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Zc(3900): Confronting theory and lattice simulations
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We consider a recentT-matrix analysis by Albaladejoet al., [Phys. Lett. B755, 337 (2016)] which accounts
for theJ/ψπ andD∗D̄ coupled–channels dynamics, and that successfully describes the experimental information
concerning the recently discoveredZc(3900)±. Within such scheme, the data can be similarly well described in
two different scenarios, where theZc(3900) is either a resonance or a virtual state. To shed lightinto the nature of
this state, we apply this formalism in a finite box with the aimof comparing with recent Lattice QCD (LQCD)
simulations. We see that the energy levels obtained for bothscenarios agree well with those obtained in the
single-volume LQCD simulation reported in Prelovseket al. [Phys. Rev. D91, 014504 (2015)], making thus
difficult to disentangle between both possibilities. We also study the volume dependence of the energy levels
obtained with our formalism, and suggest that LQCD simulations performed at several volumes could help in
discerning the actual nature of the intriguingZc(3900) state.

I. INTRODUCTION

Since the discovery of theX(3872) in 2003 [1], the charmo-
nium and charmonium-like spectrum are being continuously
enlarged with new so-calledXYZstates [2–4], many of which
do not fit properly in the conventional quark models [5]. The
relevance of meson-meson channels can be grasped from the
fact that all the charmonium states predicted below the low-
est hidden-charm threshold (DD̄) have been experimentally
confirmed, but above this energy most of the observed states
cannot be unambiguously identified with any of the predicted
charmoniumcc̄ states.

Amongst theXYZstates, theZc(3900)± was simultaneously
discovered by the BESIII and Belle collaborations [6, 7] in the
e+e− → Y(4260)→ J/ψπ+π− reaction, where a clear peak
very close to theD∗D̄ threshold, around 3.9 GeV, is seen in
theJ/ψπ spectrum. Later on, an analysis [8] based on CLEO-
c data for a different reaction,e+e− → ψ(4160)→ J/ψπ+π−,
confirmed the presence of this resonant structure as well, al-
though with a somewhat lower mass. The BESIII collabora-
tion [9, 10] has also reported a resonant-like structure in the
D̄∗D spectrum for the reactione+e− → D̄∗Dπ at differente+e−

center-of-mass (c.m.) energies [including the productionof
Y(4260)]. This structure, with quantum numbers favored to
be JP = 1+, has been cautiously calledZc(3885)±, because
its fitted mass and width showed some differences with those
attributed to theZc(3900)±. Whether both set of observations
correspond to the same state needs to be confirmed, though
there is a certain consensus that this is indeed the case, and
the peaks reported as theZc(3885)± andZc(3900)± are origi-
nated by the same state seen in different channels. Moreover,
evidence for its neutral partner,Zc(3900)0, has also been re-
ported [8, 11].

The nature of theZc (3900)± is intriguing. On one hand,
it couples toD∗D̄ and J/ψπ, and therefore one assumes it
should contain a constituentcc̄ quark–anti-quark pair. On
the other hand, it is charged and hence it must also have an-
other constituent quark–anti-quark pair, namelyud̄ (for Z+c ).
Its minimal structure would be thencc̄ud̄, which automati-
cally qualifies it as a non-qq̄ (exotic) meson. Being a candi-
date for an exotic hidden charm state, it has triggered much

theoretical interest. An early discussion of possible structures
for theZc (3900)± was given in Ref. [12]. The suggested in-
terpretations cover a wide range: āD∗D molecule [13–20],
a tetraquark [21–27], an object originated from an attractive
D̄∗D∗ interaction [28], a simple kinematical effect [29, 30], a
cusp enhancement due to a triangle singularity [31], or a radi-
ally excited axial meson [32]. In Ref. [33], it was argued that
this structure cannot be a kinematical effect and that it must
necessarily be originated from a nearby pole. Consequences
from some of these models have been discussed in Ref. [34].
The non-compatibility (partial or total) of the propertiesof the
Zc deduced in different approaches clearly hints why the ac-
tual nature of this state has attracted so much attention.

In Ref. [35], theoretical basis of the present manuscript,
a J/ψπ–D∗D̄ coupled-channels scheme was proposed to de-
scribe the observed peaks associated to theZc(3900), which is
assumed to haveI (JPC) = 1(1+−) quantum numbers.1 Within
this coupled channel scheme, it was possible to successfully
describe simultaneously the BESIIIJψπ [6] and D∗D̄ [10]
invariant mass spectra, in which theZc(3900)± structure has
been seen. Interestingly, two different fits with similar quality
were able to reproduce the data. In each of them, the origin
of theZc(3900)± was different. In the first scenario, it corre-
sponded to a resonance originated from a pole above theD∗D̄
threshold, whereas in the second one the structure was pro-
duced by a virtual pole below the threshold (see Ref. [35] for
more details).

Hadron interactions are governed by the non-perturbative
regime of QCD and, for this reason, Lattice QCD (LQCD)
is an essential theoretical tool in hadron physics. In par-
ticular, one of the aims of LQCD is to obtain the hadron
spectrum from quarks and gluons and their interactions (see
e.g. Ref.[36] for a review focused on the light sector, and
Refs. [37–40] for results concerning the charmonium sector).
For such a purpose the Lüscher method [41, 42] is widely
used. It relates the discrete energy levels of a two-hadron sys-
tem in a finite box with the phase shifts and/or binding ener-

1 Through all this work, charge conjugation refers only to theneutral element
of theZc(3900) isotriplet.
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gies of that system in an infinite volume. Appropriate general-
izations relevant for our work can be found in Refs. [43–46].

LQCD simulations devoted to find theZc(3900) state are
still scarce [47–52]. Exploratory theoretical studies for hidden
charm molecules have been performed in Refs. [53, 54], while
actual LQCD simulations [47–51] find energy levels showing
a weak interaction in theZc(3900)± quantum-numbers sector
(either attractive or repulsive), and no evidence is found for its
existence. The work of Ref. [52] employs LQCD to obtain a
coupled-channelS-matrix, which shows an interaction domi-
nated by off-diagonal terms, and, according to Ref. [52], this
does not support a usual resonance picture for theZc(3900).
ThisS-matrix contains a pole located well below threshold in
an unphysical Riemann sheet,i.e., a virtual pole. It is worth to
note that this possibility could be in agreement with the sec-
ond scenario advocated in Ref. [35], and mentioned above.

Our objective in the present manuscript is to implement the
coupled channelT-matrix fitted to data in Ref. [35] in a fi-
nite volume and study its spectrum. Thus, we will be able to
compare the energy levels obtained with this finite volumeT-
matrix with those obtained in LQCD simulations, in particular
those reported in Ref. [48]. This work is organized as follows.
The formalism is presented in Sec.II , while theT-matrix of
Ref. [35] is briefly discussed in Subsec.II A , and its extension
for a finite volume is outlined in Subsec.II B . Results are pre-
sented and discussed in Sec.III , and the conclusions of this
work, together with a brief summary are given in Sec.IV.

II. FORMALISM

A. Infinite volume

We first briefly review the model of Ref. [35] (where the
reader is referred for more details) that we are going to em-
ploy here. There, theY(4260) decays toDD̄∗π and J/ψππ
are studied with a model shown diagrammatically in Fig. 1
of that reference. Final state interactions among the outgo-
ing DD̄∗ andJ/ψπ produce the peaks observed by the BESIII
collaboration, which are associated to theZc(3900) state. The
two channels involved in the 1(1+) T-matrix are denoted as
1 ≡ J/ψπ and 2≡ DD̄∗. Solving the on-shell version of the
factorized Bethe-Salpeter equation (BSE) allows to write:

T−1(E) = V−1(E) −G(E), (1)

whereE is the c.m. energy of the system. The symmetricV
matrix is the potential kernel, whose matrix elements have the
following form:

Vi j = 4
√

mi,1mi,2mj,1mj,2 Ci j e−k2
i /Λ

2
i e−k2

j /Λ
2
j . (2)

with mi,1 andmi,2 the masses of the particles of theith channel
andk2

i , the relative three-momenta squared in the c.m. frame,
implicitly defined through:

E = ωψ(k1) + ωπ(k1), (3)

E = ωD∗D̄(k2) , (4)

where:

ωψ(q) =
√

m2
J/ψ + q2 , (5)

ωπ(q) =
√

m2
π + q2 , (6)

ωD∗D̄(q) = mD +mD∗ +
mD +mD∗

2mDmD∗
q2 . (7)

with q ≡ |~q |. The Gaussian form factorse−k2
i /Λ

2
i are intro-

duced to regularize the BSE, and thus, for each channel, an
ultraviolet (UV) cut-off Λi is introduced. In this work, we
have usedΛ1 = 1.5 GeV and two values forΛ2 = 0.5 and 1
GeV [55, 56]. TheCi j matrix stands for theS-wave interac-
tion in the coupled-channels space, and it is given by [35]:

C =

[
0 C̃
C̃ C22 (E)

]
. (8)

In Eq. (8) theJ/ψπ→ J/ψπ interaction is neglected,C11 = 0,
the inelastic transition one is approximated by a constant,C̃,
while theD∗D̄→ D∗D̄ potentialC22(E) is parametrized as:

C22(E) = C1Z + b (E −mD −mD∗ ) . (9)

In a momentum expansion, the lowest order contact poten-
tial for this elastic transition would be simply a constant,
C22 ≡ C1Z. However, it is easy to prove that two coupled chan-
nels with contact potentials cannot generate a resonance above
threshold. Thus and for the sake of generality, the model of
Ref. [35] allows for an energy dependence in Eq. (9), driven
by theb parameter. TheG matrix in Eq. (1) is diagonal, and
its matrix elements are theJ/ψπ andD∗D̄ loop functions,

G11(E) =
∫

R3

d3q

(2π)3

ωψ(q) + ωπ(q)

2ωψ(q)ωπ(q)
e−2(q2−k2

1)/Λ2
1

E2 −
(
ωψ(q) + ωπ(q)

)2
+ iǫ

,

(10)

G22(E) =
1

4mDmD∗

∫

R3

d3q

(2π)3

e−2(q2−k2
2)/Λ2

2

E − ωDD̄∗ (q) + iǫ
, (11)

which account for the right-hand cut of theT-matrix, that sat-
isfies in this way the optical theorem. TheD∗D̄ channel loop
function G22 is computed in the non-relativistic approxima-
tion.

The free parameters in the interaction matrixC (C̃, C1Z

andb) were fitted in Ref. [35] to the experimentalJ/ψπ− and
D+D∗− invariant mass distributions in theY(4260)→ J/ψππ
andY(4260)→ DD̄∗π decays [6, 10]. The fitted parameters
are compiled here in TableI, where we can see the two differ-
ent scenarios investigated in Ref. [35]. In the first one,b , 0,
theZc appears as aD∗D̄ resonance,i.e., a pole above theD∗D̄
threshold in a Riemann sheet connected with the physical one
above this energy. In the second one, whereb = 0, a pole
appeared below theDD̄∗ threshold in an unphysical Riemann
sheet, which gives rise to theZc(3900) structure, peaking ex-
actly at theD∗D̄ threshold in this case [35] (see also Ref. [57]).
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TABLE I. Values of the parameters employed in Eq. (8), taken from Ref. [35], together with theZc pole positions found in that work. The
errors account for statistical (first) and systematic (second) uncertainties (see Ref. [35] for details).

Λ2 (GeV) C1Z (fm2) b (fm3) C̃ (fm2) MZc (MeV) ΓZc/2 (MeV)

1.0 −0.19± 0.08± 0.01 −2.0± 0.7± 0.4 0.39± 0.10± 0.02 3894± 6± 1 30± 12± 6

0.5 0.01± 0.21± 0.03 −7.0± 0.4± 1.4 0.64± 0.16± 0.02 3886± 4± 1 22± 6± 4

1.0 −0.27± 0.08± 0.07 0 (fixed) 0.34± 0.14± 0.01 3831± 26+ 7
−28 virtual state

0.5 −0.27± 0.16± 0.13 0 (fixed) 0.54± 0.16± 0.02 3844± 19+12
−21 virtual state

B. Finite volume

In this subsection, we study the previous coupled channel
T-matrix in a finite volume. The consequence of putting the
interaction in a box of sizeL with periodic boundary condi-
tions is that the three-momentum is no longer a continuous
variable, but a discrete one. For each value ofL, we have the
infinite set of momenta~q = 2π

L ~n, ~n ∈ Z3. The integrals in Eqs.
(10) and (11) will be replaced by sums over all the possible
values of~q:

G̃11(E) =
1
L3

∑

~n

ωψ(q) + ωπ(q)

2ωψ(q)ωπ(q)
e−2(q2−k2

1)/Λ2
1

E2 −
(
ωψ(q) + ωπ(q)

)2 ,

(12)

G̃22(E) =
1

4(mDmD∗ )
1
L3

∑

~n

e−2(q2−k2
2)/Λ2

2

E − ωDD̄∗ (q)
, (13)

(see Ref. [53] for further details). TheT-matrix in a finite
volume is then:

T̃−1(E) = V−1(E) − G̃(E) , (14)

where theG̃ matrix elements are given by Eqs. (12) and (13).
The discrete energy levels in the finite box are given by the
poles of theT̃-matrix. If the interaction is switched off, V →
0, the free (or non-interacting) energy levels are given by the
poles of theG̃ii functions,

E(~n2)
J/ψπ = ωψ(qLn) + ωπ(qLn) , (15)

E(~n2)
D∗D̄
= ωDD̄∗ (qLn) , (16)

where we use the shorthandqL = 2π/L, andn =
√
~n2. The

effect of the interaction is to shift these non-interacting energy
levels.

Our purpose is to make contact with the results reported
in the LQCD simulation of Ref. [48], and hence we will em-
ploy the masses and the energy-momentum dispersion rela-
tions used in that work. For theJ/ψπ channel the dispersion
relation in Eq. (3) is still appropriate, but for the case of the
D∗D̄ channel, in Eqs. (4) and (7), ωDD̄∗ (q) must be replaced
by [48, 58]:

ωlat
DD̄∗

(q) = mD,1 +mD∗ ,1 +
mD,2 +mD∗ ,2

2mD,2mD∗ ,2
q2 −

m3
D,4 +m3

D∗ ,4

8m3
D,4m

3
D∗ ,4

q4 .

(17)

TABLE II. Lattice parameters taken from Refs. [48, 58], and em-
ployed in this work.

Lengths (fm)
a 0.1239(13)

L = 16a 1.982(21)

Masses (lattice units)
amπ 0.1673(16)

amJ/ψ 1.54171(43)
amηc 1.47392(31)
amD,1 0.9801(10)
amD,2 1.107(12)
amD,4 1.107(27)
amD∗ ,1 1.0629(13)
amD∗ ,2 1.267(21)
amD∗ ,4 1.325(68)

This lattice energy of theD∗D̄ pair suffers from discretization
errors and it must be used in Eq. (13). The non-interacting
energy levels in Eq. (16) should be also modified accordingly.
Notice that, because of the factore−q2/Λ2

, the sum in Eq. (13)
is exponentially suppressed in~n 2. For the range of energies
considered in this work, it is sufficient to add terms up to~n2 =

6.2 Finally, the discrete, interacting energy levels reportedin
Ref. [48] are actually the result of applying the following shift:

E→ E∗ = E −mlat
s.a.+mexp

s.a. , (18)

where the spin-average massms.a. is given byms.a.=
1
4(mηc +

3mJ/ψ). For this reason, we will also present our energy levels
shifted as in Eq. (18). The parameters involved in our calcu-
lations, taken from Refs. [48, 58], are collected in TableII .
In particular, one hasmπ = 266± 4 MeV andL = 16a =
1.98± 0.02 fm, beinga the lattice spacing.

C. Further comments

With all the ingredients presented in Subsec.II B, we can
compare our predictions for the energy levels in a box with
those reported in Ref. [48]. But before presenting our results

2 We have checked that the numerical differences are negligible if larger val-
ues, say~n2 = 8, are used.
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we would like to discuss some technical details concerning
two differences that could affect the comparison.

First, we would like to note that the LQCD simulation in
Ref. [48] includes theJ/ψπ andD∗D̄ channels that are present
in our T-matrix analysis, but it also includes other channels
(like ηcρ or D∗D̄∗). However, according to Ref. [35], it is suffi-
cient to include theJ/ψπ andD∗D̄ channels to achieve a good
reproduction of the experimental information concerning the
Zc(3900). For this reason, we expect that, in first approxi-
mation, these other channels could be safely neglected in the
calculations.

The second point to be noted is that we are ignoring the
possiblemπ dependence of the parameters in the potential,
Eq. (8). Nonetheless, the LQCD simulation of Ref. [48] is
performed for a relatively low pion mass,mπ = 266± 4 MeV,
and we thus expect the eventual dependence to be mild. Fur-
thermore, we are going to compare several sets of these pa-
rameters (presented in TableI), which somewhat compensates
this effect.

III. RESULTS AND DISCUSSION

In Fig. 1, we show theL dependence of some energy lev-
els close to theD∗D̄ threshold. They have been computed
from the poles of the finite volumẽT-matrix, Eq. (14), by
using the parameters of TableI for Λ2 = 1 GeV, and the
lattice setup given in TableII . The levels obtained in the
Zc(3900)± resonance (virtual) scenario, calculated using the
entries of the first (third) row of TableI, are displayed in the
left (right) panel. The blue dashed lines stand for theJ/ψπ–
D∗D̄ coupled-channel-analysis results, and the red solid lines
show the energy levels obtained when the inelasticJ/ψπ–D∗D̄
transition is neglected (̃C = 0). This latter case corresponds to
consider a single, elastic channel (D∗D̄). The error bands ac-
count for the uncertainties on the energy levels inherited from
the errors in the parameters of Ref. [35], quoted in TableI (sta-
tistical and systematical errors are added in quadrature for the
calculations). The green dashed (dotted-dashed) lines stand
for the non-interactingD∗D̄ (J/ψπ) energy levels. In Fig.2,
the same results are shown but for the caseΛ2 = 0.5 GeV.
The qualitativeL behavior of both Figs.1 and2 is similar, so
we discuss first Fig.1 and, later on, the specific differences
between them will be outlined.

For both resonant and virtual scenarios, there is always an
energy level very close to a free energy of theJ/ψπ state,
E(l )

J/ψπ, which reveals that the interaction driven by this meson
pair is weak. Furthermore, the energy levels for the coupled–
channelT̃-matrix basically follow those obtained within the
elasticD∗D̄ approximation, except in the neighborhood of the
J/ψπ free energies. This also corroborates that the role of the
J/ψπ is not essential.

Let us pay attention to the levels placed in the vicinity of
the D∗D̄ threshold. For simplicity, we first look at the single
elastic channel case. There appears always a state just below
threshold, as it should occur since we are putting an attractive
interaction in a finite box. As the size of the box increases,
and since there is no bound state in the infinite volume limit

(physical case), this level approaches to threshold.3 When the
J/ψπ channel is switched on, theL−behaviour of this level
will be modified, specially when it is close to a discreteJ/ψπ
free energy. Note that the slopes of theJ/ψπ free levels, in
the range of energies considered here, are larger (in absolute
value) than those of theDD̄∗ ones, because the threshold of
theJ/ψπ channel is far from the region studied.

From the above discussion, one realizes that the next cou-
pled channel energy level, located between the twoD∗D̄ free
ones (E (0)

D∗D̄
andE (1)

D∗D̄
), could be more convenient to extract de-

tails of theZc(3900)± dynamics. Indeed, in the resonance sce-
nario, this second energy level is very shifted downwards with
respect toE (1)

D∗D̄
, since it is attracted towards theZc resonance

energy.4 In this context, it should be noted that the presence of
Zc(3900)± does not induce the appearance of an additional en-
ergy level, but a sizeable shift of the energy levels with respect
to the non-interacting ones. Therefore, even if no extra energy
level appears, it would not be possible to completely discard
the existence of a physical state (resonance). The energy shift,
however, can be quite large and, only in this sense, one might
speak of the appearance of an additional energy level. The
correction of the second energy level in the virtual state sce-
nario is much less pronounced. We should note here that the
elastic phase shift computed with theT-matrix in Ref. [35]
does not follow the pattern of a standard Breit-Wigner distri-
bution associated to a narrow resonance. Indeed, the phase
shift does not change quickly from 0 toπ in the vicinity of the
Zc(3900) mass, and actually it does not even reachπ/2. This
is mostly due to a sizeable background in the amplitude.

We now compare the casesΛ2 = 1 GeV (Fig. 1) and
Λ2 = 0.5 GeV (Fig.2). For Λ2 = 0.5 GeV, the relevant
(second) energy level is more shifted with respect toE(1)

D∗D̄
in

the resonance scenario (Fig.2, left) than in the virtual scenario
(Fig. 2, right). This is the same behaviour already discussed
forΛ2 = 1 GeV. However, the shift for the resonance scenario
is smaller in theΛ2 = 0.5 GeV case (Fig.2, left) than in the
Λ2 = 1 GeV one (Fig.1, left). This is due to the fact that the
Zc(3900)± is closer to the threshold and the coupling toD∗D̄
is smaller for theΛ2 = 0.5 GeV case. Another important dif-
ference between theΛ2 = 1 GeV andΛ2 = 0.5 GeV results
is that the error band of the relevant energy level is smaller
when the lighter cutoff is used. This is due to the different rel-
ative errors in both cases, and the fact that forΛ2 = 0.5 GeV,
the relevant level is closer to theE(1)

D∗D̄
free energy than in the

Λ2 = 1 GeV case.
After having explored the volume dependence of the energy

levels predicted with our̃T-matrix and scrutinized its physical
meaning, we can now compare our results with those reported
in Ref. [48]. The energy levels in the latter work are obtained
from a single volume simulation,L = 1.98± 0.02 fm, and

3 This is also discussed in more detail in Ref. [53].
4 For physical pions (mπ ∼ 140 MeV), theZc resonance mass, ignoring

errors, is 3894 MeV (3886 MeV) forΛ2 = 1 GeV (0.5 GeV), as seen from
TableI. For mπ = 266 MeV as used in Ref. [48], and taking into account
the shift in Eq. (18), one might estimate that mass to be around 3912 MeV
(3902 MeV).



5

E
∗
(M

eV
)

L (fm)

Resonance, Λ2 = 1 GeV

D∗D̄

J/ψπ–D∗D̄

E
(l)

D∗D̄

E
(l)
J/ψπ

3850

3900

3950

4000

4050

4100

1.5 1.75 2 2.25 2.5

E
∗
(M

eV
)

L (fm)

Virtual state, Λ2 = 1 GeV

3850

3900

3950

4000

4050

4100

1.5 1.75 2 2.25 2.5

FIG. 1. Volume dependence of some energy levels located close to theD∗D̄ threshold, and obtained when theZc is described as a resonance
(left) or as a virtual state (right) in theL→ ∞ limit. The blue dashed lines have been obtained from theJ/ψπ–D∗D̄ coupled channel analysis,
and the red solid lines show the single elastic channel (D∗D̄) case, in both casesΛ2 has been fixed to 1 GeV. The error bands are obtained
from the uncertainties of the parameters introduced in the theoretical model of Ref. [35] (Table I), adding in quadratures the statistical and
systematic errors. The green dashed (dotted-dashed) linesare the freeD∗D̄ (J/ψπ) energy levelsE(l )

D∗ D̄
(E(l )

J/ψπ).
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FIG. 2. Same as in Fig.1, but for the caseΛ2 = 0.5 GeV.

are shown in Fig.3 with black squares. In the figure, we also
show the results obtained in this work forL = 2 fm, for both
the resonance (filled circles) and virtual state (empty circles)
scenarios for theZc(3900). Besides, the energy levels calcu-
lated withΛ2 = 1 GeV andΛ2 = 0.5 GeV are represented
in blue and green, respectively. We provide two different er-
ror bars for our results, considering only the uncertainties of
the parameters entering in theT-matrix (TableI), or addition-
ally taking into account the errors of the lattice parameters
(TableII ). We clearly see three distinct regions, the lowest en-
ergies are very close to theDD̄∗ threshold (E(0)

D∗D̄
) and to the

first J/ψπ free energy level (E(1)
J/ψπ). These free energies are

shown in Fig.3 with red solid horizontal lines. As expected,
the two lowest lattice levels agree well with our results for
both cutoffs and the twoZc(3900) state interpretations exam-
ined in this work. The higher energy levels are the relevant
ones, and, as already mentioned, our results are significantly
shifted to lower energies with respect toE(1)

D∗D̄
for the resonant

scenario, while this shift is much smaller for the virtual state
one. In general, the lattice results are in very good agreement
with the virtual state scenario level for bothΛ2 = 0.5 GeV
andΛ2 = 1 GeV cases, whereas in the resonance scenario

the agreement is also very good forΛ2 = 0.5 GeV, and
it is not so good forΛ2 = 1 GeV. However, in the latter
case, we findEth = 4000+24

−13 MeV, while the lattice energy is
Elat = 4070± 30 MeV [48], and hence this non-compatibility
is small, the difference beingElat − Eth = 70± 40 MeV. The
comparison of our results with those of Ref. [48] support the
conclusions given in the latter work: from the energy levels
found in that LQCD simulation one cannot deduce the exis-
tence of a resonance (a truly physical state, instead of a vir-
tual state), namelyZc(3900). But also from this comparison,
putting this conclusion in the other way around, one cannot
discard its existence either.

Finally, as can be seen in Fig.3, a comparison of the
relevant energy level obtained in the resonance scenario for
Λ2 = 0.5 GeV (green filled circle) with that obtained in the
virtual scenario forΛ2 = 1 GeV (blue empty circle) shows
that, within theoretical uncertainties (the smallest error bars),
both cases are indistinguishable. This fact can already be seen
by comparing the left panel of Fig.2 and the right panel of
Fig. 1 aroundL ≃ 2 fm. These energy levels are shown to-
gether in Fig.4. It can be seen that, although these two sce-
narios cannot be distinguished atL ≃ 2 fm (the volume used
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FIG. 3. Comparison of the energy levels of Ref. [48], shown with
black squares, with our results forL ≃ 2 fm. Full (empty) circles
stand for the energy levels obtained in the resonance (virtual state)
scenario for theZc(3900) state. On the other hand, the energy levels
for theΛ2 = 1 GeV (0.5 GeV) case are shown by blue (green) cir-
cles. The energy levels calculated in this work are displayed with two
types of error bars: the smaller ones have been obtained considering
only the errors of the parameters entering in theT-matrix (TableI),
whereas the larger ones additionally take into account the errors of
the lattice parameters (TableII ).

E
∗
(M

eV
)

L (fm)

Vir., Λ2 = 1.0 GeV

Res., Λ2 = 0.5 GeV

E
(1)

D∗D̄

E
(2)
J/ψπ

3980

4000

4020

4040

4060

4080

4100

1.9 2 2.1 2.2 2.3 2.4 2.5

FIG. 4. Comparison of the relevant energy level for theΛ2 = 1 GeV
virtual state (solid purple lines) and theΛ2 = 0.5 GeV resonance
scenarios (dashed blue lines) aroundL ≃ 2 fm. The green dashed
and dashed-dotted lines representE(1)

D∗ D̄
andE(2)

J/ψπ non-interacting en-
ergies, respectively.

in Ref. [48]), they lead to appreciably different energies al-
ready atL ≃ 2.5 fm. This means that one cannot elucidate
the nature of this intriguingZc(3900) state with LQCD sim-
ulations performed in a single volume. Rather, it would be
useful to perform simulations at different values of the box
size, to properly study the volume dependence of the energy
levels. Of course, as discussed in Ref. [48], this would bring
in a technical problem –the appearance of moreJ/ψπ free en-
ergy levels in the energy region of interest, as can be seen in

Fig. 4 (E(2)
J/ψπ). Notwithstanding these difficulties, our work

should stimulate this kind of studies.

IV. SUMMARY

With the aim of shedding light into the nature of the
Zc(3900) state, we have implemented theJ/ψπ, D∗D̄ cou-
pled channelT-matrix of Ref. [35] in a finite volume, and
we have compared our predictions with the results obtained
in the LQCD simulation of Ref. [48]. The model of Ref. [35]
provides a similar good description of the experimental in-
formation concerning theZc(3900) structure in two different
scenarios. In the first one, theZc(3900) structure is due to a
resonance originating from theD∗D̄ interaction, while in the
second one it is produced by the existence of a virtual state.
We have studied the dependence of the energy levels on the
size of the finite box for both scenarios. For the volume used
in Ref. [48], our results compare well with the energy levels
obtained in the LQCD simulation of Ref. [48]. However, the
agreement is similar in both scenarios (resonant and virtual)
and hence it is not possible to privilege one over the other.
Therefore and in order to clarify the nature of theZc(3900)
state, we suggest performing further LQCD simulations at dif-
ferent volumes to study the volume dependence of the energy
levels.
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