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Abstract

We have calculated the quenching parameter, q̂ in a model-independent way using the gauge-gravity
duality. In earlier calculations, the geometry in the gravity side at finite temperature was usually
taken as the pure AdS blackhole metric for which the dual gauge theory becomes conformally
invariant unlike QCD. Therefore we use a metric which incorporates the fundamental quarks by
embedding the coincident D7 branes in the Klebanov-Tseytlin background and a finite temperature
is switched on by inserting a black hole into the background, known as OKS-BH metric. Further
inclusion of an additional UV cap to the metric prepares the dual gauge theory to run similar to
thermal QCD. Moreover q̂ is usually defined in the literature from the Glauber-model perturbative
QCD evaluation of the Wilson loop, which has no reasons to hold if the coupling is large and is
thus against the main idea of gauge-gravity duality. Thus we use an appropriate definition of q̂:
q̂L− = 1/L2, where L is the separation for which the Wilson loop is equal to some specific value.
The above two refinements cause q̂ to vary with the temperature as T 4 always and to depend
linearly on the light-cone time L− with an additional (1/L−) correction term in the short-distance
limit whereas in the long-distance limit, q̂ depends only linearly on L− with no correction term.
These observations agree with other holographic calculations directly or indirectly.

1 Introduction

In the initial stage of ultrarelativistic heavy-ion collisions energetic partons in the form of jets are
produced from the hard collisions. After receiving a large transverse momentum, these jets plough
through the fireball for a transitional period of about a few fm/c and will thus loose energy due
to the interaction of the hard partons with the medium constituents, known as the jet quenching.
As a result the yield of hadrons with high transverse momentum (pT ) is shown to be significantly
suppressed in comparison with the cumulative yields of nucleon-nucleon collisions. There are mainly
two contributions to the energy loss of the partons in the medium: one is due to the radiation emitted
by the decelerated colour charges, i.e. bremsstrahlung of gluons [1, 2, 3] and the other one is due
to the collisions among the partons in the medium [4].

The experimental discoveries at RHIC revealed that the matter produced is a strongly cou-
pled quark-gluon plasma (sQGP) unlike weakly interacting gas of partons expected from the naive
asymptotic freedom, for example, the observed elliptic flow, the quenching of jets while traversing
through the medium etc. The jet quenching is parametrized by the quenching parameter, q̂, which is
defined by the average transverse momentum square transferred from the traversing parton per unit
mean free path. The extracted values of this transport coefficient in realtivistic heavy-ion collisions
by the JET collaboration [5] range from 1-25 GeV2/fm, which are much larger than those estimated
from the perturbative QCD calculations. This hints some non-perturbative mechanisms which may
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contribute to the jet quenching mechanism. Thus it is worthwhile to calculate the possible values
of q̂ in the strong coupling limit. The first principle lattice QCD however, cannot be applied for
this purpose, which requires the real-time dynamics.

The simplest gauge-gravity duality [6, 7, 8] between the type IIB superstring theory formulated
on AdS5×S5 space and N=4 supersymmetric Yang-Mills theory (SYM) in four dimensions provides
a robust tool to explore the thermodynamical and transport properties of sQGP. Although the
underlying dynamics, QCD is different from N = 4 SYM but the correspondence seems feasible
because some of the properties of all strongly interacting systems show some universality behavior.
One of the notable observation is the universal value, (1/4π) for the η/s ratio for the quantum
field theories having a holographic description [9] and thus it gives a lower bound to the ratio for
sQGP. Motivated by these similarities between the N = 4 SYM and the corresponding theory of
supergravity, the jet-quenching parameter, q̂ was related to the expectation value of the Wilson
loop WA[C] in adjoint representation due to the Eikonal approximation [10]:

〈WA[C]〉 ≈ exp

(

− 1

4
√
2
q̂L−L

2

)

, (1)

where C is a rectangular contour of size L×L−, with the sides, having the length L− run along the
light-cone. There were other calculations of q̂ [11, 31, 12] using a very different setup and arriving
at different conclusions. In the context of relativistic heavy ion collisions, the effects of finite t’Hooft
coupling (λ) as well as chemical potential on q̂ was studied in [32, 41, 40] and the jet stopping in
strongly-coupled QCD-like plasmas with gravity duals have also been studied using the string α′

expansion in AdS/CFT [35, 36].

However, since q̂ is related to the transverse momentum (pT ) broadening so to calculate the
mean pT , we need to Fourier transform (FT) of the Wilson loop

W (pT ) =

∫

d2L eip·L W (L). (2)

The above FT emerges if we intend to calculate the particle production in the scattering of a quark
on a target, and the target will be the medium in the jet quenching problem. It turns out that the
above FT is proportional to the quark production cross section, W (pT ) ∼ dσ/d2p [13, 14]. Let us
explore the subtleties which might help us to search for the correct definition of q̂. For example, if
we define q̂ as 〈p2T 〉/L−, as some authors do. So we would then need to find 〈p2T 〉. But this seems
easy because 〈p2T 〉 ∼ ∇2

⊥W (L) at L=0. This seems consistent with getting the coefficient of the L2

term in the exponent, as in (1). However, since our aim is to model QCD and in QCD at high pT
perturbative physics works, and dσ/d2p ∼ 1/p4T , so 〈pT 〉 is infinite (irrespective of what happens at
lower pT ). In other words one cannot trust W (L) from AdS at very small L. A way out is to define
q̂ as 〈pT 〉2/L−. Since 〈pT 〉 is finite even in perturbative QCD, this definition is safe. To find 〈pT 〉
we need the typical momentum scale of W (L) and if one knows W (pT ), then one should be able
to find 〈pT 〉 exactly. Otherwise one could argue that 〈pT 〉 is given by the saturation scale Qs, as
the only scale available in the problem at high enough energy. Hence the standard prescription of
finding Qs by requiring the Wilson loop, W (L = 1/Qs) to be a constant, should probably give one
a good estimate of 〈pT 〉.

In summary the above definition of q̂ in (1) as a coefficient of the L2 term in the Wilson line
correlator may not be correct because the motivation for the definition (1) in [10] comes from the
Glauber-model perturbative QCD evaluation of the Wilson loop [15, 16].2 Therefore this pertur-
bative expression has no reasons to hold when the coupling is large, which is the main idea of

2In fact, it is already incorrect once someone includes perturbative QCD corrections to the Glauber formula.
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gauge-gravity duality. A more appropriate definition of q̂ is then to postulate the equation

q̂L− = 1/L2 , (3)

where L is the quark-antiquark separation for which the expectation value of the Wilson loop
in adjoint representation is equal to some specific value. The above definition (3) can also be
understood as follows: since q̂L− behaves like the saturation scale squared in small-x physics and
the saturation scale is defined by requiring that the expectation value of Wilson loop is equal to
some constant at L = 1/Qs [16, 15].

The calculations for q̂ discussed so far used the geometry as the pure AdS black hole metric,
for which the dual gauge theory is conformally invariant SYM theory unlike the QCD. This is one
of the central theme of our work. Therefore, the aim of the present paper is to extend/modify the
shortcomings of the abovementioned calculation [10] in two fold: (i) the first aim is to study the
jet quenching in a gravitational background which is dual to a gauge theory with a RG flow that
confines in the far IR and is asymptotically free at the far UV. Recently a gravity dual with a black
hole and seven branes embedded via Ouyang embedding is constructed [24, 20], which resembles
the main features of strongly coupled QCD, i.e. is almost conformal in the UV with no Landau
poles or UV divergences of the Wilson loops, but has logarithmic running of coupling in the IR.
Recently one of us have explored the properties of heavy quarkonium bound states with the above
geomtry and the findings [21, 22] can only be understood as the artifact of the correct geometry
for real QCD. (ii) The second one is the appropriate definition of q̂ as in (3) for which the Wilson
loop is equal to some specific value, say 1/2. Our work is therefore organized as follows. Section 2
will be devoted to revisit the Ouang-Klebanov-Strassler geometry and its improvements at the UV
sector. In Section 3.1, we employ the aforesaid geometry to obtain the renormalized Nambu-Goto
action in both short- and long-distance limits. Thereafter we will obtain the quenching parameter
in Section 3.2 and will also discuss briefly the results of other calculations. Finally we conclude in
Section 4.

2 Construction of dual geometry

A conformal gauge theory does not flow with the scale, hence it has a trivial RG flow. The
AdS/CFT correspondence conjectures that a conformal theory in four dimension can be mapped
on the boundary of a pure anti-de Sitter space [6]. But if the theory has a non-trivial RG flow
like QCD, which is confining in IR and conformal in UV, we cannot describe the full theory on the
boundary of some higher dimensional space and hence need to envisage differently at running energy
scales. One way out is to embed the D branes in the geometry and as a result the corresponding
gauge theory exhibits logarithmic RG flow. Such a construction was done in the Klebanov-Strassler
(KS) geometry [17] through a warped deformed conifold with three-form type IIB fluxes and the
corresponding dual gauge theory is confining in the far IR limit but is not free at UV limit. The
other demerits of the KS geometry are that it is devoid of quarks in the fundamental representation
and cannot be generalized to finite temperature.

The inclusion of fundamental matter in string theory is possible by embedding a set of flavor
branes in addition to the color branes. The strings connecting to the color and flavor branes in
the adjoint representation of U(Nc) group give the gauge particles and the mesons, respectively
whereas those connected to both the flavor and color branes in the fundamental representation give
the quarks and anti-quarks, respectively. In principle one could go to large number of color (Nc) and
flavor Nf) branes in the near horizon limit and translates the branes into fluxes and then construct
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the gravity background which is holographically dual to gauge theory of quarks and gluons. In
practice the back reaction of the probes on the background could be neglected through the probe
approximation (Nf ≪ Nc) and the flavor physics is then extracted by analyzing the effective action
which describes the flavor branes in the color background[29, 30]. Since the full global solution
for the backreaction of D7 branes in the KS background becomes nontrivial so the insertion of
the fundamental quarks in the original KS geometry [17] becomes difficult. Peter Ouyang [18] has
successfully put the coincident D7 branes into the Klebanov-Tseytlin background [23], known as
OKS geometry, which has all the type IIB fluxes switched on including the axio-dilaton and the
local metric was then computed by incorporating the deformations of the seven branes by moving
them far away from the regime of interest. Hence the axion-dilaton vanishes for the background
locally, but there will be non-zero axion-dilaton globally, as a result the local back reactions on the
metric modify the warp factors to the full global scenario.

For realizing the fnite temperature a black hole is inserted into the OKS background, i.e. OKS-
BH geometry, where the Hawking temperature corresponds to the gauge theory temperature. Thus
the metric in OKS-BH geometry is expressed in terms of warp factor (h) [24]

ds2 =
1√
h

[

− g1(u)dt
2 + dx2 + dy2 + dz2

]

+
√
h
[

g−1
2 (u)du2 + dM2

5

]

(4)

where gi(u) are the black-hole factors as a function of the extra dimension, u and dM2
5 is due to

the warped resolved-deformed conifold. The gauge theory dual to the metric (4) flows correctly
at IR like QCD but the effective degrees of freedom grow indefinitely at UV limit. The situation
becomes worse even in the presence of fundamental flavors because its proliferation leads to Landau
poles and hence the Wilson loops diverges at UV. To circumvent the problem, one need to add
the appropriate UV cap to the AdS-Schwarzschild geometry in the asymptotic UV limit. However,
the additional UV caps, in general may deform the IR geometry but the far IR geometry has not
been changed because the UV caps correspond to adding the non-trivial irrelevant operators in the
dual gauge theory. These operators keep far IR physics completely unchanged, but the physics at
not-so-small energies may be changed a bit.

Recently the IR geometry part has been suitably modified to obtain the desired dual gauge
theory by the McGill group [20, 24, 25], where the metric (4) will receive further corrections, guu,
because the unwarped metric may not remain Ricci flat due to the presence of both axio-dilaton
and seven-brane sources, as:

ds2 =
1√
h

[

− g(u)dt2 + dx2 + dy2 + dz2
]

+
√
h
[

g(u)−1guudu
2 + gmndx

mdxn
]

(5)

where the black hole factors gi(u)’s are set as g1(u) = g2(u) = g(u) and the corrections guu are of
the form 1/un and may be written as a series expansion:

guu = 1 +

∞
∑

i=0

auu,i
ui

, (6)

where the coefficients, auu,i are independent of the extra-dimension coordinate u and are solved
exactly in [20]. Thus the warp factor, h can be extracted from the above corrections (6) as

h =
L4

u4

[

1 +

∞
∑

i=1

ai
ui

]
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where the coefficients, ai are of O(gsNf ) and L is the curvature of space. Thus the metric (5)
reduces to OKS-BH in the IR limit and becomes AdS5 ×M5 in the UV limit, hence describes well
both in IR and UV limits. Therefore, with the change of coordinates z = 1/u, we can rewrite the
metric (5) as

ds2 = gµνdX
µdXν

= Anz
n−2
[

−g(z)dt2 + d−→x 2
]

+
Blz

l

Amzm+2g(z)
dz2 +

1

Anzn
ds2M5

, (7)

where ds2M5
is the metric of the internal space and the coefficients, An’s can be obtained from the

coefficients, ai in the warp factor (2) as follows:

1√
h

=
1

L2z2
√
aizi

≡ Anz
n−2 =

1

L2z2

[

a0 −
a1z

2
+

(

3a21
8a0

− a2
2

)

z2 + · · ·
]

, (8)

which gives A0 = a0
L2 , A1 = − a1

2L2 , A2 = 1
L2

(

3a21
8a0

− a2
2

)

etc. Note that since ai’s for i ≥ 1 are of

O(gsNf) and L2 ∝ √
gsN , so in the limit gsNf → 0 and N → ∞ all Ai’s for i ≥ 1 are very small.

The second term in the metric (7) accommodates the 1/un corrections in (5) via the series, Blz
l,

which is expanded further:
Blz

l = 1 + azz,iz
i. (9)

In an comprehensive study [24], the entire geometry is split into three regions. Apart from the
two asymptotic regions at IR and UV, respectively, there is an interpolating region 3 where at
the outermost boundary the three-forms vanish and the innermost boundary will be the outermost
boundary of region 1. The background in these three regions and the insertion of additional UV
cap are extensively analyzed by the corresponding RG flows and the field theory realizations have
been discussed in [26]. Recently another suitable model to study certain IR dynamics of QCD is
the Sakai-Sugimoto model [27] in the type IIA string theory, which consists of a set of N wrapped
color D4-branes on the circle and the flavor branes D8 and D̄8 placed at the anti-nodal points of the
circle to conceive the mesonic bound states. In its dual gravity, the wrapped D4-branes are replaced
by an asymptotically AdS space, but the eight-branes remain and so does the circular direction.
However the Sakai-Sugimoto model does not have a UV completion and had been compared recently
with the aforesaid gravity dual in [28]. We shall not go into the complete details here and will use
the metric (7) to obtain the Nambu-Goto action and hence the Wilson loop is computed through
gauge-gravity correspondence in the next section.

3 Gauge-Gravity Duality

According to the gauge/gravity prescription [6], the expectation value of the Wilson loop, W (C)
in a strongly coupled gauge theory is related to the generating functional of the string in the bulk
which has the loop C at the boundary

〈W (C)〉 ∼ Zstring (10)

In supergravity limit, the generating functional becomes

Zstring = eiSstring , (11)
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where Sstring is obtained by extremizing the string action, known as the Namu-Goto action. So the
above correspondence (10) is translated into

〈W (C)〉 ∼ eiSstring (12)

Thus we will now evaluate the Nambu-Goto action in the next subsection.

3.1 Nambu-Goto Action

By the light-cone transformation,

dt =
dx+ + dx−

√
2

dx1 =
dx+ − dx−

√
2

(13)

the metric (7) is rewritten in terms of light-cone coordinates as

ds2 =

[

−1

2
Anz

n−2g +
1

2
Anz

n−2

]

[

dx+2
+ dx−2

]

− (1 + g)Anz
n−2dx+dx−

+ Anz
n−2
[

dx2
2 + dx3

2
]

+
Bnz

n

Anzn+2g
dz2 +

1

Anzn
dsM5

2 (14)

We parametrize the two-dimensional world sheet and their derivatives in terms of the light-cone
coordinates

τ = x−, σ = x2 ∈ [−r

2
,
r

2
],

x2 = const, x3 = const, z = z(x2)

∂α =
∂

∂τ
, ∂β =

∂

∂σ
. (15)

With above parametrization(15), the elements of the induced metric defined by

gαβ = Gµν
∂xµ

∂σα

∂xν

∂σβ
(16)

can be read off from the above metric (14)

g−− =
Anz

n (1− g)

2z2

g−2 = g2− = 0

g22 =
Anz

n

z2
+

Bnz
n

z2Anzng
z′

2
. (17)

Thus the determinant of the induced metric, gαβ can be calculated

det gαβ = g−−g22 =
1

2zh4

[

(Anz
n)2 +

(Bnz
n) z′2

g

]

, (18)

6



hence the Nambu-Goto action can be obtained as

S = − 1

2πα′

∫ ∫

dσdτ
√

−detgαβ

= − 1

2πα′

∫ ∫

dσdτ

√

− 1

2zh4

[

(Anzn)
2 +

(Bnzn) z′
2

g

]

, (19)

where α′ (= R2
√
λ
, R is the AdS radius and λ is the t’Hooft coupling) is the string tension. Thus the

equation of motion:

z′
∂L
∂z′

− L = C (20)

can be written from the above Lagrangian (L) in (19) as

− (Anz
n)2 = C

√

(Anzn)
2 +

(Bnzn) z′
2

g
, (21)

where C is a constant of motion and can be obtained from the condition: z′ = 0 at z = zm,

C2 = (Anz
n
m)

2 (22)

After substituting the constant C, the equation of motion becomes finally

z′
2
=

(Anz
n)2 g

Bnzn

[

(Anz
n)2

(Anzmn)2
− 1

]

(23)

Since the Lagrangian is independent of the time so after integrating over the time-like coordinate
(x−), the action becomes

S = − iL−

2
√
2πα′zh2

∫ +L

2

−L

2

dx2

√

(Anzn)
2 +

(Bnzn) z′
2

g
(24)

= − i2L−

2
√
2πα′zh2

∫ zm

0

dz

√

(Anzn)
2

z′2
+

(Bnzn)

g
(25)

We will now substitute z′2 from the equation of motion (23) to obtain the action. Since (Anz
n)2 <<

(Anzm
n)2 so neglecting the higher-order terms and keeping up to the second-order term, the action

(25) is simplified into

S ≃ −
√
2L−

2πα′zh2 (1 + Azm2)

∫ zm

0

dz√
g

(

1 +
B

2
z2
)

(

1 + Az2
)

(26)

We will now evaluate the Nambu-Goto action by solving the above integral in both short- and
long-distance limits :
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Case-I: In the short-distance (zm << zh) limit, after performing the integration in (26) the action
is written in terms of Gaussian hypergeometric functions

S = − L−
√
2πα′zh2 (1 + Az2m)

∫ zm

0

dz





1 + B+2Az2

2
+ ABz4

2
√

1− z4

z4
h





= − L−zm√
2πα′zh2(1 + Az2m)

[

2F1

(

1

4
,
1

2
,
5

4
;
z4m
z4h

)

+
(B + 2A)z2m

6
2F1

(

1

2
,
3

4
,
7

4
;
z4m
z4h

)

+
ABz4h
6

(

−
√

1− z4m
z4h

+ 2F1

(

1

4
,
1

2
,
5

4
;
z4m
z4h

)

)]

(27)

On expanding the hypergeometric functions in powers of ( zm
zh
)

2F1

(

1

4
,
1

2
,
5

4
;
z4m
z4h

)

=

(

1 +
zm

4

10zh4
+ ...

)

,

2F1

(

1

2
,
3

4
,
7

4
;
z4m
z4h

)

=

(

1 +
3zm

4

14zh4
+ ...

)

,

2F1

(

1

4
,
1

2
,
5

4
;
z4m
z4h

)

=

(

1 +
zm

4

10zh4
+ ...

)

, (28)

respectively and ignoring the higher-order terms beyond the second power, the action becomes

S
zm≪zh≃ − L−zm√

2πα′z2h

[

1 +
(B − 4A)z2m

6
+

z4m
10z4h

]

(29)

In addition to the extremal surface constructed above for the Nambu-Goto action, there is another
trivial one given by the two disconnected world sheets, placed one at x2 = +L

2
and another at

x2 = −L
2
. The action for these two surfaces is

S0 = − 2

2πα′

∫

dzdx−√−g−−gzz

= − iL−
√
2πα′z2h

∫ zm

0

dz
1 + B

2
z2

√

1− z4

z4
h

(30)

= − iL−zm√
2πα′z2h

[

2F1

(

1

4
,
1

2
,
5

4
;
z4m
z4h

)

+
Bz2m
6

2F1

(

1

2
,
3

4
,
7

4
;
z4m
z4h

)]

(31)

Expanding the above hypergeometric functions in powers of ( zm
zh
)

2F1

(

1

4
,
1

2
,
5

4
;
z4m
z4h

)

=

(

1 +
zm

4

10zh4
+ ...

)

, (32)

2F1

(

1

2
,
3

4
,
7

4
;
z4m
z4h

)

=

(

1 +
3zm

4

14zh4
+ ...

)

, (33)
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respectively and ignoring the higher-order terms beyond the second power, the action to be sub-
tracted (S0) becomes

S0

zm≪zh≃ − iL−zm√
2πα′z2h

[

1 +
Bz2m
6

+
z4m
10z4h

+ · · ·
]

(34)

Therefore the renormalized action is obtained by subtracting the action (34) for the two disconnected
surfaces from(29)

SI

zm≪zh≃ S − S0

= − L−zm√
2πα′zh2

[(

1 +
(B − 4A) z2m

6
+

z4m
10z4h

)

− i

(

1 +
Bz2m
6

+
z4m
10z4h

)]

(35)

Case II: In the long-distance limit (zm >> zh) the integral in the action (26) is split into integrations:

S = − L−
√
2πα′zh2(1 + Azm2)





∫ zh

0

dz
(1 + Bz2

2
)(1 + Az2)

√

1− z4

zh4

+

∫ zm

zh

dz
(1 + Bz2

2
)(1 + Az2)

√

1− z4

zh4





≡ I + II , (36)

where the first integral (I) becomes

I = − L−
√
2πα′zh2(1 + Azm2)





∫ zh

0

dz
(1 + Bz2

2
)(1 + Az2)

√

1− z4

zh4





≃ − L−
√
2πα′zh2

[

1.3zh + 0.3(B + 2A)zh
3 + 0.22ABzh

5
]

(37)

and the second integral (II) becomes, after neglecting the higher-order terms in powers of ( zh
zm

) and
keeping up to the second order

II = − L−
√
2πα′zh2(1 + Azm2)





∫ zm

zh

dz
(1 + Bz2

2
)(1 + Az2)

√

1− z4

zh4





≃ −iL−
√
2πα′zh2

(1.14zh + 0.5(B + 2A)zmzh
2 + 0.17ABzm

3zh
2) (38)

Therefore the Nambu-Goto action in this limit becomes

S
zm≫zh= − L−

√
2πα′zh2

[

(1.3zh + 0.3(B + 2A)zh
3 + 0.22ABzh

5)

+ i(1.14zh + 0.5(B + 2A)zmzh
2 + 0.17ABzm

3zh
2)
]

(39)

Similarly the action to be subtracted (30) in this limit can be written as

S0 = − iL−
√
2πα′z2h





∫ zh

0

dz
1 + B

2
z2

√

1− z4

z4
h

+

∫ zm

zh

dz
1 + B

2
z2

√

1− z4

z4
h



 (40)

9



After integrating and keeping the terms up to the second-order, the action, S0 for two disconnected
surfaces can becomes

S0

zm≫zh≃ − L−
√
2πα′zh2

[

−1.14zh − 0.3Bzh
3 + i(1.3zh + 0.3Bzh

3)
]

(41)

Therefore, the renormalized action is given by

SI
zm≫zh= S − S0

= − L−
√
2πα′zh2

[

2.44zh + 0.5Bzmzh
2 + i(−0.16zh + 0.5(B + 2A)zmzh

2)
]

(42)

3.2 Jet Quenching Parameter

We will now obtain the quenching parameter, q̂ for which the expectation value of the Wilson loop
in the adjoint representation is equal to some specific value, say, C,

〈WA〉 = ei2SI = C (43)

In our problem, 〈W 〉 becomes complex-valued, which is a feature previously encountered in [15] as
well. Since 〈W 〉 is the S-matrix for a quark dipole-medium scattering, it is allowed to be complex.
If we were calculating Qs we would need the imaginary part of the forward scattering amplitude:
since S = 1 + iT , then ℑT = 1 − ℜS = 1 − ℜ〈W 〉. This was exactly done in [15]. Therefore we
redefined q̂ in (3), where L is the separation at which the real part of the Wilson loop is constant
(C).

Thus decomposing the renormalized action, SI into the real and imaginary parts, the real part
of the expectation value of Wilson loop is

ℜ〈WA〉 = ℜ
[

ei(2ℜSI+2iℑSI)
]

= e−2ℑSI [cos (2ℜSI)] = C (44)

Now we will evaluate the quenching parameter for both long- and short-distance limits, using the
actions in the respective limits.

Case I: Short-distance limit (zm ≪ zh)
To write the action as a function of the separation L, we first express zm in terms of L. For that
we rewrite the equation of motion (23) in this limit (zm ≪ zh)

z′
2
= −(Anz

n)2 g

Bnzn
(45)

because (Anz
n)2 is much less than (Anzm

n)2. Integrating both sides of the equation of motion (45)

∫ zm

0

dz

√
Bnzn

(Anzn)
√
g
= i

∫ 0

−L/2

dx2 (46)
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the separation (L) becomes

iL

2
=

∫ zm

0

dz
(1 + 0.5Bz2)(1− Az2)

√

1− z4

zh4

= zm +
z5m
10z4h

+ 0.17(B − 2A)z3m

(

1 +
3z4m
14z4h

)

− 0.17ABz4hzm

(

−
√

1− z4m
z4h

+ 2F1

(

1

4
,
1

2
,
5

4
,
z4m
z4h

)

)

(47)

Inverting the series and ignoring the higher-order terms we can express zm as a function of L as

zm =
Li

2

(

1 +
(B − 2A)

24
L2

)

(48)

Thus the renormalized action can expressed in terms of the separation (L) by replacing zm as a
function of L into (35). Ignoring the higher-order terms, the renormalized action is then given by

SI = −
√
2L−

2πα′zh2
Li

2

(

1 +
(B − 2A)L2

24

)[(

1 +
(B − 4A)L2

24
+

L4

160z4h

)

−i

(

1 +
BL2

24
+

L4

160z4h

)]

(49)

Now the imaginary and real parts of the renormalized action can be separated, respectively as

ℑSI = −
√
2L−

2πα′zh2
L

2

(

1 +
(B − 2A)L2

24

)(

1 +
(B − 4A)L2

24
+

L4

160z4h

)

(50)

and

ℜSI = −
√
2L−

2πα′zh2
L

2

(

1 +
(B − 2A)L2

24

)(

1 +
BL2

24
+

L4

160z4h

)

. (51)

Thus the gauge-gravity prescription (44) is reduced into

C = (1− 2ℑSI)
(

1− 2 (ℜSI)
2)

=

[

1 +
L−L√
2πα′zh2

(

1 +
(B − 2A)L2

24

)(

1 +
(B − 4A)L2

24
+

L4

160z4h

)]

×
[

1− L−2L2

4π2α′2z4h

(

1 +
(B − 2A)L2

12

)(

1 +
BL2

12
+

L4

80z4h

)]

(52)

Let the first and the second term in the square bracket in the above equation (52) be denoted by I
and II, respectively

I ≡
[

1 +
L−L√
2πα′zh2

(

1 +
(B − 4A)L2

24
+

L4

160z4h
− (B − 2A)L2

24

)]

=

[

1 +
L−L√
2πα′zh2

(

1− AL2

12
+

L4

160z4h

)]

(53)

II ≡
[

1− L−2L2

4π2α′2z4h

(

1 +
(B −A)L2

6
+

L4

80z4h

)]

(54)
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Therefore the product of the terms I and II in (52) yields

C =
[

1− pL− qL2 − rL3 − sL4 − tL5 − uL6 + higher order terms
]

, (55)

where

p ≡ − L−

π
√
2α′zh2

q ≡ L−2

4π2α′2zh4

r ≡ AL−

12π
√
2α′zh2

(56)

By inverting the equation and ignoring the higher-order terms, the separation (L) is given by

L =
1− C

p
− q (1− C)2

p2
+

(1− C)3 (2q2 − pr)

p5
(57)

Therefore the quenching parameter, q̂ is obtained from the definition (3) :

q̂ =
1

L−L2

=
L−

2π2α′2z4h(1− C)2

[

1− L−(1− C)√
2πα′z2h

− (1− C)2
(

1 +
Aπ2α′2z4h
3L−2

)]

, (58)

which finally results into for C = 1
2
,

q̂ =
2L−

π2α′2z4h

[

3

4
− L−

2
√
2παz2h

− Aπ2α′2z4h
12L−2

]

(59)

Case II: In the long-distance limit (zm >> zh), let us first express the separation (L) as a function
of zm. Therefore, we split up the limits of integration to the equation of motion (23) and then
integrate it to yield L as a function of zm:

iL

2
=

∫ zm

0

dz
(1 + 0.5Bz2)(1− Az2)

√

1− z4

zh4

=

∫ zh

0

dz
(1 + 0.5Bz2)(1− Az2)

√

1− z4

zh4

+

∫ zm

zh

dz
(1 + 0.5Bz2)(1− Az2)

√

1− z4

zh4

= 1.3zh + 0.15(B − 2A)zh
3 − 0.22ABzh

5 + i
[

1.14zh + 0.5(B − 2A)zm − 0.17ABzm
3
]

(60)

Inverting the series and ignoring the higher-order terms we express zm in terms of L as

zm =
L− 2.28zh + i2.6zh

(B − 2A)zh2
(61)

12



Now the (renormalized) action (42) in this limit can be expressed as a function of L:

SI = − L−
√
2πα′zh2

[

2.44zh + 0.5Bzh
2

(

L− 2.28zh + i2.6zh
(B − 2A)zh2

)

− 0.16izh

+ i0.5(B + 2A)zh
2

(

L− 2.28zh + i2.6zh
(B − 2A)zh2

)]

. (62)

Ignoring the higher-order terms, we get the action as a function of L,

SI
zm≫zh= − L−

√
2πα′zh2

[

0.5BL

(B − 2A)
+ i

0.5(B + 2A)L

(B − 2A)

]

(63)

Now the real and the imaginary parts of renormalized action can be separated, respectively as

ℜSI = − BL−L

2
√
2π(B − 2A)α′zh2

(64)

ℑSI = − (B + 2A)L−L

2
√
2π(B − 2A)α′zh2

(65)

Thus the gauge-gravity correspondence (44) in this limit is translated into:

C = e

[

(B+2A)L−
L

√
2πα′(B−2A)z2

h

]

cos

[

BL−L√
2πα′(B − 2A)z2h

]

(66)

Defining

a ≡ (B + 2A)L−
√
2πα′(B − 2A)z2h

b ≡ BL−
√
2πα′(B − 2A)z2h

, (67)

the above equation (66) has been inverted to give rise the expression for the dipole separation (L)
as

L =
C − 1

a

[

1 +
(a2 − b2)(1− C)

2a2
+

(2a4 − 3a2b2 + 3b4)(1− C)2

6a4

+
(6a6 − 11a4b2 + 16a2b4 − 15b6)(1− C)3

24a6
+ · · ··

]

(68)

Using the numerical values of A and B in [20] (A = B = 0.124), the expressions for a and b in
Eq.(67) can be rewritten as

a = −3πT 2L−
√
2α′

and b = −πT 2L−
√
2α′

, (69)

and hence the separation becomes

L =

√
2(1− C)α′

3πT 2L−

[

1 +
4(1− C)

9
+

23(1− C)2

81
+

301(1− C)3

1458
+ .....

]

(70)
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Thus the quenching parameter q̂ is obtained from (3) by substituting the square of the separation
(70) for C = 1/2

q̂ =
102T 4

α′2 L−, (71)

which is seen to be linear in L−.

In the study of DIS on a large nucleus in AdS/CFT set up [15], although they did not calculate
q̂ directly but if we translate their calculation of the saturation scale, Qs into our calculation we
would use q̂ = Q2

s/L
−. The way Qs depends on L is, in turn, dependent on which complex branch

is chosen. In particular they took Qs ∼ A1/3 ∼ L−, since L ∼ A1/3. Hence in both cases q̂ comes
out ∼ L−, which appears to be in agreement with our calculation. Since they always assume that
L− ∼ A1/3 is large so they did not keep the inverse powers of L−. Even we checked with their
shock-wave metric [15], where q̂ (∼ L−) for large L−. in terms of the width of shock wave agrees
with our result in the respective limit.

From other perspective of jet quenching phenomena, by comparing the medium induced energy
loss and the pT -broadening in perturbative QCD with that of the trailing string picture of conformal
theory in[31], they also have used Qs ∼ L−, such that q̂ = Q2

s/L
− ∼ L− is in agreement with

everything else we obtained so far in our calculations.

4 Results and Discussions

We have calculated the quenching parameter, q̂ in the holographic set-up of gauge-gravity duality,
where the dual gauge theory at finite temperature is more closer to thermal QCD than the N=4
SYM theory usually used in the literature. Moreover we use a more appropriate definition of q̂
compatible with the strong coupling limit of gauge-gravity duality, for which the real part of the
Wilson loop expectation value is equal to some specific value (1/2). We have found that in both
short and long-distance limit, q̂ depends linearly on L−. However, in short-distance limit we obtain
1/L− and L−2

correction terms.

It is however worth to mention here that it is not clear what one should do with q̂ found in
a non-perturbative AdS calculation. Since the energy loss calculations are usually done using the
perturbative approximation, one can not simply take a non-perturbative q̂ and plug it into the
perturbative energy loss expression. But then there is nothing else one can do. This is why people
calculated drag force on a heavy quark without looking for q̂ [37, 38, 39] or the instantaneous energy
loss suffered by light quarks in AdS directly [33, 34]. It would be interesting to see whether the
drag calculation would give the same q̂ as the one we have obtained. As far as we remember, the
drag calculation in [31] obtained both q̂ and Qs which are in qualitative agreement with what we
have gotten.
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