc is provided for drawing a box with a specified center.

• A macro \AxoGrid is provided for drawing a grid. One use is to provide a useful tool
in designing pictures.

• Since there are now many more possibilities to specify the properties of a line, optional
arguments to the main line drawing commands can be used to specify them in a
keyword style.

• A new macro named \Arc is introduced. With the aid of optional arguments, this
unifies the behavior of various arc-drawing commands in the original axodraw.

• For consistency with the \Gluon macro, the \GlueArc macro has been renamed to
\GluonArc, with the old macro retained as a synonym.

• The behavior of arcs is changed to what we think is more natural behavior when the
specified opening is outside the natural range.

• What we call macros for drawing objects with postscript text are now implemented
within LATEX instead of relying on instructions inserted in the postscript code. Thus
all the normal LATEX commands, including mathematics, can now be used in all text
objects, with proper scaling. The placement and scaling of text objects are more
consistent.

• Some new named colors are provided: LightYellow, LightRed, LightBlue, LightGray,
VeryLightBlue. (LightYellow, LightRed, LightBlue, LightGray, VeryLightBlue.)

• The macros originally specified as \B2Text, \G2Text, and \C2Text are now named
\BTwoText, \GTwoText, and \CTwoText. The intent of the original code was to define
macros with names \B2Text, etc. However in normal TEX, macro names of more than
one character must only contain letters, unlike typical programming languages that
also allow digits. So the rules for TEXmacro names mean that in defining, for example
\def\B2Text(#1,#2)#3#4{...}, the original version of axodraw actually defined a
macro named named \B, obligatorially followed by 2Text. This caused a conflict if
the user wished to define a macro \B. If it is desired to retain the old behavior, then
the following should be placed in the preamble of the .tex file, then the axodraw2
package should be invoked in the source document with the v1compatible option:

\usepackage[v1compatible]{axodraw2}

5

2.2 Changes relative to axodraw4j distributed with JaxoDraw

The JaxoDraw program [3] is distributed with a version of axodraw called axodraw4j. As
of July 2014, this was effectively a predecessor of axodraw2, but without the possibility of
working with pdflatex. (The suffix “4j” is intended to mean “for JaxoDraw”.)

The changes in axodraw2 relative to the version of axodraw4j dated 2008/11/19 are
the following subset of those listed in Sec. 2.1:

• Correction of the oval-drawing bug.

• The ability to work with pdflatex, lualatex, and xelatex.

• The improvements in the handling of color.

• The double and arrow options for Bézier lines.

• The dash option for gluons and photons.

• Color option for all lines.

• Correction of inconsistency of length unit between TEX and postscript.

• Better drawing of double gluons and photons.

• The gluon circle, polygon, rotated box, \ECirc, \EBoxc, and the \AxoGrid macros

• A series of “LongArrow” macros for drawing lines with the arrow at the end. The
same effect could only be achieved in axodraw4j with arrowpos=1 option to the basic
line-drawing commands.

• A series of macros like \DashDoubleLine to provide access to the dashed and double
properties in the style of the macros provided in v. 1 of axodraw. This is in addition
to the optional arguments that allow the same effect in axodraw4j and in axodraw2.

• The v1compatible and other options are provided for the package.

• Better treatment of the scaling of objects.

• The treatment of “postscript text objects” within LATEX itself.

2.3 Backward compatibility, etc

The official user interface of axodraw2 is backward-compatible with versions 1 and 4j, with
the exception of the issue mentioned above about the commands that have the signatures
\B2Text, \G2Text, and \C2Text. There are some minor changes in the objects that are
drawn, mostly concerning the exact dimensions of default arrows and the scaling of the
sizes of text objects. The scoping of color changes is significantly different, but improved.

6

The old axodraw only used the tools available in LATEX in the early 1990s. The new
version needs a more modern installation. It has been extensively tested with TeXLive
2011 and 2016.

We have tested backwards compatibility by compiling the version 1 manual with axo-
draw2; only a trivially modified preamble was needed. It also worked to compile Collins’s
QCD book[5], which has a large number of JaxoDraw figures (processed automatically to
pieces of axodraw code imported into the document); only changes in the preamble were
needed.

Axodraw2 uses the following LATEX packages: keyval, ifthen, graphicx, color,
ifxetex. It defines its own set of 73 named colors — Sec. 5.10 — which are the same
as the 68 defined as dvips-defined names in the color package, plus 5 more.

In addition axodraw2 provides an axopicture environment inside of which axodraw2’s
graphics are coded and drawn. In the old axodraw, LATEX’s picture environment was
used instead. We recommend the use of axopicture environment in axodraw2, and that is
the only method we document. However, old diagrams coded with picture environment
continue to work.

3 Installation

3.1 Installation from standard TEX distribution

At the moment of writing, this document, axodraw2 is not part of any standard TEX
distribution.

But it is planned to put it on CTAN such that it should eventually be part of the stan-
dard distributions (TeXLive and MiKTeX). After that, axodraw2 will either be installed
by default or can be installed by using the package manager of the TEX distribution. When
available, this will be the easiest method of installation.

3.2 Manual installation

For a manual installation, what needs to be done is to put the file axodraw2.sty in a place
where it will be found by the latex program. If you wish to use axodraw2 with pdflatex,
you will also need to compile the axohelp program and put it in an appropriate directory.
Documentation can also be installed if you want.

3.2.1 Style file textttaxodraw2.sty

If you merely want to try out axodraw2, just put the file axodraw2.sty in the same
directory as the .tex file(s) you are working on.

Otherwise, put it in an appropriate directory for a LATEX style file, and, if necessary,
run the texhash program to ensure that the file is in the TEX system’s database of files.
For example, suppose that you have a TeXLive system installed for all users on a Unix-like
system (e.g., Linux or OS-X), and that TeXLive is installed, as is usual, under the directory

7

/usr/local/texlive. Then an appropriate place for axodraw2 is in a directory /usr/

local/texlive/texmf-local/tex/latex/axodraw2. You will need to run the texhash

program in this last case. For such a system-wide installation, you will probably have to do
these operations as an administrative user (e.g., root), possibly supplemented by running
the relevant commands with the sudo program.

3.2.2 Helper program axohelp

If you wish to use axodraw2 with pdflatex, lualatex, or xelatex., then you need to
install the axohelp program.

On a Unix-like system (e.g., linux or OS-X), you first need to compile the program by
a C compiler. An appropriate shell command to do this is

cc -o axohelp -O3 axohelp.c -lm

(Note that this is a C compiler, not a C++ compiler.) Most linux systems have the
program cc already installed. This also applies to OS-X at versions below 10.7. But on
OS-X version 10.7 and higher, you will need to install a compiler, which can be done by
installing XCode and the associated command-line utilities. If you have the GNU compilers
installed, you might need to use the command gcc instead of cc.

For Microsoft Windows, if you do not have a C compiler available, you can use the
Windows binary axohelp.exe we have provided. It should work with Windows 7 or
higher.

In any case once you have the executable (named axohelp on unix-like systems, or
axohelp.exe on a Microsoft system), put it in a directory where it will be found when you
run programs from the command line.

3.2.3 Testing

To test whether the installation works, you need a simple test file. An example is given in
Sec. 4.1, and is provided with the axodraw2 distribution as example.tex.

At a command line with the current directory set to the directory containing the file
example.tex, run the following commands:

latex example

dvips example -o

If all goes well, you will obtain a file example.ps. When you view it, it should contain the
diagram shown in Sec. 4.1. You can make a pdf file instead by the commands

latex example

dvipdf example

A more extensive test can be made by compiling the manual.
To make a pdf file directly, with pdflatex, you use the commands

8

pdflatex example

axohelp example

pdflatex example

The axohelp run takes as input a file example.ax1 produced by the first run of pdflatex
and makes an output file example.ax2. The second run of pdflatex reads the example.

ax2 file and uses the result to place the axodraw objects in the example.pdf file.

3.2.4 Documentation

Put the documentation in a place where you can find it. If you installed the axodraw2.sty
file in /usr/local/texlive/texmf-local/tex/latex/axodraw2, the standard place for
the documentation would be usr/local/texlive/texmf-local/doc/latex/axodraw2.

4 Use

In this section we show how to use axodraw2, illustrated with an example.

4.1 Basic example

The principles of using axodraw2 are illustrated by the following complete LATEX document:

\documentclass{article}

\usepackage{axodraw2}

\begin{document}

Example of Feynman graph using axodraw2 macros:

\begin{center}

\begin{axopicture}(200,110)

\SetColor{Red}

\Arc[arrow](100,50)(40,0,180)

\Text(100,100){$\alpha P_1 + \beta P_2 + k_\perp$}

\SetColor{Black}

\Arc[arrow](100,50)(40,180,360)

\Gluon(0,50)(60,50){5}{4}

\Vertex(60,50){2}

\Gluon(140,50)(200,50){5}{4}

\Vertex(140,50){2}

\end{axopicture}

\end{center}

\end{document}

After compilation according to the instructions in Sec. 4.3, viewing the resulting file should
show the following Feynman graph:

9

αP1 + βP2 + k⊥

See Sec. 6 for more examples
Important note about visibility of graphics objects: If you view this document on a

computer monitor, Feynman graphs drawn with narrow lines may not fully match what was
intended. This is because of the way graphics viewers interact with the limited resolution
of computer monitors. To see the example graphs properly, you may need to use a large
enough magnification, or to use an actual print out.

Note about sending a document to others : If for example, you submit an article to
arXiv.org, it is likely that their automated system for processing the file will not run
axohelp. So together with the tex file, you one should also submit the .ax2 file.

4.2 Document preparation

The general rules for preparation of a document are:

• Insert the following

\usepackage{axodraw2}

in the preamble of the .tex file. There are some options and commands that can
be used to change axodraw2’s behavior from its default. See Secs. 5.1 and 5.9 for
details.

• Where you want to insert axodraw2 objects, put them inside an axopicture environ-
ment, specified in Sec. 5.2,

\begin{axopicture}(x,y)

...

\end{axopicture}

Here x and y denote the desired size of the box that is to be inserted in the document
and that contains the graph. An optional offset can be specified (as with LATEX’s
picture environment). By default the units are 1 pt = 1/72.27 in = 0.3515mm.

10

Full details of all these components are in Sec. 5.
The design of graphs can be done manually, and this can be greatly facilitated with

the new \AxoGrid command. A convenient way of constructing diagrams is to use the
graphical program JaxoDraw [2, 3], which is what most people do. This program can
export axodraw code. It also uses axodraw as one way of making postscript and pdf files.
The original version of axodraw was used by JaxoDraw until version 1.3. In version 2 of
JaxoDraw, a specially adapted version of axodraw.sty is used, named axodraw4j.sty.
The output from version 2 of JaxoDraw is compatible with axodraw2.

4.3 Document compilation

4.3.1 To make a postscript file

When a postscript file is needed, you just make the postscript file as usual. E.g., when the
source file is example.tex, you run the following commands:

latex example

dvips example -o

which results in a postscript file example.ps. Of course, if there are cross references to be
resolved, you may need multiple runs of latex, as usual. When needed, use of bibtex,
makeindex, and other similar programs is also as usual. Instead of latex, one may also
use the dvilualatex program, which behaves like latex except for providing some extra
capabilities that are sometimes useful.

Internally, axodraw uses TEX’s \special mechanism to put specifications of postscript
code into the .dvi file, and dvips puts this code in the postscript file. This postscript
code performs the geometrical calculations needed to specific axodraw’s objects, and then
draws them when the file is displayed or printed.

Important note about configuration of dvips: You may possibly find that when you
run dvips that it spends a lot of time running mktexpk to make bitmapped fonts, or that
the postscript file contains bitmapped type-3 fonts. This is not the default situation in
typical current installations. But if you do find this situation, which is highly undesirable
in most circumstances, you should arrange for dvips to use type 1 fonts. This can be done
either by appropriately configuring your TEX installation, for which you will have to locate
instructions, or by giving dvips its -V0 option:

dvips -V0 example -o

Once you do this, you should see, from dvips’s output, symptoms of its use of type 1
fonts. Let us re-emphasize that you do not have to be concerned with this issue, under

normal circumstances. But since things were different within our memory, we give some

suggestions as to what to do in what are currently abnormal circumstances.

11

4.3.2 To make a pdf file via latex

There are multiple methods of making pdf files for a latex document; we will not give all
the advantages and disadvantages here.

One way is to convert the postscript file, e.g., by

ps2pdf example.ps

You can also produce a pdf file from the dvi file produced by latex by the dvipdf com-
mand, e.g,.

dvipdf example

Important note: The program here is dvipdf and not the similarly named dvipdfm or
dvipdfmx, which are incompatible with axodraw. The reason why dvipdf works is that it
internally makes a postscript file and then converts it to pdf.

4.3.3 To make a pdf file by pdflatex, lualatex, or xelatex

A common and standard way to make a pdf file is the pdflatex program, which makes pdf
directly. It has certain advantages, among which are the possibility of importing a wide
variety of graphics file formats. (In contrast, the latex program only handles encapsulated
postscript.)

However, to use axodraw2 with pdflatex, you need an auxiliary program, axohelp, as
in

pdflatex example

axohelp example

pdflatex example

What happens is that during a run of pdflatex, axodraw2 writes a file example.ax1 con-
taining specifications of its graphical objects. Then running axohelp reads the example.

ax1 file, computes the necessary pdf code to draw the objects, and writes the results
to example.ax2. The next run of pdflatex reads example.ax2 and uses it to put the
appropriate code in the output pdf file.

The reason for the extra program is that axodraw needs many geometrical calculations
to place and draw its graphical objects. LATEX itself does not provide anything conve-
nient and efficient for these calculations, while the PDF language does not offer sufficient
computational facilities, unlike the postscript language.

If you modify a document, and recompile with pdflatex, you will only need to rerun
axohelp if the modifications involve axodraw objects. Axodraw2 will output an appropri-
ate message when a rerun of axohelp is needed.

If you wish to use lualatex or xelatex, instead of pdflatex, then you can simply
run the program lualatex or xelatex instead of pdflatex. These are equally compatible
with axodraw2.

12

4.4 Automation of document compilation

It can be useful to automate the multiple steps for compiling a LATEX document. One of us
has provided a program latexmk to do this — see http://www.ctan.org/pkg/latexmk/.
Here we show how to configure latexmk to run axohelp as needed when a document is
compiled via the pdflatex route.

All you need to do is to put the following lines in one of latexmk’s initialization files
(as specified in its documentation):

add_cus_dep("ax1", "ax2", 0, "axohelp");

sub axohelp { return system "axohelp \"$_[0]\""; }

$clean_ext .= " %R.ax1 %R.ax2";

The first two lines specify that latexmk is to make .ax2 files from .ax1 files by the
axohelp program, whenever necessary. (After that latexmk automatically also does any
further runs of pdflatex that are necessary.) The last line is optional; it adds .ax1 and
.ax2 files to the list of files that will be deleted when latexmk is requested to do a clean
up of generated, recreatable files.

Latexmk is installed by default by the currently common distributions of TEX software,
i.e., TeXLive and MiKTeX. It has as an additional requirement a properly installed Perl
system. For the TeXLive distribution, this requirement is always met.

With the above configuration, you need no change in how you invoke latexmk to compile
a document, when it uses axodraw2. For producing postscript, you can simply use

latexmk -ps example

and for producing pdf via pdflatex you can use

latexmk -pdf example

Then latexmk takes care of whatever runs are needed of all the relevant programs, now
including axohelp, as well whatever, possibly multiple, runs are needed for the usual
programs (latex, pdflatex, bibtex, etc).

5 Reference

5.1 Package invocation

To use the axodraw2 package in a LATEX document, you simply put

\usepackage{axodraw2}

in the preamble of the document, as normal.
The \usepackage command takes optional arguments (comma-separated list of key-

words) in square brackets, e.g.,

13

http://www.ctan.org/pkg/latexmk/

\usepackage[v1compatible]{axodraw2}

The options supported by axodraw2 are

• v1compatible: This makes axodraw2’s operation more compatible with v. 1. It
allows the use of \B2Text, \G2Text, and \C2Text as synonyms for the macros
named \BTwoText, \GTwoText, and \CTwoText. (You may wish also to use the
canvasScaleisUnitLength option, so that the scaling of the units in the axopicture
environment is the same as it was for the picture environment used in v. 1.)

• canvasScaleIs1pt: Unit for canvas dimensions in an axopicture environment is
fixed at 1 pt,

• canvasScaleIsObjectScale: Unit for canvas dimensions in an axopicture environ-
ment are the same as those set for axodraw objects (by the \SetScale macro). This
is the default setting, so the option need not be given.

• canvasScaleIsUnitLength: Unit for canvas dimensions in an axopicture environ-
ment is the current value of \unitlength, exactly as for LATEX’s picture environ-
ment. (Thus, this corresponds to the behavior of the original axodraw v. 1, which
simply used the picture environment.)

• PStextScalesIndependently: Axodraw’s text objects are scaled by the factor set
by the \SetTextScale command.

• PStextScalesLikeGraphics: Axodraw’s text objects are scaled by the factor set by
same factor for its graphics objects, i.e., the scale set by the \SetScale command.

(N.B. Default scaling factors are initialized to unity.)
Note: If you use axodraw’s commands for placing text and you use the standard TEX

Computer Modern fonts for the document, then when you compile your document you may
get a lot of warning messages. These are about fonts not being available in certain sizes.
To fix this problem invoke the package fix-cm in your document’s preamble:

\usepackage{fix-cm}

It is also possible to use the package lmodern for the same purpose.

5.2 Environment(s)

The graphical and other objects made by axodraw2 are placed in an axopicture environ-
ment, which is invoked either as

\begin{axopicture}(x,y)

...

\end{axopicture}

14

or

\begin{axopicture}(x,y)(xoffset,yoffset)

...

\end{axopicture}

Here, the . . . denote sequences of axodraw2 commands, as documented in later sections,
for drawing lines, etc. The axopicture environment is just like standard LATEX’s picture
environment,2, except for doing some axodraw-specific initialization. It inserts a region of
size x by y (with default units of 1 pt = 1/72.27 in = 0.3515mm). Here x and y are set to
the numerical values you need.

The positioning of axodraw objects is specified by giving x and y coordinates, e.g., for
the ends of lines. The origin of these coordinates is, by default, at the lower left corner of the
box that axopicture inserts in your document. But sometimes, particularly after editing a
graph, you will find this is not suitable. To avoid changing a lot of coordinate values to get
correct placement, you can specify an offset by the optional arguments (xoffset,yoffset)
to the axopicture environment, exactly as for LATEX’s picture environment. The offset
(xoffset,yoffset) denotes the position of the bottom left corner of the box inserted in
your document relative to the coordinate system used for specifying object positions. Thus

\begin{axopicture}(20,20)

\Line(0,0)(20,20)

\end{axopicture}

and

\begin{axopicture}(20,20)(-10,20)

\Line(-10,20)(10,40)

\end{axopicture}

are exactly equivalent.
Within an axopicture environment, all the commands that can be used inside an

ordinary picture environment can also be used.
We can think of the axopicture environment as defining a drawing canvas for axodraw’s

graphical and text objects. There are possibilities for manipulating (separately) the units
used to specify the canvas and the objects. These can be useful for scaling a diagram or
parts of it from an originally chosen design. See Secs. 5.8 and 5.9 for details.

2In fact, the axopicture is changed from the picture environment only by making some axodraw-
specific settings. So the picture environment that was used in v. 1 may also be used with axodraw2; it
merely has a lack of automation on the setting of the canvas scale relative to the object scale, and, in the
future, other possible initializations.

15

5.3 Graphics drawing commands

In this section we present commands for drawing graphical objects, split up by category.
Later, we will give: details of options to the line-drawing commands, explanations of some
details about specifying gluons and about specifying arrow parameters, and then commands
for textual objects and for adjusting settings (e.g., separation in a double line). Mostly,
we present the commands by means of examples. Note that many of the arguments of the
commands, notably arguments for (x, y) coordinate values are delimited by parentheses
and commas instead of the brace delimiters typically used in LATEX.

It should also be noted that some commands provide different ways of performing the
same task. For instance

\BCirc(50,50){30}

can also be represented by

\CCirc(50,50){30}{Black}{White}

when the current color is black. The presence of the BCirc command has been maintained
both for backward compatibility, and because it represents a convenient short hand for a
common situation. This also holds for similar commands involving boxes and triangles. For
the new Polygon, FilledPolygon, RotatedBox and FilledRotatedBox commands we have
selected a more minimal scheme.

Similar remarks apply to the new feature of options for line drawing commands. Orig-
inally in v. 1, a line with an arrow would be coded as

\ArrowLine(30,65)(60,25)

It is now also possible to code using the general \Line macro, but with a keyword optional
argument:

\Line[arrow](30,65)(60,25)

One advantage of the option method is a variety of other properties of an individual line
may also be coded, as in

\Line[arrow,arrowpos=1](30,65)(60,25)

without the need to use separate global setting for the property, by the commands listed
in Sec. 5.9, or by having a corresponding compulsory argument to the command. Which
way to do things is a matter of user taste in particular situations.

16

5.3.1 Grid drawing

\AxoGrid(0,0)(10,10)(9,14){LightGray}{0.5}

This command is used in our examples to allow the reader to
compare the coordinates in the commands with those of the ac-
tual picture. The arguments are first the position of the left
bottom corner, then two values that tell the size of the divisions
in the x and y direction. Next there are two values that specify
how many divisions there should be in the x and y direction.
Then the color of the lines is given and finally the width of the
lines. Note that if there are (nx, ny) divisions there will be nx+1
vertical lines and ny + 1 horizontal lines. The temporary use of
this command can also be convenient when designing pictures
manually.

5.3.2 Ordinary straight lines

All of the commands in this section can be given optional keyword arguments, which
are defined in Secs. 5.5 and 5.7. These can be used to specify the type of line (dashed,
double), to specify the use of an arrow, and its parameters, and to specify some of the
line’s parameters.

The basic line drawing command is \Line:

\Line(10,10)(80,30)

In this command we have two coordinates. The (solid) line goes
from the first to the second.

Examples of the use of optional arguments are:

\Line[color=Magenta,arrow](10,70)(80,70)

\Line[dash](10,50)(80,50)

\Line[arrow,double](10,30)(80,30)

\Line[arrow,dash,double](10,10)(80,10)

Details of the specification of arrows, together with alternative commands for making lines
with arrows are given in Sec. 5.7.

Alternative commands for dashed and/or double lines are:

17

\DoubleLine(10,25)(80,25){1}

\DoubleLine[color=Red](10,15)(80,15){2}

In this command we have two coordinates as in the Line com-
mand but two lines are drawn. The extra parameter is the sep-
aration between the two lines. Note however that everything
between the lines is blanked out.

\DashLine(10,25)(80,25){2}

\DashLine(10,15)(80,15){6}

In this command we have two coordinates. The dashed line goes
from the first to the second. The extra parameter is the size of
the dashes. The space between the dashes is transparent.

\DashDoubleLine(10,25)(80,25){1.5}{2}

\DashDoubleLine(10,15)(80,15){1.5}{6}

In this command we have two coordinates. The dashed lines go
from the first to the second. The first extra parameter is the
separation between the lines and the second extra parameter is
the size of the dashes.

5.3.3 Arcs

The commands in this section draw circular arcs in types corresponding to the straight
lines of Sec. 5.3.2. In v. 1, some of these commands had names containing “Arc” and
some “CArc”. Some kinds had variant names containing “Arcn”, whose the direction of
drawing was clockwise instead of anticlockwise. In v. 2, we have tried to make the situation
more consistent. First, all the old names have been retained, for backward compatibility.
Second, a general purpose command \Arc has been introduced; in a single command, with
the aid of optional arguments, it covers all the variants. See Secs. 5.5 and 5.7 for full
details. The options can be used to specify the type of line (dashed, double, clockwise or
anticlockwise), to specify the use of arrow, and its parameters, and to specify some of the
line’s parameters. The other commands in this section can also be given optional keyword
arguments.

The basic \Arc command has the form

\Arc(45,0)(40,20,160)

In this command we have one coordinate: the center of the circle.
Then follow the radius of the circle, the start angle and the
finishing angle. The arc will be drawn counterclockwise.

An example of the use of the optional parameters is:

18

\Arc[arrow,dash,clockwise](40,40)(30,20,160)

Alternative commands for dashed and/or double arcs are as follows.

\DoubleArc[color=Green](45,0)(40,20,160){2}

In this command we have one coordinate: the center of the circle.
Then follow the radius of the circle, the start angle and the
finishing angle. The arc will be drawn counterclockwise. The
last argument is the line separation of the double line.

\DashArc(45,0)(40,20,160){4}

In this command we have one coordinate: the center of the circle.
Then follow the radius of the circle, the start angle and the
finishing angle. The arc will be drawn counterclockwise. The
last argument is the size of the dashes.

\DashDoubleArc(45,0)(40,20,160){2}{4}

In this command we have one coordinate: the center of the circle.
Then follow the radius of the circle, the start angle and the
finishing angle. The arc will be drawn counterclockwise. The
last two arguments are the line separation of the double line and
the size of the dashes.

5.3.4 Bézier lines

The commands in this section draw Bézier curves, specified by 4 points. The variants are
just as for straight lines, Sec. 5.3.2.

All of the commands in this section can be given optional keyword arguments, which
are defined in Sec. 5.5. These can be used to specify the type of line (dashed, double), to
specify the use of an arrow, and its parameters, and to specify some of the line’s parameters.

The basic general purpose command is \Bezier:

\Bezier(10,10)(75,30)(65,40)(20,50)

Draws a cubic Bézier curve based on the four given points. The
first point is the starting point and the fourth the finishing point.
The second and third points are the two control points.

An example of the use of optional arguments is

19

\Bezier[color=Red,arrow,double,arrowpos=1](10,10)%

(75,30)(65,40)(20,50)

Alternative ways of making dashed and/or double Bézier curves are:

\DoubleBezier(10,10)(75,30)(65,40)(20,50){1.5}

Draws a cubic Bézier curve based on the four given points. The
first four arguments are the same as for \Bezier. The final
argument is the line separation.

\DashBezier(10,10)(75,30)(65,40)(20,50){4}

Draws a cubic Bézier curve based on the four given points. The
first four arguments are the same as for \Bezier. The final
argument is the size of the dashes.

\DashDoubleBezier(10,10)(75,30)(65,40)(20,50){1.5}{4}

Draws a cubic Bézier curve based on the four given points. The
first four arguments are the same as for \Bezier. The final two
arguments are the line separation and the size of the dashes.

5.3.5 Curves

The commands in this section draw curves through an arbitrary sequence of points. They
only exist in variants for continuous and dashed lines. No optional arguments are allowed.

\Curve{(5,55)(10,32.5)(15,23)(20,18)

(25,14.65)(30,12.3)(40,9.5)(55,7)}

Draws a smooth curve through the given points. The x coordi-
nates of the points should be in ascending order. The curve is
obtained by constructing quadratic fits to each triplet of adjacent
points and then in each interval between two points interpolating
between the two relevant parabolas.

\DashCurve{(5,55)(10,32.5)(15,23)(20,18)

(25,14.65)(30,12.3)(40,9.5)(55,7)}{4}

Draws a smooth dashed curve through the given points. The x
coordinates of the points should be in ascending order. The last
argument is the size of the dashes.

20

5.3.6 Gluon lines

The basic gluon drawing commands are \Gluon, \GluonArc, \GluonCirc. There are also
variants for dashed and double gluons. But arrows aren’t possible.

See Sec. 5.6 for additional information on the shape of gluon lines.
All of the commands in this section can be given optional keyword arguments, which

are defined in Sec. 5.5. These can be used to specify the type of line (dashed, double), and
to specify some of the line’s parameters.

\Gluon(10,20)(80,20){5}{7}

In this command we have coordinates for the start and end of the
line, the amplitude of the windings and the number of windings.
A negative value for the amplitude reverses the orientation of
the windings — see Sec. 5.6 for details.

Optional arguments can be used, e.g.,

\Gluon[color=Blue,dash,double](10,20)(80,20){4}{7}

Examples of the other commands for various types of gluon line are as follows. They can
all take optional arguments.

\DoubleGluon(10,20)(80,20){5}{7}{1.3}

The first 6 arguments are as in the \Gluon command. The extra
argument is the line separation.

\DashGluon(10,20)(80,20){5}{7}{1}

The first 6 arguments are as in the Gluon command. The extra
argument is the size of the dashes.

\DashDoubleGluon(10,20)(80,20){5}{7}{1.3}{1}

The first 7 arguments are as in the DoubleGluon command. The
last two arguments are the line separation of the double line and
the size of the dashes.

\GluonArc(45,0)(40,20,160){5}{8}

In this command we have one coordinate: the center of the circle.
Then follow the radius of the circle, the start angle and the
finishing angle. The arc will be drawn counterclockwise. The
final two parameters are the amplitude of the windings and the
number of windings. Like the other commands in this section,
this command can take optional arguments, Sec. 5.5.

21

\DoubleGluonArc[color=Red](45,0)(40,20,160)%

{5}{8}{1.3}

The first 7 arguments are as in the GluonArc command. The
extra argument is the separation in the double line.

\DashGluonArc(45,0)(40,20,160){5}{8}{1.5}

The first 7 arguments are as in the GluonArc command. The
extra argument is the size of the dash segments.

\DashDoubleGluonArc(45,0)(40,20,160){5}{8}{1.3}{1.5}

The first 7 arguments are as in the GluonArc command. The
extra arguments are the separation of the lines and the size of
the dash segments.

\GluonCirc(40,40)(30,0){5}{16}

The arguments are: Coordinates for the center of the circle, the
radius and a phase, the amplitude of the gluon windings and the
number of windings. Like the other commands in this section,
this command can take optional arguments, Sec. 5.5. The phase
argument specifies a counterclockwise rotation of the line relative
to a default starting point.

\DoubleGluonCirc[color=Red](40,40)(30,0){5}{16}{1.3}

The first 6 arguments are as for the GluonCirc command. The
final argument is the line separation.

\DashGluonCirc(40,40)(30,0){5}{16}{1.5}

The first 6 arguments are as for the GluonCirc command. The
final argument is the size of the dashes.

\DashDoubleGluonCirc(40,40)(30,0){5}{16}{1.3}{1.5}

The first 6 arguments are as for the GluonCirc command. The
final 2 arguments are the line separation and the size of the
dashes.

22

5.3.7 Photon lines

The basic drawing commands for drawing photon lines are \Photon and \PhotonArc.
There are also variants for dashed and double photons. But arrows aren’t possible.

All of the commands in this section can be given optional keyword arguments, which
are defined in Sec. 5.5. These can be used to specify the type of line (dashed, double), and
to specify some of the line’s parameters.

\Photon(10,20)(80,20){5}{7}

In this command we have two coordinates, the amplitude of the
wiggles and the number of wiggles. A negative value for the am-
plitude will reverse the orientation of the wiggles. The line will
be drawn with the number of wiggles rounded to the nearest half
integer. Like the other commands in this section, this command
can take optional arguments, Sec. 5.5.

\DoublePhoton(10,20)(80,20){5}{7}{1.3}

The first 6 arguments are as in the Photon command. The extra
argument is the line separation.

\DashPhoton[color=Red](10,20)(80,20){5}{7}{1}

The first 6 arguments are as in the Photon command. The extra
argument is the size of the dashes.

\DashDoublePhoton(10,20)(80,20){5}{7}{1.3}{1}

The first 6 arguments are as in the Photon command. The final
2 arguments are the line separation and the size of the dashes.

\PhotonArc(45,0)(40,20,160){5}{8}

In this command we have one coordinate: the center of the circle.
Then follow the radius of the circle, the start angle and the
finishing angle. The arc will be drawn counterclockwise. The
final two parameters are the amplitude of the wiggles and the
number of wiggles. Like the other commands in this section, this
command can take optional arguments, Sec. 5.5.

\DoublePhotonArc[color=Red](45,0)(40,20,160)%

{5}{8}{1.3}

The first 7 arguments are as in the PhotonArc command. The
extra argument is the separation of the double line.

23

\DashPhotonArc(45,0)(40,20,160){5}{8}{1.5}

The first 7 arguments are as in the PhotonArc command. The
extra argument is the size of the dash segments.

\DashDoublePhotonArc(45,0)(40,20,160){5}{8}{1.3}{1.5}

The first 7 arguments are as in the PhotonArc command. The
extra arguments are the separation of the lines and the size of
the dash segments.

5.3.8 Zigzag lines

The basic drawing commands for drawing zigzag lines are \Zigzag and \ZigzagArc. There
are also variants for dashed and double lines. But arrows aren’t possible.

All of the commands in this section can be given optional keyword arguments, which
are defined in Sec. 5.5. These can be used to specify the type of line (dashed, double), and
to specify some of the line’s parameters.

\ZigZag(10,20)(80,20){5}{7.5}

In this command we have two coordinates, the amplitude of the
sawteeth and the number of sawteeth. A negative value for the
amplitude will reverse the orientation of the sawteeth. The line
will be drawn with the number of sawteeth rounded to the near-
est half integer.

Like the other commands in this section, this command can take optional arguments, Sec.
5.5, e.g.,

\ZigZag[color=Red,double,sep=1.5](10,20)(80,20){5}{7}

\DoubleZigZag(10,20)(80,20){5}{7}{1.3}

The first 6 arguments are as in the ZigZag command. The extra
argument is the line separation.

\DashZigZag(10,20)(80,20){5}{7}{1}

The first 6 arguments are as in the ZigZag command. The extra
argument is the size of the dashes.

\DashDoubleZigZag(10,20)(80,20){5}{7}{1.3}{1}

The first 6 arguments are as in the ZigZag command. The extra
arguments are the separation of the lines and the size of the dash
segments.

24

\ZigZagArc(45,0)(40,20,160){5}{8}

In this command we have one coordinate: the center of the circle.
Then follow the radius of the circle, the start angle and the
finishing angle. The arc will be drawn counterclockwise. The
final two arguments are the amplitude of the sawteeth and the
number of sawteeth. Like the other commands in this section,
this command can take optional arguments, Sec. 5.5.

\DoubleZigZagArc(45,0)(40,20,160){5}{8}{1.3}

The first 7 arguments are as for the ZigZagArc command. The
extra argument is the separation in the double line.

\DashZigZagArc(45,0)(40,20,160){5}{8}{1.5}

The first 7 arguments are as for the ZigZagArc command. The
extra argument is the size of the dash segments.

\DashDoubleZigZagArc(45,0)(40,20,160){5}{8}{1.3}{1.5}

The first 7 arguments are as for the ZigZagArc command. The
final 2 arguments are the separation of the lines and the size of
the dash segments.

5.3.9 Vertices, circles, ovals

The commands in this section are for graphical elements other than those that we conceived
of as lines in Feynman graphs. Many of these have standard uses as components of Feynman
graphs3. The commands here are mostly shown in association with other objects, to
indicate some of their properties.

\Line(10,10)(70,10)

\Photon(40,10)(40,40){4}{3}

\Vertex(40,10){1.5}

\Vertex gives a vertex, as is often used for connecting lines in
Feynman graphs. It gives a fat dot. The arguments are coordi-
nates (between parentheses) for its center, and the radius of the
dot.

3Of course, none of the commands is restricted to its originally envisaged use, or to being used to draw
Feynman graphs. But especially the line-drawing commands have been designed from the point-of-view of
being suitable for the needs of drawing particular elements of Feynman graphs.

25

\Red{\Line(0,0)(60,60)}

\ECirc(30,30){20}

\ECirc draws a circle with its center at the specified coordinate
(first two arguments) and the specified radius (third argument).
The interior is transparent, so that it does not erase previously
drawn material. If you need a filled circle, use the \Vertex

command (to which we have defined a synonym \FCirc to match
similar commands for other shapes).

\Red{\Line(0,0)(60,60)}

\BCirc(30,30){20}

\Blue{\Line(60,0)(0,60)}

\BCirc draws a circle with the center at the specified coordinate
(first two arguments) and the specified radius (third argument).
The interior is white and opaque, so that it erases previously
written objects, but not subsequently drawn objects.

\Red{\Line(0,0)(60,60)}

\GCirc(30,30){20}{0.82}

\Blue{\Line(60,0)(0,60)}

\GCirc draws a circle with the center at the specified coordi-
nate (first two arguments) and the specified radius (third argu-
ment). Previously written contents are overwritten and made
gray according to the grayscale specified by the fourth argument
(0=black, 1=white).

\Red{\Line(0,0)(60,60)}

\CCirc(30,30){20}{Red}{Yellow}

\Blue{\Line(60,0)(0,60)}

\CCirc draws a colored circle with the center at the specified
coordinate (first two arguments) and the specified radius (third
argument). The fourth argument is the name of the color for the
circle itself. Its interior is overwritten and colored with the color
specified by name in the fifth argument.

\Oval(40,80)(20,30)(0)

\Oval(40,30)(20,30)(30)

\Oval draws an oval. The first pair of values is the center of the
oval. The next pair forms the half-height and the half-width.
The last argument is a (counterclockwise) rotation angle. The
interior is transparent, so that it does not erase previously drawn
material.

26

\SetColor{Yellow}

\FOval(40,80)(20,30)(30)

\FOval draws an oval filled with the current color overwriting
previously written material. Its arguments are the same as for
the \Oval command.

\Red{\Line(0,0)(80,60)}

\GOval(40,30)(20,30)(0){0.6}

\Blue{\Line(80,0)(0,60)}

\GOval draws an oval with a gray interior. The first 5 arguments
are the same as for the \Oval command. The last argument indi-
cates the grayscale with which the oval will be filled, overwriting
previously written contents (0=black, 1=white).

\Green{\Line(0,0)(80,60)}

\COval(40,30)(20,30)(20){Orange}{Blue}

\Yellow{\Line(80,0)(0,60)}

\COval draws a colored oval. The first 5 arguments are the
same as for the \Oval command. The last two arguments are
the names of two colors. The first is the color of the line that
forms the oval and the second is the color of the inside.

Commands for drawing boxes are in two series. For the first set, the box’s position is
specified by the coordinates of its bottom left corner and top right corner:

\EBox(10,10)(50,40)

Draws a box. The points specified are the bottom left corner
and the top right corner. The interior is transparent, so that it
does not erase previously drawn material.

\FBox(10,10)(50,40)

Draws a box filled with the current color overwriting previously
written material. Its arguments are the same as for the \EBox

command.

\BBox(10,10)(50,40)

Draws a blanked-out box. The points specified are the bottom
left corner and the top right corner.

\GBox(10,10)(50,40){0.9}

Draws a box filled with a grayscale given by the fifth argument
(black=0, white=1). The points specified are the bottom left
corner and the top right corner.

27

\CBox(10,10)(50,40){Green}{LightRed}

Draws a box in the color specified by name in the fifth argument.
The contents are filled with the color specified by name in the
sixth argument. The points specified are the bottom left corner
and the top right corner.

For the other series of box-drawing commands, the box’s position is specified by its
center, and its width and height. The command names end with a “c”, for “center”:

\EBoxc(30,25)(40,30)

Draws a box. The first two numbers give the center of the box.
The next two numbers are the width and the height of the box.
Instead of \EBoxc one may also use \Boxc.
There is also the similar command \FBoxc that draws a filled
box.

\BBoxc(30,25)(40,30)

Draws a box of which the contents are blanked out. The argu-
ments are the same as for the \EBoxc command.

\GBoxc(30,25)(40,30){0.9}

Draws a box filled with a grayscale given by the fifth argument
(black=0, white=1). The first 4 arguments are the same as for
the \EBoxc command.

\CBoxc(30,25)(40,30){Brown}{LightBlue}

Draws a box in the color specified by name in the fifth argument.
The contents are filled with the color specified by name in the
sixth argument. The first 4 arguments are the same as for the
\EBoxc command.

\RotatedBox(30,25)(40,30){30}{Red}

Draws a rotated box. The first two numbers give the center of
the box. The next two numbers are the width and the height
of the box. The fifth argument is the counterclockwise rotation
angle and the sixth argument is the color of the box. The interior
of the box is transparent.

\FilledRotatedBox(30,25)(40,30){30}{Blue}

Draws a rotated box. The first 4 arguments are the same as for
the \RotatedBox command. The fifth argument is the counter-
clockwise rotation angle and the sixth argument is the color of
the inside of the box. If a differently colored outline is needed,
it should be written with the RotatedBox command.

28

\ETri(10,20)(50,10)(40,40)

Draws a triangle. The three points specified are the corners of
the triangle. The interior is transparent.
There is also the similar command \FTri that draws a filled
triangle.

\BTri(10,20)(50,10)(40,40)

Draws a blanked-out triangle. The three points specified are the
corners of the triangle.

\GTri(10,20)(50,10)(40,40){0.9}

Draws a triangle of which the content are filled with the grayscale
specified by the seventh argument (black=0, white=1). The
three points specified are the corners of the triangle.

\CTri(10,20)(50,10)(40,40){Red}{Yellow}

Draws a triangle in the color named in the seventh argument.
The contents are filled with the color named in the eightth argu-
ment. The three points specified are the corners of the triangle.

\Polygon{(10,20)(20,10)(40,20)(50,10)

(45,40)(15,30)}{Red}

Draws a polygon. The first argument is a sequence of two di-
mensional points which form the corners of the polygon. The
second argument is the name of the color of the polygon. The
interior is transparent.

\FilledPolygon{(10,20)(20,10)(40,20)(50,10)

(45,40)(15,30)}{Apricot}

Draws a polygon. The first argument is a sequence of two di-
mensional points which form the corners of the polygon. The
second argument is the name of the color of the interior.

29

\LinAxis(10,30)(90,30)(4,5,5,0,1)

\LinAxis(10,10)(100,10)(4,5,5,2,1)

\LinAxis(x1,y1)(x2,y2)(ND,d,hashsize,offset,width) draws a line
to be used as an axis in a graph. Along the axis are hash marks.
Going from the first coordinate to the second, the hash marks
are on the left side if ‘hashsize’, which is the size of the hash
marks, is positive and on the right side if it is negative. ND is
the number of ‘decades’, indicated by fat hash marks, and d is
the (integer) number of subdivisions inside each decade. The
offset parameter tells to which subdivision the first coordinate
corresponds. When it is zero, this coordinate corresponds to a
fat mark of a decade. Because axes have their own width, this
is indicated with the last parameter.

\LogAxis(0,30)(100,30)(4,3,0,1)

\LogAxis(0,10)(100,10)(4,3,3,1)

\LogAxis(x1,y1)(x2,y2)(NL,hashsize ,offset,width)
This draws a line to be used as a logarithmic axis in a graph.
Along the axis are hash marks. Going from the first coordinate
to the second, the hash marks are on the left side if ‘hashsize’,
which is the size of the hash marks, is positive and on the right
side if it is negative. NL is the number of orders of magnitude,
indicated by fat hash marks. The offset parameter tells to which
integer subdivision the first coordinate corresponds. When it is
zero, this coordinate corresponds to a fat mark, which is identical
to when the value would have been 1. Because axes have their
own width, this is indicated with the last parameter.

5.4 Text

Axodraw2 provides several commands for inserting text into diagrams. Some are for plain
text, with a chosen placement and angle. Some allow placement of text inside boxes. There
are two sets of commands. Some we call TEX-text commands; these use the standard LATEX
fonts as used in the rest of the document. The others we call postscript-text commands;
these use a user-specified standard postscript font or, if the user wishes, the usual document
font, at a user-chosen size.

[Side issue: In version 1 of axodraw, the difference between the classes of text com-
mand was caused by a serious implementation difficulty. With the then-available LATEX
technology, certain graphic effects, could not be achieved within LATEX, at least not easily.
So direct programming in postscript was resorted to, with the result that normal LATEX
commands, including mathematics, were not available in the postscript-text commands.
With the greatly improved methods now available, this has all changed, and the restrictions
have gone. But since the commands and their basic behavior is already defined, we have

30

retained the distinction between TEX-text commands and postscript-text commands.]
In the original version of Axodraw the commands for two lines inside a box were B2Text,

G2Text and C2Text. This causes some problems explained in Sec. 2.1. If you need to retain
compatibility with v. 1 on this issue, e.g., with old files or old diagrams or for personal
preference, you can use the v1compatible option when loading axodraw2 — see Sec. 5.1.

5.4.1 TEX-type text

Illustrated by examples, the commands to insert text are as follows:

left

centered

right-top

e
iπ
/4

\Text(10,10)[l]{left}

\Text(45,45){centered}

\Text(80,80)[rt]{right-top}

\Text(20,60)(45){$e^{i\pi/4}$}

\SetColor{Red}

\Vertex(10,10){1.5}

\Vertex(45,45){1.5}

\Vertex(80,80){1.5}

\Text writes text in the current LATEX font. The most general
form is \Text(x,y)(theta)[pos]{text}; but either or both of
the theta and pos arguments (and their delimiters) can be omit-
ted. It puts the text at focal point (x, y), with a rotation by
anticlockwise angle theta. The default angle is zero, and the
default position is to center the text horizontally and vertically
at the focal point. The position letters are any relevant combi-
nation of ‘l’, ‘r’, ‘t’, and ‘b’, as in the various TEX/LATEX box
commands to indicate left, right, top or bottom adjustment with
respect to the focal point. No indication means centered.

31

le
ft
-l
ef
t upside

righ
t-righ

t

e
iπ

\rText(10,10)[l][l]{left-left}

\rText(45,45)[][u]{upside}

\rText(80,10)[r][r]{right-right}

\rText(20,60)[][r]{$e^{i\pi}$}

\SetColor{Red}

\Vertex(10,10){1.5}

\Vertex(45,45){1.5}

\Vertex(80,10){1.5}

The \rText command gives a subset of the functionality of
the \Text command. It is used for backward compatibility
with Axodraw v. 1. The general form of the command is
\rText(x,y)[mode][rotation]{text}. Unlike the case with
the \Text command and typical standard LATEX commands, if
the option letters are omitted, the square brackets must be re-
tained. The coordinates (x, y) are the focal point of the text.
The third argument is l, r, or empty to indicate the justifica-
tion of the text. The fourth argument is l, r, u, or empty to
indicate respectively whether the text is rotated left (anticlock-
wise) by 90 degrees, is rotated right (clockwise) by 90 degrees, is
upside-down, or is not rotated. The fifth argument is the text.
This command is retained only for backward compatibility; for
new diagrams it is probably better to use the the \Text.

5.4.2 Postscript-type text

The remaining text-drawing commands can use postscript fonts with an adjustable size.
To set the font for later text-drawing commands in this class, the \SetPFont command

sets the ‘Postscript’ font, e.g.,

\SetPFont{Helvetica}{20}

(This font is initialized by axodraw2 to Times-Roman at 10pt.) The font set in this way is
used in the PText, BText, GText, CText, BTwoText, GTwoText and CTwoText commands.
The fonts that can be used are the 35 fonts that are made available by Adobe and that
are normally available in all postscript interpreters, including printers. The fonts, together
with the names used to specify them in the normal font-setting commands of TEX and
LATEX, are shown in Table 1.

If you prefer to use the normal document font (which would normally be Computer
Modern in the common document classes), you simply leave the fontname empty, e.g,.

\SetPFont{}{20}

As for the second, fontsize argument, leaving it empty uses the size that LATEX is using at
the moment the text-drawing command starts, e.g.,

32

Font name LATEX Font name LATEX
AvantGarde-Book pagk Helvetica-Narrow phvrrn
AvantGarde-BookOblique pagko Helvetica-NarrowOblique phvron
AvantGarde-Demi pagd NewCenturySchlbk-Bold pncb
AvantGarde-DemiOblique pagdo NewCenturySchlbk-BoldItalic pncbi
Bookman-Demi pbkd NewCenturySchlbk-Italic pncri
Bookman-DemiItalic pbkdi NewCenturySchlbk-Roman pncr
Bookman-Light pbkl Palatino-Bold pplb
Bookman-LightItalic pbkli Palatino-BoldItalic pplbi
Courier-Bold pcrb Palatino-Italic pplri
Courier-BoldOblique pcrbo Palatino-Roman pplr
Courier pcrr Symbol psyr
Courier-Oblique pcrro Times-Bold ptmb
Helvetica-Bold phvb Times-BoldItalic ptmbi
Helvetica-BoldOblique phvbo Times-Italic ptmri
Helvetica-NarrowBold phvbrn Times-Roman ptmr
Helvetica-NarrowBoldOblique phvbon ZapfChancery-MediumItalic pzcmi
Helvetica phvr ZapfDingbats pzdr
Helvetica-Oblique phvro

Table 1: Available postscript fonts and their corresponding names in LATEX.

\SetPFont{Helvetica-Bold}{}

left

centeredright-top

\SetPFont{Helvetica}{13}

\PText(10,10)(0)[l]{left}

\PText(45,45)(30)[]{centered}

\PText(80,80)(20)[rt]{right-top}

\SetColor{Red}

\Vertex(10,10){1.5}

\Vertex(45,45){1.5}

\Vertex(80,80){1.5}

The \PText command writes in Axodraw’s current Postscript
font. The first two arguments give the focal point, the third
argument is a rotation angle and the fourth argument is as in
the various TEX/LATEX box commands to indicate left, right,
top or bottom adjustment with respect to the focal point. No
indication means centered.
Note that use of normal LATEX font setting commands or of math-
mode will not normally have the desired effect.

33

Who?

Me?

\ArrowLine(30,65)(60,25)

\SetPFont{Bookman-Demi}{14}

\BText(30,65){Who?}

\SetPFont{AvantGarde-Book}{16}

\BText(60,25){Me?}

The \BText command writes a centered box with text in it.
It uses Axodraw’s current Postscript font.

Why?

We wanted it that way!

\ArrowLine(30,65)(60,25)

\SetPFont{Bookman-Demi}{12}

\GText(30,65){0.9}{Why?}

\SetPFont{Courier-Bold}{5}

\GText(60,25){0.75}{We wanted it that way!}

The \GText command writes a centered box with text in
it. It uses Axodraw’s current Postscript font. The third
argument is the grayscale with which the box will be filled.
0 is black and 1 is white.

Who?

You!

\ArrowLine(30,65)(60,25)

\SetPFont{Times-Bold}{15}

\CText(30,65){LightYellow}{LightBlue}{Who?}

\SetPFont{Courier-Bold}{14}

\CText(60,25){Red}{Yellow}{You!}

The \CText command writes a centered box with text in
it. It uses Axodraw’s current Postscript font. The third
argument is the color of the box and the text. The fourth
argument is the color with which the box will be filled.

Why
Me?

You

did it

\ArrowLine(30,65)(60,25)

\SetPFont{Bookman-Demi}{14}

\BTwoText(30,65){Why}{Me?}

\SetPFont{AvantGarde-Book}{16}

\BTwoText(60,25){You}{did it}

The \BTwoText command writes a centered box with two
lines of text in it. It uses Axodraw’s current Postscript font.

34

Prove
it!

Sherlock
says so

\ArrowLine(30,65)(60,25)

\SetPFont{Bookman-Demi}{12}

\GTwoText(30,65){0.9}{Prove}{it!}

\SetPFont{Courier-Bold}{11}

\GTwoText(60,25){0.75}{Sherlock}{says so}

The \GTwoText command writes a centered box with two
lines of text in it. It uses Axodraw’s current Postscript font.
The third argument is the grayscale with which the box will
be filled. 0 is black and 1 is white.

That is
no proof!

Yes
it is

\ArrowLine(30,65)(60,25)

\SetPFont{Times-Bold}{10}

\CTwoText(30,65){LightYellow}{Blue}

{That is}{no proof!}

\SetPFont{Courier-Bold}{14}

\CTwoText(60,25){Red}{Yellow}{Yes}{it is}

The \CTwoText command writes a centered box with two
lines of text in it. It uses Axodraw’s current Postscript font.
The third argument is the color of both the box and the text.
The fourth argument is the color with which the box will be
filled.

Note that because you can now use LATEX commands for the text arguments of the com-
mands described in this section, the effects of the \BTwoText, \GTwoText, and \CTwoText

can be achieved also by the use of regular \BText etc commands. Mathematics can also
be used. (None of these was possible in v. 1 of axodraw.) Here are some examples:

Here is boxed text
in a larger size, in-
cluding mathemat-
ics: α2.

\SetPFont{Helvetica}{15}

\BText(70,45){%

\begin{minipage}{4.5cm}

Here is boxed text in a

larger size, including

mathematics: α^2.

\end{minipage}%

}

This example shows that the \BText com-
mand can also be used with minipages and
other LATEX methods to make more complicated
boxed texts.

35

Here is boxed text
in a large size, in-
cluding mathemat-
ics: α2.

\SetPFont{}{15}

\BText(65,45){%

\begin{minipage}{4cm}

\sffamily Here is boxed text in a

large size, including

mathematics: α^2.

\end{minipage}%

}

But if you use mathematics, the text may be
more elegant if you use the document font,
which has matching fonts for text and mathe-
matics. Use of a sans-serif font (by \sffamily)
may be better in a diagram.

5.5 Options

Almost all of axodraw2’s line-drawing commands take optional arguments. The form here
is familiar from many standard LATEX commands. The optional arguments are placed in
square brackets after the command name, and are made of a comma-separated list of items
of the form: keyword or keyword=value. The required arguments are placed afterwards.

Optional arguments can be used to set particular characteristics of a line, e.g., whether
it is dashed or has an arrow. They can also be used to set some of the line’s parameters, to
be used instead of default values. (The default values can be adjusted by commands listed
in Sec. 5.9. Those commands are useful for adjusting parameters that apply to multiple
lines, while the optional arguments are useful for setting parameters for individual lines.)

The original axodraw only had different command names to determine whether lines
were dashed, or had arrows, etc. The new version retains these commands, but now the
basic commands (\Line, \Arc, \Gluon, etc) can also be treated as generic commands, with
the different varieties (dashed, double, and/or with an arrow) being set by options.

The same set of options are available for all types of line. However, not all apply or are
implemented for particular types of line. Thus, clockwise is irrelevant for a straight line,
while arrow is not implemented for gluons, photons and zigzag lines. Warnings are given
for unimplemented features, while inapplicable arguments are ignored.

The full set of options.

36

color=〈colorname〉 Set the line in this color.
colour=〈colorname〉 Same as color=〈colorname〉.
dash Use a dashed line.
dsize=〈number〉 Set the dash size (when a line is dashed).
dashsize=〈number〉 Same as dsize=〈number〉.
double Use a double line.
sep=〈number〉 Sets the separation for a double line.
linesep=〈number〉 Same as sep=〈number〉.
width=〈number〉 Sets line width for this line only.

clock For arcs, makes the arc run clockwise.
clockwise For arcs, makes the arc run clockwise.

arrow Use an arrow.
flip If there is an arrow, its direction is flipped.
arrowpos=〈number〉 The number should be between zero and one and

indicates where along the line the arrow should be.
1 is at the end. 0.5 is halfway (the initial default).

arrowaspect=〈number〉 See Sec. 5.7.
arrowlength=〈number〉 See Sec. 5.7.
arrowheight=〈number〉 See Sec. 5.7.
arrowinset=〈number〉 See Sec. 5.7.
arrowscale=〈number〉 See Sec. 5.7.
arrowstroke=〈number〉 See Sec. 5.7.
arrowwidth=〈number〉 See Sec. 5.7.
inset=〈number〉 Same as arrowinset.

The options without an extra argument, e.g., arrow, are actually of a boolean type. That is,
they can also be used with a suffix “=true” or “=false”, e.g., arrow=true or arrow=false.

If an option is not provided, its default value is used. Defaults are no dashes, no double
lines, anticlockwise arcs, no arrow and if an arrow is asked for, its position is halfway along
the line. Other arrow settings are explained in Sec. 5.7. There are also default values for
dash size (3) and the separation of double lines (2).

The full set of the generic line commands with their syntax is

\Line[options](x1,y1)(x2,y2)

\Arc[options](x,y)(r,theta1,theta2)

\Bezier[options](x1,y1)(x2,y2)(x3,y3)(x4,y4)

\Gluon[options](x1,y1)(x2,y2){amplitude}{windings}

\GluonArc[options](x,y)(r,theta1,theta2){amplitude}{windings}

\GluonCirc[options](x,y)(r,phase){amplitude}{windings}

\Photon[options](x1,y1)(x2,y2){amplitude}{windings}

\PhotonArc[options](x,y)(r,theta1,theta2){amplitude}{windings}

\ZigZag[options](x1,y1)(x2,y2){amplitude}{windings}

\ZigZagArc[options](x,y)(r,theta1,theta2){amplitude}{windings}

37

The applicability of the options is as follows

Arrow, etc Clockwise
\Line Y N
\Arc Y Y
\Bezier Y N
\Gluon N N
\GluonArc N Y
\GluonCirc N N
\Photon N N
\PhotonArc N Y
\ZigZag N N
\ZigZagArc N Y

The arrow options include those for setting the arrow dimensions. Options not indicated
in the last table apply to all cases.

Some examples are:

\Line[double,sep=1.5,dash,dsize=4](10,10)(70,30)

\Line[double,sep=1.5,arrow,arrowpos=0.6](10,10)(70,30)

The options can also be used on the more explicit commands as extra options. Hence
it is possible to use

\DoubleLine[dash,dsize=4](10,10)(70,30){1.5}

instead of the first line in the previous example.
One may notice that some of the options are not accessible with the more explicit

commands. For example, it is possible to put arrows on Bézier curves only by using the
option ‘arrow’ for the Bézier command.

5.6 Remarks about Gluons

There are 12 commands that concern gluons. This allows much freedom in developing
one’s own style. Gluons can be drawn as single solid lines, as double lines, as dashed lines
and as dashed double lines.

Gluons have an amplitude and a number of windings. By varying these quantities one
may obtain completely different gluons as in:

\Gluon(10,70)(80,70){3}{5}

\Gluon(10,50)(80,50){3}{9}

\Gluon(10,30)(80,30){5}{7}

\Gluon(10,10)(80,10){8}{9}

38

One may change the orientation of the windings by reversing the direction in which the
gluon is drawn and/or changing the sign of the amplitude:

\DoubleGluon(10,70)(80,70){5}{7}{1.2}

\DoubleGluon(80,50)(10,50){5}{7}{1.2}

\DoubleGluon(10,30)(80,30){-5}{7}{1.2}

\DoubleGluon(80,10)(10,10){-5}{7}{1.2}

\GluonArc(45,20)(40,20,160){5}{8}

\GluonArc(45,0)(40,20,160){-5}{8}

Here one can see that the sign of the amplitude gives a completely
different aspect to a gluon on an arc segment.

There are two ways of drawing a gluon circle. One is with the command GluonCirc
and the other is an arc of 360 degrees with the GluonArc command. The second way has
a natural attachment point, because the GluonArc command makes gluons with a begin-
and endpoint.

\GluonCirc(40,40)(30,0){5}{16}

This is the ‘complete circle’. If one likes to attach one or more
lines to it one should take into account that the best places for
this are at a distance radius+amplitude from the center of the
circle. One can rotate the circle by using the phase argument.

\GluonArc(40,40)(30,0,360){5}{16}

In the 360 degree arc there is a natural point of attachment. Of
course there is only one such point. If one needs more than one
such point one should use more than one arc segment.

Some examples are:

This picture was generated with the code:

\begin{center} \begin{axopicture}{(460,60)(0,0)}

\Gluon(7,30)(27,30){3}{3}

39

\GluonCirc(50,30)(20,0){3}{16}

\Gluon(73,30)(93,30){3}{3}

\Vertex(27,30){1.5}

\Vertex(73,30){1.5}

\Gluon(110,30)(130,30){3}{3}

\GluonArc(150,30)(20,0,180){3}{8}

\GluonArc(150,30)(20,180,360){3}{8}

\Gluon(170,30)(190,30){3}{3}

\Vertex(130,30){1.5}

\Vertex(170,30){1.5}

\Gluon(210,30)(230,30){3}{3}

\GluonArc(250,30)(20,0,180){-3}{8}

\GluonArc(250,30)(20,180,360){-3}{8}

\Gluon(270,30)(290,30){3}{3}

\Vertex(230,30){1.5}

\Vertex(270,30){1.5}

\DashLine(310,30)(330,30){3}

\GluonArc(350,30)(20,-180,180){3}{16}

\Vertex(330,30){1.5}

\DashLine(387,30)(407,30){3}

\GluonCirc(430,30)(20,0){3}{16}

\Vertex(407,30){1.5}

\end{axopicture} \end{center}

5.7 Remarks about arrows

The old Axodraw arrows were rather primitive little triangles. The JaxoDraw program
has introduced fancier arrows which the user can also customize. There are parameters
connected to this as shown in the figure:

Length

W
id

th

Inset

\Line[arrow,arrowinset=0.3,arrowaspect=1,arrowwidth=40,arrowpos=1,

arrowstroke=3](10,50)(100,50)

The full set of parameters is:

aspect A multiplicative parameter when the length is calculated from the width. The
normal formula is: length = 2× width× aspect.

40

inset The fraction of the length that is taken inward.

length The full length of the arrowhead.

position The position of the arrow in the line as a fraction of the length of the line.

scale A scale parameter for the complete arrowhead.

stroke The width of the line that makes up the arrowhead. If the value is not set (default
value is zero) the arrow is filled and overwrites whatever was there. In the case of a
stroke value the contents are overwritten in the background color.

width The half width of the arrowhead.

The parameters can be set in two ways. One is with one of the commands

\SetArrowScale{number} Initial value is 1.
\SetArrowInset{number} Initial value is 0.2
\SetArrowAspect{number} Initial value is 1.25
\SetArrowPosition{number} Initial value is 0.5
\SetArrowStroke{number} Initial value is 0

(A complete list of commands for setting defaults is in Sec. 5.9.) These commands deter-
mine settings that will hold for all following commands, up to the end of whatever LATEX
or TEX grouping the default setting is given in. E.g., setting a default value inside an
axopicture environment sets it until the end of the environment only. (Thus the settings
obey the normal rules of LATEX for scoping.)

The other way is to use one or more of these parameters as options in a command that
uses an arrow. The general use of options is in Sec. 5.5. The options that are available are

arrow initial default=false
arrowscale=〈number〉 initial default=1
arrowwidth=〈number〉 initial default=0
arrowlength=〈number〉 initial default=0
arrowpos=〈number〉 initial default=0.5
arrowinset=〈number〉 initial default=0.2
arrowstroke=〈number〉 initial default=0
arrowaspect=〈number〉 initial default=1.25
flip initial default=false

The arrow option tells the program to draw an arrow. Without it no arrow will be drawn.
The flip option indicates that the direction of the arrow should be reversed from the
‘natural’ direction.

When neither the width nor the length are specified, but instead both are given as zero,
they are computed from the line width (and the line separation when there is a double

41

line). The formula is:

Arrowwidth = 1.2× (linewidth + 0.7× separation + 1)× arrowscale, (1)

Length = 2× arrowwidth × arrowaspect. (2)

If, however, 1.2 × (linewidth + 0.7 × separation + 1) is less than 2.5, the formula for the
arrow width becomes arrowwidth = 2.5× arrowscale.

If only one of the arrowwidth or the arrowlength parameters is zero, it is computed
from the other non-zero parameter using formula (2). When both are non-zero, those are
the values that are used.

The position of the arrowhead is a bit tricky. The arrowpos parameter is a fraction of
the length of the line and indicates the position of the center of the arrowhead. This means
that when arrowpos is one, the arrowhead sticks out beyond the end of the line by half the
arrowlength. When for instance the line width is 0.5, the default length of the arrowhead
defaults to 6.25. Hence if one would like to compensate for this one should make the line
3.125 points shorter. Usually 3 pt will be sufficient.

Because of backward compatibility axodraw2 has many individual commands for lines
with arrows. We present them here, together with some ‘options’ varieties.

\Line[arrow,arrowscale=2](10,70)(80,70)

\Line[arrow,arrowpos=0.8,flip](10,50)(80,50)

\Line[arrow](10,30)(80,30)

\ArrowLine(10,10)(80,10)

The default position for the arrow is halfway (arrowpos=0.5).
With the line command and the options we can put the arrow
in any position.

\Line[arrow,arrowpos=1](10,30)(80,30)

\LongArrow(10,10)(80,10)

\SetWidth{4}

\LongArrow[arrowscale=0.8](10,50)(70,50)

The \LongArrow command just places the arrowhead at the
end of the line. The size of the arrowhead is a function of the
linewidth.

\SetArrowStroke{1}

\Line[arrow,arrowpos=1,double,sep=5,arrowscale=1.3]

(10,90)(75,90)

\Line[arrow,arrowpos=1,double,sep=2,arrowscale=1.5]

(10,70)(80,70)

\Line[arrow,arrowpos=1,double,sep=2](10,50)(80,50)

\Line[arrow,double,sep=2](10,30)(80,30)

\ArrowDoubleLine(10,10)(80,10){2}

As one can see, the arrows also work with double lines.

42

\Line[arrow,arrowpos=0.3,dash,dsize=3,arrowscale=1.5]

(10,70)(80,70)

\DashArrowLine(10,50)(80,50){3}

\Line[arrow,dash,dsize=3](10,30)(80,30)

\ArrowDashLine(10,10)(80,10){3}

We have not taken provisions for the dashes to be centered in
the arrowhead, because at times that is nearly impossible. The
commands \ArrowDashLine and \DashArrowLine are identical.

\SetArrowStroke{0.5}

\Line[arrow,arrowpos=1,dash,dsize=3,double

,sep=1.5,arrowscale=1.5](10,70)(80,70)

\DashArrowDoubleLine(10,50)(80,50){1.5}{3}

\Line[arrow,dash,dsize=3](10,30)(80,30)

\ArrowDashDoubleLine(10,10)(80,10){1.5}{3}

The \ArrowDashDoubleLine and \DashArrowDoubleLine com-
mands are identical.

\Line[arrow,arrowpos=0,dash,dsize=3,arrowscale=1.5

,flip](10,70)(80,70)

\DashLongArrowLine(10,50)(80,50){3}

\Line[arrow,arrowpos=1,dash,dsize=3](10,30)(80,30)

\LongArrowDashLine(10,10)(80,10){3}

The commands \LongArrowDashLine, \DashLongArrowLine,
\LongArrowDash and \DashLongArrow are identical.

\Arc[arrow,arrowpos=0,flip](45,95)(40,20,160)

\LongArrowArcn(45,80)(40,20,160)

\Arc[arrow,arrowpos=0.5](45,65)(40,20,160)

\ArrowArcn(45,50)(40,20,160)

\Arc[arrow,arrowpos=1](45,35)(40,20,160)

\LongArrowArc(45,20)(40,20,160)

\Arc[arrow,arrowpos=0.5](45,5)(40,20,160)

\ArrowArc(45,-10)(40,20,160)

The Arc and the CArc commands are identical.

43

\Arc[arrow,dash,dsize=3,arrowpos=0.5]

(45,65)(40,20,160)

\ArrowDashArcn(45,50)(40,20,160){3}

\Arc[arrow,dash,dsize=3,arrowpos=1]

(45,35)(40,20,160)

\LongArrowDashArc(45,20)(40,20,160){3}

\Arc[arrow,dash,dsize=3,arrowpos=0.5]

(45,5)(40,20,160)

\ArrowDashArc(45,-10)(40,20,160){3}

The DashArrowArc and the ArrowDashArc commands are identi-
cal. So are the commands DashArrowArcn and ArrowDashArcn.

\Arc[arrow,dash,dsize=3,double,sep=1.5

,arrowpos=0.5](45,35)(40,20,160)

\ArrowDashDoubleArc(45,20)(40,160,20){1.5}{3}

\Arc[arrow,double,sep=1.5,arrowpos=0.5]

(45,5)(40,20,160)

\ArrowDoubleArc(45,-10)(40,20,160){1.5}

Other commands involving Long do not exist. The options can
take care of their functionality.

Computing the position of the arrow in a Bézier curve is a bit complicated. Let us
recall the definition of a cubic Bézier curve:

x = x0(1− t)3 + 3x1t(1− t)2 + 3x2t
2(1− t) + x3t

3

y = y0(1− t)3 + 3y1t(1− t)2 + 3y2t
2(1− t) + y3t

3 (3)

Computing the length of the curve is done with the integral

L =
∫

1

0

dt

√

√

√

√

(

dx

dt

)2

+

(

dy

dt

)2

, (4)

which is an integral over the square root of a quartic polynomial. This we do with a 16
point Gaussian quadrature and it gives us more than enough accuracy4. Let us assume
now that we want the arrow at 0.6 of the length. To find the exact fraction of the length
involves finding the upper limit of the integral for which the length is 0.6L. This requires
an iteration procedure till we have a reasonable accuracy for the position (x, y). After that
we have to calculate the derivative in this point as well.

Because the Bézier curves are new commands in axodraw2 there is no need for back-
wards compatibility in the use of arrows. Hence all arrow commands are done by means
of the options. Some examples are:

4We need to compute the length of the Bézier curve also when we want to put a dash pattern on it.
The exact dash size is determined such that an integer number of patterns fits in the line.

44

\Bezier[arrow](10,10)(30,30)(10,50)(30,70)

\Bezier[arrow,dash,dsize=3](30,10)(50,30)

(30,50)(50,70)

\Bezier[arrow,arrowpos=1,double,sep=1,arrowstroke

=0.5](50,10)(70,30)(50,50)(70,70)

5.8 Units and scaling

When you have constructed a diagram, you may need to change its scale, to make it larger
or smaller. Axodraw2 provides ways of doing this, for scaling diagrams without recoding all
the individual coordinates. However the requirements for the nature of the scaling change
between different cases. For example, suppose a diagram is designed for use in a journal
article and you wish to use it in the slides for a seminar. Then you will want to enlarge
both the geometric size of the diagram’s objects and the text labels it contains. But if you
wish to use a scaled diagram in another place in a journal article, you will wish to scale its
lines etc, but will probably not wish to scale the text (to preserve its legibility).

Axodraw2 therefore provides tools for the different situations, so we will now explain
what to do. The commands to achieve this all appear in the list of parameter-setting
commands in Sec. 5.9.

5.8.1 Scaling for slides

Suppose the original diagram is

\SetPFont{Helvetica-Oblique}{12}

Document text. Then diagram:

\begin{axopicture}(60,43)

\Arc[arrow](30,0)(30,0,180)

\Text(30,33)[b]{αP_1}

\CText(30,10){Red}{Yellow}{Arc}

\end{axopicture}

to give

Document text. Then diagram:

αP1

Arc

Then you could double the scale of the diagram by

45

\SetScale{2}

\fontsize{24}{26}\selectfont

\SetPFont{Helvetica-Oblique}{12}

Document text. Then diagram:

\begin{axopicture}(60,43)

\Arc[arrow](30,0)(30,0,180)

\Text(30,33)[b]{αP_1}

\CText(30,10){Red}{Yellow}{Arc}

\end{axopicture}

to get

Document text. Then diagram:

αP1

Arc
We have changed the size of the document font, as would be appropriate for a make slides
for a presentation; this we did by the \fontsize command. The arc and the space inserted
in the document for the diagram have scaled up. The label inserted by the \Text command
has changed to match the document font. The postscript text in the \CText was specified
to be at 12 pt, but is now scaled up also.

The above behavior is what axodraw2 does by default, and is what v. 1 did.

5.8.2 Scaling within article

If you wanted to make an enlarged figure in a journal article, you would not change the
document font. But the obvious modification to the previous example is

\SetScale{2}

\SetPFont{Helvetica-Oblique}{12}

Document text. Then diagram:

\begin{axopicture}(60,43)

\Arc[arrow](30,0)(30,0,180)

\Text(30,33)[b]{αP_1}

\CText(30,10){Red}{Yellow}{Arc}

\end{axopicture}

which gives

Document text. Then diagram:

αP1

Arc

46

The label αP1 is now not enlarged, since it copies the behavior of the document font. But
the postscript text is enlarged, which is probably undesirable. If you were scaling down
the diagram instead of scaling it up, the situation would be worse, because the postscript
font would be difficult to read.

So in this situation, of scaling the diagram while keeping the document font intact, you
probably also want to leave unchanged the size of the postscript font. You can achieve this
by the \PSTextScalesLikeGraphicsfalse command:

\SetScale{2}

\PSTextScalesLikeGraphicsfalse

\SetPFont{Helvetica-Oblique}{12}

Document text. Then diagram:

\begin{axopicture}(60,43)

\Arc[arrow](30,0)(30,0,180)

\Text(30,33)[b]{αP_1}

\CText(30,10){Red}{Yellow}{Arc}

\end{axopicture}

Document text. Then diagram:

αP1

Arc

To achieve this on a document-wide basis, which is probably what you want, you can
use the PStextScalesIndependently option when you load axodraw2 — see Sec. 5.1.

Nevertheless, if you turn off the default scaling of postscript text, you may still want to
scale text. For this you can use the \SetTextScale command, as in \SetTextScale{1.2}.
This only has an effect when you have turned off the scaling of postscript text with graph-
ics objects; but then it applies to TEX text inserted by axodraw2’s \Text and \rText

commands, as well text inserted by axodraw2’s “postscript-text” commands.
If you are confused by the above, we recommend experimentation to understand how

to achieve the effects that you specifically need. We could have made the set of commands
and options simpler, but only at the expense of not being able to meet the demands of the
different plausible situations that we could imagine and have to deal with ourselves.

5.8.3 Canvas and object scales

When you use \SetScale outside an axopicture environment, as above, the scaling applies
to both the axodraw2 objects and the space inserted for the axopicture environment in
the document, as is natural. But you may find you need to scale a subset of objects inside
the diagram, e.g.,

47

\begin{axopicture}(. . .)
(First block)

\SetScale{0.5}

(Second block)
\end{axopicture}

In this case, the units for specifying the objects in the second block are different from those
for specifying the axopicture environment’s size (as well as the first block of objects). We
thus distinguish object units from canvas units, where “canvas” refers to the axopicture

environment as a whole.
Another complication is that the LATEX picture environment has is own \unitlength

parameter. In v. 1 of axodraw, the canvas scale was determined by LATEX’s \unitlength.
But there was an independent unit for the object scale; this was the one determined by
axodraw’s \SetScale command. Also, not all objects used the object scale. The situation
therefore got quite confusing. In v. 1, if, as is often natural, you wished to scale the canvas
as well as the objects, you would have needed to set LATEX’s \unitlength parameter as
well as using axodraw’s \SetScale command.

So now we have arranged things so that the canvas and object scales are tied by de-
fault, provided that you use axodraw2’s \SetScale command, and that axodraw diagrams
are inside axopicture environments (in contrast to the picture environment used in
the original axodraw). However, it may be necessary to keep backward compatibility in
some cases, and we weren’t certain that the new behavior is exactly what is always de-
sired. So in axodraw2, we have provided three choices, given by the canvasScaleIs1pt,
canvasScaleIsObjectScale, and canvasScaleIsUnitLength options when loading axo-
draw2 — see Sec. 5.1. Naturally, canvasScaleIsObjectScale is the default. If you wish
to change the setting mid-document, there are corresponding commands — Sec. 5.9.

5.9 Settings

Axodraw2 has a number of parameters that can be set by the user. The parameters
include defaults for line types, dimensions, etc. The parameters can be set either inside
the axopicture environment or outside. If they are set outside they modify the default value
for subsequent pictures. If set inside they only affect the current picture. (In general, the
parameters obey the usual rules for the scope of LATEX variables.) In many cases, the
parameters provide default values for a command to draw an object and can be overridden
for a single object by using an optional parameter in invoking the command for the object.

The unit for lengths is the current object scale, as set by the \SetScale command.

48

The parameter-setting commands are:

Command Commentary

Lines:

\SetDashSize{#1} This sets the default size for the size of the dashes of
dashed lines. Its initial value is 3.

\SetLineSep{#1} This sets the default separation of double lines. Its initial
value is 2.

\SetWidth{#1} This sets the default width of lines. Its initial value is
0.5.

Arrows:

\SetArrowAspect{#1} See Sec. 5.7.

\SetArrowInset{#1} See Sec. 5.7.

\SetArrowPosition{#1} Determines where the arrowhead is on a line. The posi-
tion is the fraction of the length of the line.

\SetArrowScale{#1} A scale parameter for the entire head of an arrow.

\SetArrowStroke{#1} This parameter determines the linewidth of the arrow-
head if it is just outlined. Its initial value is zero (filled
arrowhead).

Scaling:

\canvasScaleOnept Sets canvas scale to 1 pt.

\canvasScaleObjectScale Sets canvas scale to equal the value set by \SetScale in
units of points. This is the initial default of axodraw2,
unless overridden.

\canvasScaleUnitLength The canvas scale is the same as LATEX’s length parameter
\unitlength.

\SetScale{#1} This sets a scale factor. This factor applies a magni-
fication factor to all axodraw2 graphics objects. When
the setting that postscript-text-scales-like-graphics is set
(as is true by default), it also applies to axodraw2’s
“postscript-text” writing commands (\PText, \BText,
etc), but not to its TEX-text commands (\Text etc). The
initial scale factor is unity.

49

\SetTextScale{#1} This factor applies a magnification factor to all axodraw2
text objects, but only when the setting that postscript-
text-scales-like-graphics is turned off.

\PSTextScalesLikeGraphicsfalse

Text drawn by all of Axodraws’s text commands scales
with the factor set by \SetTextScale. See Sec. 5.4.

\PSTextScalesLikeGraphicstrue

(Default setting.) Text drawn by Axodraw’s postscript-
text commands scales with the same factor as graphics
objects, as set by \SetScale. Text drawn by Axodraw’s
TEX-text commands is unscaled. See Sec. 5.4.

Offsets:

\SetOffset(#1,#2) Sets an offset value for all commands of axodraw2. Its
value is not affected by the scale variable.

\SetScaledOffset(#1,#2) Sets an offset for all commands of axodraw2. This offset
is affected by the scale factor.

Color:

\SetColor{#1} Sets the named color, for both axodraw2 objects and reg-
ular text. See Sec. 5.10 for details on using color with
axodraw2.

\textRed Alternative command for setting named a color for both
axodraw2 objects and regular text. See Sec. 5.10 for de-
tails on using color with axodraw2. There is one such
command for each axodraw2 named color.

Font:

\SetPFont{#1}{#2} Sets the Postscript font, and its size in units of points.
See Sec. 5.4.2 for the commands that use this font, for
a table of the names of the fonts. An empty first argu-
ment, instead of a font name, (as in \SetPFont{}{20}

indicates that the normal document font is to be used
at the indicated size. An empty second argument, in-
stead of the font size, (as in \SetPFont{Helvetica}{}

or \SetPFont{}{}) indicates that the font size is to be
LATEX’s document font size at the time the text-making
command is executed.

50

5.10 Colors

TEX and LATEX by themselves do not provide any means to set colors in a document.
Instead, one must use a suitable package to achieve the effect; the current standard one
is color.sty. Such a package performs its work by passing graphics commands to the
viewable output file. Since axodraw also works in a similar fashion, there is a potentiality
for conflicts.

Axodraw version 1, released in 1994, used the package colordvi.sty for applying color
to normal textual material, and its own separate methods for applying color to its graphical
objects. They both defined the same convenient set of named colors that could be used,
but they had to be set separately for text and graphics5. The colordvi.sty package also
had an important disadvantage that its color settings did not respect TEX grouping and
LATEX environments, so that a color setting made for text in an environment continued to
apply after the end of the environment.

Since then, the available tools, notably in the powerful color.sty, have greatly im-
proved. But this has introduced both real and potential incompatibilities with the older
methods. Note that color.sty is currently the most standard way for implementing color,
and is a required part of LATEX distributions, as part of the graphics bundle.

In the new version of axodraw, we have arranged to have compatibility with color.sty,
while allowing as much backward compatibility as we could with the user interface from v.
1. We fully rely on color.sty for setting color6. But to keep the best of the old methods,
we have defined all the named colors that were defined in the old version, together with a
few extra ones. We have also defined color-setting commands in the style of colordvi.sty,
but they now apply uniformly to both text and axodraw graphical objects, and they respect
TEX and LATEX grouping and environments.

This results in some changes in behavior in certain situations. We think the new
behavior is more natural from the user’s point of view; but it is a change.

There are two classes of graphics-drawing command in axodraw. One class has no
explicit color argument, and uses the currently set color; the line-drawing commands are
typical of these. Other commands have explicit color arguments, and these arguments are
named colors. The named colors are a union of those axodraw defines, with those defined
by color.sty together with any further ones defined by the user.

5.10.1 How to use colors

Axodraw works with named colors — see Sec. 5.10.2 — which are a standard set of 68
originally defined by the dvips program and the colordvi.sty, plus 5 extra colors defined
in axodraw2. (In addition there are several named colors that are normally defined by
default by color.sty, and that can also be used.)

5The named colors corresponded to ones defined by the dvips program.
6Except for certain hard wired settings in double lines and stroked arrows.

51

To use them we have several possibilities to specify colors. Which to use is mostly a
matter of user preference or convenience.

• The axodraw command \SetColor{colorname}: sets the color to be the named color
for everything until the end of the current environment (or TEX group, as relevant.)
The initial default color is Black, of course. An example:

Now red is used:

\SetColor{Red}

Now red is used:\\

\begin{axopicture}(0,40)

\Line(0,10)(40,30)

\end{axopicture}

• Completely equivalently, one can use the command \color{colorname} defined by
the standard color.sty package, with any of its options, e.g., \color{Red} or
\color[rgb]{1,0,0}. In fact \SetColor is now a synonym for \color, retained
for backward compatibility.

• The named colors defined by axodraw2 are listed in Sec. 5.10.2. Extra ones can be
defined by axodraw2’s \newcolor command.

• For each of the named colors defined by axodraw2 (and others defined by the use of
the \newcolor command), there is a macro whose name is “text” followed by the
color name, e.g., \textMagenta. This behaves just like the corresponding call to
\SetColor or \color. Thus we have

Now magenta is used:
\textMagenta

Now magenta is used:\\

\begin{axopicture}(0,40)

\Line(0,10)(40,30)

\end{axopicture}

These macros correspond to macros defined by the venerable colordvi.sty package,
but now have what is normally an advantage that their scope is delimited by the
enclosing environment.

Normal text, then

Large, bold blue

And normal text afterward.

Normal text, then

\begin{center}

\Large \bf \color{Blue}

Large, bold blue

\begin{axopicture}(40,20)

\Gluon(0,10)(40,10){4}{4}

\end{axopicture}\\

\end{center}

And normal text afterward.

52

• A delimited section of text can be set in a color by using a macro named by the color
(e.g., \Red):

In the middle of black text, red
text and gluon. Then con-
tinue . . .

In the middle of black text,

\Red{red text and

\begin{axopicture}(30,10)

\Gluon(0,5)(30,5){3}{4}

\end{axopicture}\

gluon%

}.

Then continue \dots

These macros correspond to macros defined by the colordvi.sty package, but they
now apply to axodraw objects as well.

• The same effect, for named colors, can be achieved by color.sty’s \textcolor

macro. Thus \textcolor{Red}{...} is equivalent to \Red{...}.

It is also possible to define new named colors, in the CMYK system. This means
that each color is defined by four numbers. New colors can be introduced with the
\newcolor{#1}{#2} command as in \newcolor{LightRed}{0 0.75 0.7 0}. This use
of this command defines a named color for use in axodraw, with corresponding macros
\LightRed and \textLightRed{#1}, and also makes the name known to color.sty. (Use
of color.sty’s \definecolor macro is not supported here: it will affect only normal LATEX
text, but not axodraw objects, and it will fail to define the extra macros.)

We define the CMYK values for the named colors in the axodraw2.sty file. These
override the definitions provided by color.sty (in its file dvipsnam.def), which are the
same (at least currently).

There can be differences in how colors render on different devices. In principle, there
should be compensations made by the driver to compensate for individual device prop-
erties. Our experience is however that such compensations are not always implemented
well enough. Most notorious are differences between the shades of green on the screen, on
projectors, and on output from a printer. These colors are usually much too light on a
projector and one way to correct this is to redefine those colors when the output is pre-
pared for a projector, e.g., by use of axodraw’s \newcolor{#1}{#2} macro. An example
is illustrated by

color.sty’s green axodraw’s Green

coded by

\color{green}

\begin{axopicture}(100,20)

53

\Text(25,15){color.sty’s green}

\Line[width=2](0,0)(50,0)

\end{axopicture}

%

\color{Green}

\begin{axopicture}(100,20)

\Text(25,15){axodraw’s Green}

\Line[width=2](0,0)(50,0)

\end{axopicture}

On a typical screen or projector, we find that the two greens are quite distinct, the “green”
being much lighter than the “Green”7. But on the paper output from our printers, they
give close results.

5.10.2 Defined named colors

The first set of predefined colors are those defined by dvips (and defined in colordvi.sty,
or in color.sty with the use of both of its usenames and dvipsnames options). They are

GreenYellow, Yellow, Goldenrod, Dandelion, Apricot, Peach, Melon, YellowOr-
ange, Orange, BurntOrange, Bittersweet, RedOrange, Mahogany, Maroon,
BrickRed, Red, OrangeRed, RubineRed, WildStrawberry, Salmon, Carnation-
Pink, Magenta, VioletRed, Rhodamine, Mulberry, RedViolet, Fuchsia, Laven-
der, Thistle, Orchid, DarkOrchid, Purple, Plum, Violet, RoyalPurple, BlueVi-
olet, Periwinkle, CadetBlue, CornflowerBlue, MidnightBlue, NavyBlue, Royal-
Blue, Blue, Cerulean, Cyan, ProcessBlue, SkyBlue, Turquoise, TealBlue, Aqua-
marine, BlueGreen, Emerald, JungleGreen, SeaGreen, Green, ForestGreen,
PineGreen, LimeGreen, YellowGreen, SpringGreen, OliveGreen, RawSienna,
Sepia, Brown, Tan, Gray, Black, White.

In addition axodraw2.sty defines the following extra colors:

LightYellow, LightRed, LightBlue, LightGray, VeryLightBlue.

Note that color.sty by default also defines a set of other named colors: black, white,
red, green, blue, cyan, magenta, and yellow (with purely lower-case names). Depending
on properties of your screen, projector or printer, these may or may not agree with the
similarly named axodraw colors (which have capitalized names). These names can also
be used in the \SetColor and \color commands and for color names to those axodraw
commands that take named colors for arguments.

7The “green” is defined in the RGB scheme from the values (0, 1, 0), while “Green” is defined in the
CMYK scheme from the values (1, 0, 1, 0).

54

6 Some examples

6.1 A Feynman diagram

When computing the singlet part of structure functions in polarized Deep Inelastic Scat-
tering one approach is to use spin two currents to determine all anomalous dimensions. At
the three loop level this can give diagrams like the following:

for which the code is:

\begin{center} \begin{axopicture}{(200,140)(0,0)}

\SetArrowStroke{0.5} \SetArrowScale{0.8}

\Photon(7,70)(37,70){4}{3}

\Photon(7,70)(37,70){-4}{3}

\GluonArc(70,70)(30,90,270){3}{10}

\Line[arrow](100,100)(70,100) \Line[arrow](130,100)(100,100)

\Line[arrow,arrowpos=0.25](70,100)(130,40)

\Line[arrow](100,40)(70,40) \Line[arrow](130,40)(100,40)

\Line[arrow,arrowpos=0.75](70,40)(130,100)

\GluonArc(130,70)(30,270,450){3}{10}

\Photon(163,70)(193,70){4}{3}

\Photon(163,70)(193,70){-4}{3}

\Gluon(100,100)(100,130){3}{4}

\Gluon(100,40)(100,10){3}{4}

\Vertex(37,70){2} \Vertex(163,70){2} \Vertex(70,100){2}

\Vertex(70,40){2} \Vertex(130,100){2} \Vertex(130,40){2}

\Vertex(100,100){2} \Vertex(100,40){2}

\end{axopicture} \end{center}

The diagrams can become a bit more complicated when more lines meet in a single vertex.
One could compose some lines from straight lines and arcs, but in this case we selected
some Bézier curves. The result is

55

for which the code is:

\begin{center}

\begin{axopicture}{(200,140)(0,0)}

\SetArrowStroke{0.5} \SetArrowScale{0.8}

\Photon(7,70)(40,70){4}{3}

\Photon(7,70)(40,70){-4}{3}

\GluonArc(70,70)(30,180,270){3}{5}

\Bezier[arrow](100,100)(55,100)(40,95)(40,70)

\Line[arrow](130,100)(100,100)

\Bezier[arrow,arrowpos=0.37](40,70)(100,70)(130,70)(130,40)

\Line[arrow](100,40)(70,40) \Line[arrow](130,40)(100,40)

\Line[arrow,arrowpos=0.75](70,40)(130,100)

\GluonArc(130,70)(30,270,450){3}{10}

\Photon(163,70)(193,70){4}{3}

\Photon(163,70)(193,70){-4}{3}

\Gluon(100,100)(100,130){3}{4} \Gluon(100,40)(100,10){3}{4}

\Vertex(40,70){2} \Vertex(163,70){2} \Vertex(70,40){2}

\Vertex(130,100){2} \Vertex(130,40){2} \Vertex(100,100){2}

\Vertex(100,40){2}

\end{axopicture}

\end{center}

6.2 A diagrammatic equation

This example is from ref [6]. The equations in that paper were rather untransparent,
because each Feynman diagram represents a complicated two loop integral and to solve
these integrals one needed many different recursion relations in terms of the powers of
the propagators. We defined a number of macro’s for the diagrams, each containing one
picture. Here are three of them:

\def\TAA(#1,#2,#3,#4,#5,#6){

\raisebox{-19.1pt}{ \hspace{-12pt}

56

\begin{axopicture}{(50,39)(0,-4)}

\SetScale{0.5}\SetColor{Blue}%

\CArc(40,35)(25,90,270) \CArc(60,35)(25,270,90)

\Line(40,60)(60,60) \Line(40,10)(60,10) \Line(50,10)(50,60)

\Line(0,35)(15,35) \Line(85,35)(100,35)

\SetColor{Black}\SetPFont{Helvetica}{14}%

\PText(55,39)(0)[lb]{#5} \PText(55,36)(0)[lt]{#6}

\PText(35,62)(0)[rb]{#1} \PText(65,62)(0)[lb]{#2}

\PText(65,8)(0)[lt]{#3} \PText(35,8)(0)[rt]{#4}

\SetColor{Red} \SetWidth{3}

\Line(50,35)(50,60) \Line(40,60)(50,60)

\CArc(40,35)(25,90,180) \Vertex(50,60){1.3}

\end{axopicture}

\hspace{-12pt}

}

}

\def\TABs(#1,#2,#3,#4,#5){

\raisebox{-18.1pt}{ \hspace{-12pt}

\begin{axopicture}{(50,39)(0,-4)}

\SetScale{0.5}\SetColor{Blue}%

\CArc(40,35)(25,90,270) \CArc(60,35)(25,270,90)

\Line(40,60)(60,60) \Line(40,10)(60,10) \Line(50,10)(50,60)

\Line(0,35)(15,35) \Line(85,35)(100,35)

\SetColor{Black}\SetPFont{Helvetica}{14}%

\PText(55,38)(0)[l]{#5}

\PText(35,62)(0)[rb]{#1} \PText(65,62)(0)[lb]{#2}

\PText(65,8)(0)[lt]{#3} \PText(35,8)(0)[rt]{#4}

\SetColor{Red} \SetWidth{3}

\Line(50,10)(50,60) \Vertex(50,60){1.3}

\Line(40,60)(50,60) \CArc(40,35)(25,90,180)

\end{axopicture}

\hspace{-12pt}

}

}

\def\TACs(#1,#2,#3,#4,#5){

\raisebox{-19.1pt}{ \hspace{-12pt}

\begin{axopicture}{(50,39)(0,-4)}

\SetScale{0.5}\SetColor{Blue}%

\CArc(40,35)(25,90,270) \CArc(60,35)(25,270,90)

\Line(40,60)(60,60) \Line(40,10)(60,10) \Line(50,10)(50,60)

\Line(0,35)(15,35) \Line(85,35)(100,35)

57

\SetColor{Black}\SetPFont{Helvetica}{14}%

\PText(53,38)(0)[l]{#5}

\PText(35,62)(0)[rb]{#1} \PText(65,62)(0)[lb]{#2}

\PText(65,8)(0)[lt]{#3} \PText(35,8)(0)[rt]{#4}

\SetColor{Red} \SetWidth{3}

\Line(40,60)(50,60) \CArc(40,35)(25,90,180)

\end{axopicture}

\hspace{-12pt}

}

}

and together with two extra little macro’s

\def\plus{\!+\!}

\def\minus{\!-\!}

the equations became rather transparent and easy to program. This is the code

\begin{eqnarray}

\TAA({n,m},1,1,1,1,1) & = & \frac{1}{\tilde{N}\plus 5\plus n\minus

m\minus D}\ (\ n\ \ \TAA({n+1,m},0,1,1,1,1)

\ \ -n\ \ \TACs({n+1,m},1,1,1,1) \\ & &

+\ \ \TAA({n,m},1,0,2,1,1)

\ \ -\ \ \TABs({n,m},1,1,2,1)

\ \ +m\ \ \TACs({n,m-1},1,1,1,1)

\ \ -m\ \ \TABs({n,m-1},1,1,1,1)\ \ \) \, .\nonumber

\end{eqnarray}

and the equation becomes

1
1

n,m 1

11

=
1

Ñ+5+n−m−D
(n 1

1

n+1,m 0

11

− n 1

n+1,m 1

11

(5)

+ 1
1

n,m 1

02

− 1

n,m 1

12

+m 1

n,m-1 1

11

−m 1

n,m-1 1

11

) .

The diagrams are actually four-point diagrams. A momentum P flows through the diagram
(the fat red line), but because the method of computation involves an expansion in terms
of this momentum the remaining diagrams are like two-point functions. Details are in the
paper.

Acknowledgements

JAMV’s work is part of the research program of the “Stichting voor Fundamenteel Onder-
zoek der Materie (FOM)”, which is financially supported by the “Nederlandse organisatie

58

voor Wetenschappelijke Onderzoek (NWO)” and is also supported by the ERC Advanced
Grant no. 320651, HEPGAME. JCC is supported in part by the U.S. Department of Energy
under Grant No. DE-SC0008745.

We like to thank Lucas Theussl for discussions during the development of axodraw2.

A The axohelp program: Information for developers

This appendix provides some details on how the axohelp program works. Most of the
information is only relevant to people who wish to modify or extend axodraw2 and therefore
may need to modify axohelp as well.

The reason for axohelp’s existence is that axodraw needs to perform substantial geo-
metric calculations. When axodraw is used with pdflatex to produce pdf output directly,
suitable calculational facilities are not available, neither within the PDF language nor
within LATEX itself. Therefore when axodraw is used under pdflatex, we use our program
axohelp to perform the calculations.

The mode of operation is as follows. Let us assume that the .tex file being compiled by
the pdflatex program is called paper.tex. When one issues the command

pdflatex paper

the reaction of the system is of course to translate all TEX related objects into a PDF file.
Most (but not all) axodraw objects need non-trivial calculations and hence their specifica-
tions are placed inside a file called paper.ax1. At the end of the processing pdflatex will
place a message on the screen that mentions that the user should run the command

axohelp paper

for the processing of this graphical information. In principle it is possible to arrange for
axohelp to be invoked automatically from within pdflatex. But for this to be done, the
running of general external commands from pdflatex would have to be enabled. That is a
security risk, and is therefore normally disabled by default for pdflatex.

When run, axohelp reads the file paper.ax1, processes the contents, and produces a file
paper.ax2. For each axodraw object, it contains both the code to be placed in the pdf file,
and a copy of the corresponding specification that was in paper.ax1.

When pdflatex is run again, it sees that the file paper.ax2 is present and reads it
in to give essentially an array of objects, one for each processed axodraw object. Then
during the processing of the document, whenever axodraw runs into an axodraw object in
need of external calculation, it determines whether an exactly corresponding specification
was present in the file paper.ax2. If not, it means that the graphical information in the
file paper.tex has changed since the last run of axohelp and the graphics information is
invalidated. In that case, at the end of the program the message to run axohelp will be
printed again. But if instead there is an exact match between an axodraw object in the
current paper.tex and its specification in paper.ax2, then the corresponding pdf code will be
placed in the PDF file. If all axodraw commands have a proper match in the paper.ax2 file,

59

there will be no message in the paper.log file and on the screen about rerunning axohelp;
then the PDF file should contain the correct information for drawing the axodraw objects
(at least if there are no TEX errors).

In a sense the situation with axohelp is no different from the use of makeindex when
one prepares a document that contains an index. In that case one also has to run LATEX
once to prepare a file for the makeindex program, then run this program which prepares
another file and finally run LATEX again. Note that if you submit a paper to arXiv.org, it is
likely that their automated system for processing the file will not run axohelp. So together
with paper.tex, you one should also submit the .ax2 file.

The complete source of the axohelp program can be found in the file axohelp.c. This
file contains a bit less than 4000 lines of C code but should translate without problems
with any C compiler — see Sec. 3.2.2 for an appropriate command line on typical Unix-like
systems.

The axohelp program functions as follows:

1. The .ax1 file is located, space is allocated for it and the complete file is read and
closed again.

2. The input is analysed and split in individual object specifications, of which a list is
made.

3. The list of object specifications is processed one by one. Before the processing of
each object specification, the system is brought to a default state to avoid that there
is a memory of the previous object.

4. In the .ax2 file, for each object is written both the corresponding pdf code and a
copy of the specification of the object as was earlier read from the .ax1 file. Before
the output for an object is written to the .ax2 file it is optimized a bit to avoid
superfluous spaces and linefeeds.

Processing an object from the input involves finding the proper routine for it and
testing that the number of parameters is correct. Some objects have a special input (like
the Curve, DashCurve, Polygon and FilledPolygon commands). All relevant information
is stored in an array of double precision numbers. Then some generic action is taken (like
setting the linewidth and the color) and the right routine is called. The output is written
to an array of fixed (rather large) length. Finally the array is optimized and written to
file.

A user who would like to extend the system with new objects should take the above
structure into account. There is an array that gives the correspondence between axodraw
object names and the corresponding routine in axohelp. For each object, this array also
gives the number of parameters and whether the stroking or non-stroking color space should
be used.

Naturally, when adding new kinds of object, it is necessary to add new items to the just-
mentioned array, and to add a corresponding subroutine. One should also try to do all the

60

writing of PDF code by means of some routines like the ones sitting in the file in the section
named “PDF utilities”. This is important from the viewpoint of future action. When new
graphical languages will be introduced and it will be needed to modify axodraw2 such that
it can produce code for those languages, it should be much easier if code in the supporting
axohelp program needs to be changed in as few places as possible. They form a set of
graphics primitives used by other subroutines. Some of these subroutines in the “PDF
utilities” section of axohelp.c have names similar to operators in the postscript language
that perform the same function.

References

[1] J.A.M. Vermaseren, Comput. Phys. Commun. 83 (1994) 45–58

[2] D. Binosi and L. Theussl, Comput. Phys. Commun. 161 (2004) 76–86.

[3] D. Binosi, J. Collins, C. Kaufhold, L. Theussl, Comput. Phys. Commun. 180 (2009)
1709–1715

[4] GNU General Public License. http://www.gnu.org/copyleft/gpl.html.

[5] J.C. Collins, “Foundations of Perturbative QCD” (Cambridge University Press, 2011).

[6] S. Moch and J.A.M. Vermaseren, Nucl. Phys. B573 (2000) 853.

61

http://www.gnu.org/copyleft/gpl.html

	1 Introduction
	2 Changes
	2.1 Changes relative to original, axodraw version 1
	2.2 Changes relative to axodraw4j distributed with JaxoDraw
	2.3 Backward compatibility, etc

	3 Installation
	3.1 Installation from standard TeX distribution
	3.2 Manual installation
	3.2.1 Style file textttaxodraw2.sty
	3.2.2 Helper program axohelp
	3.2.3 Testing
	3.2.4 Documentation

	4 Use
	4.1 Basic example
	4.2 Document preparation
	4.3 Document compilation
	4.3.1 To make a postscript file
	4.3.2 To make a pdf file via latex
	4.3.3 To make a pdf file by pdflatex, lualatex, or xelatex

	4.4 Automation of document compilation

	5 Reference
	5.1 Package invocation
	5.2 Environment(s)
	5.3 Graphics drawing commands
	5.3.1 Grid drawing
	5.3.2 Ordinary straight lines
	5.3.3 Arcs
	5.3.4 Bézier lines
	5.3.5 Curves
	5.3.6 Gluon lines
	5.3.7 Photon lines
	5.3.8 Zigzag lines
	5.3.9 Vertices, circles, ovals

	5.4 Text
	5.4.1 TeX-type text
	5.4.2 Postscript-type text

	5.5 Options
	5.6 Remarks about Gluons
	5.7 Remarks about arrows
	5.8 Units and scaling
	5.8.1 Scaling for slides
	5.8.2 Scaling within article
	5.8.3 Canvas and object scales

	5.9 Settings
	5.10 Colors
	5.10.1 How to use colors
	5.10.2 Defined named colors

	6 Some examples
	6.1 A Feynman diagram
	6.2 A diagrammatic equation

	A The axohelp program: Information for developers

